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Abstract: The singular boundary value problem that arises for the static spherically
symmetric 5'ί/(n)-Einstein-Yang-Mills equations in the so-called magnetic case is
analyzed. Among the possible actions of SU{2) on a SU{n)-φύncvpdλ bundles over
space-time there is one which appears to be the most natural. If one assumes that
no electrostatic type component is present in the Yang-Mills fields and the gauge is
suitably fixed a set of n — 1 second order and two first order differential equations is
obtained for n — 1 gauge potentials and two metric components as functions of the
radial distance. This system generalizes the one for the case n = 2 that leads to the
discrete series of the Bartnick-Mckinnon and the corresponding black hole solutions.
It is highly nonlinear and singular at r = oc and at r — 0 or at the black hole horizon
but it is known to admit at least one series of discrete solutions which are scaled
versions of the n = 2 case. In this paper local existence and uniqueness of solutions
near these singular points is established which turns out to be a nontrivial problem
for general n. Moreover, a number of new numerical soliton (i.e. globally regular)
numerical solutions of the SU(3)-EYM equations are found that are not scaled n = 2
solutions.

1. Introduction

The coupling of Einstein's general relativity with Yang-Mills gauge theories leads to
complicated nonlinear systems of equations even in the static spherically symmetric
case. If the gauge group is SU(2) and the "Coulomb" part of the gauge potential
is set to zero and asymptotical flatness is imposed the resulting singular boundary
value problem admits a sequence of regular solutions parametrized by the number of
zeros of a convenient gauge potential component. These solutions were numerically
discovered by Bartnik and Mckinnon [3] and their existence was proved analytically
by Smoller et al. [18-20] for some range of the initial conditions for a suitable
gauge potential at the center or at the black hole horizon. Such discrete sequences
of solutions have since also been found numerically for a number of other field
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theories coupled to gravitation like EYM-Higgs fields [1], dilatons [15, 10, 8, 16]
and skyrmions [5]. For the SU"(2)-EYM theory it has turned out that sequences of
black hole solutions exist for arbitrary radii of the horizon and appear to approach
regular solutions as the black hole radius tends to zero. Most likely these solutions are
not stable against time dependent perturbations [22,7]. There remain many questions,
in particular, about the behavior of the "higher energy" solutions. But it is known
that their total mass is always bounded and a (not very good) upper bound has been
analytically established [13]. Numerical evidence suggests that this upper bound is in
fact equal to one (in suitable units) and is approached asymptotically by the solutions
whose gauge potential oscillates more and more often.

In this paper we analyze the equations for an Einstein-Yang-Mills system with
gauge group SU(n) in a static space-time obtained if the apparently most natural action
of the SU{2) group on the principal bundle leaves the gauge connection invariant.
We assume that there is no Coulomb type component, i.e. the timelike components of
the gauge potential vanishes. One then arrives at a system of n - 1 second order and
2 first order ordinary differential equations for n — 1 surviving gauge potentials and
two metric functions with singular boundary conditions both at r = oc and at either
r = 0 or r = rH, the black hole horizon [12]. It is easy to see that this system admits
some special solutions by scaling the radial variable as well as most of the dependent
variables and reducing it to the case n = 2 for which existence has been proved. We
demonstrate numerically, that there must also be solutions more general than these
special scaled ones. One might, in fact, have conjectured that the solutions would
be parametrized now by the number of zeros of each of the n — 1 gauge potentials.
However, numerical solutions exist that prove this conjecture wrong. Even in the
SU(3) case it is therefore quite difficult to get an idea of the structure of the set of
global solutions.

The bulk of the paper is in fact concerned just with the preliminary problem
to establish that the local initial conditions at the end points of the interval in r can
always be solved uniquely thus showing that the "shooting to a fitting point" numerical
technique can always be applied. It turns out that even this apparently straightforward
problem is surprisingly complicated, at least for general n. We establish first what
initial conditions can be chosen that determine uniquely a formal power series solution
and then show that with these initial data a unique analytic solution of the system
exists near r = 0 and r = oo. The scaling argument mentioned above shows that
some of these solutions exist for all r > 0, but most do not. To prove rigorously
that global solutions exist that are not scaled n = 2 solutions will take much more
work. Even numerical exploration of the set of global solutions is very cumbersome,
at least with the shooting method, since it is hard to choose an appropriate initial
point for Newton's technique in the (2n - l)-dimensional parameter space. So far the
numerical evidence suggests that the masses of these solutions fall in between the
masses of the scaled solutions and are bounded by the same upper limit.

The paper is organized as follows. In Sect. 2 some elementary facts about the radial
field equations derived in [12] are recalled and the existence of the scaled "diagonal"
solutions for the SU(n) case is proved. Section 3 contains the main part of the paper,
namely the proof that a local formal power series solution exists in a neighborhood
of the singular boundary points. We also find in the process what parameters can be
freely chosen at these endpoints to serve as initial conditions for the local solutions.
We generalize, in Sect. 4, the local existence proofs of Smoller et al. [18,20] to n > 2
and present some new numerical solutions for the SU(3)-ΈYM theory in Sect. 5.
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2. The Radial Field Equation, Scaled Solutions

The Einstein and Yang-Mills equations can be formulated in a fairly coordinate
independent form on general spherically symmetric space-times as was done in
[12]. If all the fields are static, however, and we only consider regular space-times
diffeomorphic to E 3 or only the outside of static black hole space-times then it is only
a slight restriction to assume that there exists a global Schwarzschild type coordinate
system1

ds2 = -Ne'2δ dt2 + N~ι dr2 + r2(dθ2 + ύnθdφ2),

where N = 1 — 2m/r and δ are functions of the radial variable r only. Asymptotical
flatness requires that m(r) = m^ -f O(l/r) as well as δ(r) = O(l/r) as r —> oo.
For regularity at the center it is necessary that N = 1 + O(r2) and 6 finite while
at a regular (not extreme) horizon r = rH we have N(rH) = 0 and N'(rH) > 0.
Einstein's equations, Raβ = 8π(Taβ — - Tχgaί3), then reduce to

m' = 4πμr 2 and δ' = -4πrN~\μ + p r ) , (2.1)

where ' = d/dr and μ is the mass-energy density and pr the radial pressure.
A static spherically symmetric Yang-Mills field can be given by a potential in the

form ([2, 12, 4])
A = A + A,

where A — A0(r) dt -f Ar(r) dr and

A = Aλdθ + (Λ2 sin θ + A3 cos (9) d</>

and Λk — Λ(τk) = Λ(σk/(2i)) are the components of an equivariant linear map of
su(2), into the Lie algebra of the gauge group. We consider here only the case when
the gauge group is SU(n), with a "standard" irreducible action of SU(2) on the
principal bundle (so that Λ3 = diag(n — 1, n — 3 , . . . , — n + 3, — n + 1) G 5u(n)) and
we also assume that the "Coulomb" part of the gauge potential vanishes, i.e. Ao = 0.
The gauge can then be chosen (see [12]) such that also Ar = 0 and the potential,
when written as an anti-Hermitian matrix, becomes

(l - n)cos θdφ wxθ 0 ... 0 \

A-λ-l
i(3 — n) cos θdφ w2θ ... 0

\ 0 . . . 0 -wn_iθ ί(n-l)cosθ/

where θ := dθ - ί sin θ dφ, and the wJ are real valued functions of r. The Yang-Mills
field is

j , . . . , fjsinθdθ Λ dφ (2.2)

with

f3 := ^ - ^ _ ! + 2j - n - 1 (j = 1,.. ., n with w0 = wn = 0).

1 Nevertheless this zs a restriction (cf. [14]). It is possible that singularities in the solutions of
the differential equations obtained in this coordinate system are due to the function r failing to be
monotonically increasing outwards. This possibility was also observed in [16]
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The Yang-Mills field equations now take the form

r2Nw'3' + 2(m - rP)w'j + \ (fJ+ι - f.)Wj = 0, (2.3)

and the energy density and the pressures are given by

4πμ = r~2(NG + P), 4πpr = r'2{NG - P) and 4πpθ = r~2P, (2.4)

n—1 n

where G := £ wf and P := ± r~2 £ /*.

We thus have a system of n + 1 ordinary differential equations for the n + 1
functions ?τi(r), <5(r) and ^ ( r ) , . . . , wn_ι(r), whereby the equation for δ decouples.

Regularity of the metric at the center requires in particular that μ, pθ and pr remain
finite as r —> 0 so that G(0) = 0 whence Wj(0) = OVj and

//0) - w2(0) - w2

3_γφ) + 2j - n - 1 - 0 (i = 1,.. ., n) .

These equations are readily solved and give

w2(0) = j(n-j). (2.5)

In order to derive the boundary conditions for r —• oo we rewrite (2.3) in terms of
the variable ρ = \/r and find

0 d2w dwη 1
QN ~di + 2^(1 " 3mρ + P ) ^ 7 + 2 (/^+1 " ̂ K = ° * (2 6)

Now Eqs. (2.1), (2.3) and (2.6) involve only rational functions of r or ρ so that a
solution at any nonsingular point will be analytic. Moreover, for an asymptotically
flat Yang-Mills field we would expect that F = O(r~~2) as r —> oo so that by (2.2) the
/ must remain finite as r —> oo. It follows that the Wj have finite limits at infinity.
Nothing of physical interest is lost therefore if we now assume that

Then, however, it follows from (2.6) to lowest order that

(/,+iίoo) - / . ( o o ) ) ^ = 0 0' - 1,..., n - 1). (2.8)

Now suppose that wJ: ^ φ 0 for j G {fe + 1,..., Z} and that w^^ = ^ ^ ^ = 0 for
0 < k < I < n. Then one derives as in (2.5) that

^,oo = 0 ' - f c + l ) ( i - J + l) for k<j<L

However, an analysis of higher powers in (2.6) shows that Wj(ρ) = 0, provided one
assumes that the w3 are analytic in ρ at ρ — 0. The system of Eqs. (2.3) then decouples
into several systems of smaller n. Such solutions of an SU(n)-ΈΎM theory could be
considered reduced to several somewhat trivially superposed SU(nJ )-EYM solutions
with Σ nj — n Since we do not consider this case we can assume that also

lim w2Λr) = j(n - j) =: η .
r-^-oo J J

Remark. In the globally regular case, this decomposition cannot occur (at least, if
we assume analyticity) since w3(r) = 0 is incompatible with the regularity condition
(2.5) at r = 0.
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It is easily seen that if (m(r) ,κ; 1 (r) , . . . , i f n _ 1 (r)) is a solution of the system
(2.1), (2.3) then also ( m W j ^ j t r ) , . . . ,εnwn_ι(r)) is a solution for any choice of
the ε £ {1,-1}. Moreover, no physical quantities (Yang-Mills field, energy density,
pressures) depend on the choice of the Sj. We may therefore assume without loss of
generality that

The observation of Bartnik and Mckinnon [3] in the SU(2) case that \w(r)\ < 1 for a
regular solution of the boundary value problem also generalizes to SU(ή). We have
the

Proposition 1. If a solution (jn,wγ,... ^wn_ι) of Eqs. (2.1) and (2.3) is smooth on
[0, oo) or on [rH, oo) α^d m and all w3- have finite nonzero limits as r —> oo

w ] ( r ) < i ^ ( o o ) Vr > 0(orr > rH) and j = 1,...,« - 1 ,

equality occurring only for the trivial solution (Schwarzschild metric and zero
YM-curvature).

Proof Let v = supu??(r) and suppose that w (r ) = i * / ^ for some r £ (0, oo)
r

or ( r^ , oo). Then w -(r ) is an absolute maximum (minimum) so that tί^ (r •) = 0 and

w"^-) < 0(> 0). It then follows from (2.3) that

and therefore
w2j(Tj) < 1 + \ Γ s u p u ^ ^ r ) + s u p ^ + 1 (

L r r

so that

vό<\ + \ [v3-ι + υj+ι] for 1 < j < n - 1, (υQ = υn = 0). (2.11)

These conditions together with Vj > 0 are easily seen to define a bounded convex set
B in Rn-\ (If υ,ue B, λe [0,1], then λ ^ + (1 - λ ) ^ < 1 + \ {[λvJ_ι + (1 -

λ ) ^ _ 1 ] + [λv J + 1 + ( 1 — X)Wj+1]} and λ ^ + ( l ~ ^ ) u

3 > 0 so that λv + (l — λ)w G 5.)
If the inequalities in (2.11) are replaced by equalities a system of linear equations is
obtained for the υ3 that is equivalent to the one for the w2-(0) above thus showing that
the extremal values are attained at r — 0 and r = oo. Now suppose that w3 attains
its maximal value y/j(n — j) at r*, where 0 < r* < oo or rH < r* < oo. It then
follows from (2.3) that w'-{τ^) > 0, a contradiction unless wj+ι and w2

3_x also attain
their maximal value at the same r*. It follows that all w2

3 attain their maximal value
at the same value r*. But then all first and second derivatives of all w3- vanish at r*
which is a regular point of the system (2.3, 2.1). So we get only the solution with m
and all w3 constant and thus all f3=0. D

In view of this result it is now natural to scale the variables so that their absolute
values are bounded by 1. We thus replace the w3(r) by

ηι (r\ '— on (τΛl AYuj\ι ) '— wj \ι )/ Y ϊj 5

and therefore have also, in view of (2.9),

uAO) = 1.
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Equations (2.3) and (2.1) now become

r2Nuf; + 2(m - rP)^ + \ foJ+1 - q ^ = 0, (2.12)

, (2.13)

(2.14)

where now
Qj = Ίjtf - Ίj-itf-i + 2j - n - 1,

n-l n

Apart from the well known special solution given by Wj(r) = 0 for all j = 1 . . . (n—1)
which leads to the Reissner-Nordstrom metric (and therefore to a black hole) there
is another rather special case, namely when all the Wj are proportional, i.e. (ignoring
an insignificant sign in each u •)

ut = u2 = . . . = un_x = u(r).

Then (2.12) becomes

r2Nu" + 2(ra - rP)uf + (1 - u2)u = 0,

which is the same equation as (2.12) for n = 2 except that now

n

P = i r~2 Y^{2j -n- 1)2(1 - u2)2 = y2{n - l)n(n + l)r~ 2(l - u2)2 ,

J = l

G = i (n - l)n(n + l)i//2 .

The equation reduce exactly to those for n = 2 if we scale them as follows,

r = λnx,

u(r) = u{\nx), ^

= λnm(r/λn),

where λ n = J^ (n - l)n(n + 1) (so that λ2 = 1).

For this reason we will write the general SU(ή) equations also in these scaled
variables. They then become with f = (uu . . . , un_ι,m)9

(2.17)

(2.18)

(2,9)

n „ (1UA ~ du 1

(x) := x2N -^ + 2(m - κnxP) -£ + - (qj+1 - q^ = 0
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where κn := λ~2, q- is still given by (2.15), and

^ ίduj\2 p ! V^ 2 ~ 2 ? ^
/ ^ J \ //'T* / 4τ*2 / ^ J /γ»%

(We drop the tildes for JV, m, P, G and 6 from now on when referring to Eq. (2.17)
to (2.20).) Since Eq. (2.19) decouples we will not consider it any further, and we
write 3? = (.^,... , i ζ ) so that the system (2.17), (2.18) becomes

) = 0. (2.21)

In view of the results of Smoller et al. [18-20] we therefore have immediately.

Proposition 2. There exists a countably infinite family of globally regular solutions of
the SU(n)-Einstein-Yang-Mills equations on a static spherically symmetric space-time
that is diffeomorphic to ]R4. For any choice rH > 0 there is also an infinite discrete
family of static spherically symmetric solutions regular outside and on a black hole
horizon of radius rH.

Remark. These global existence proofs were obtained by showing that for certain
initial values at x — 0 a global solution exists with m{x) tending to a finite limit and
u(x) —> ±1 as x —> oo. That the solutions have the asymptotic behavior (2.7) is not
proved yet (although very likely in view of the success of the numerical two-point
shooting method that uses these expansions).

In the case n > 2 it seems reasonable to expect also solutions for which the
different uJ are not equal. But their global existence may be even more difficult to
establish analytically. We will present some numerical evidence for their existence in
Sect. 5. But first we analyze the system of differential equations locally at the critical
points x = 0, x = oo and where N — 0 (i.e. at the horizon).

3. Formal Power Series Solutions at the Singular Points

In order to find suitable initial conditions for the system (2.21) at the critical points
we first derive the formal power series solutions.

At the center, x = 0, let

oo oo

ui = Y^ u\xk and m — Y^ mkx
k ,

fc=0 k=0

where we know already that uτ

0 = 1 and u\ = 0. Then (2.18) gives

ra0 = mx — m2 = 0,

(

u\ (\ q?_\+ι - i ql_ι+ι - 21(1 - 2)mk_ι+2 - 2κJPk_ι+ι)) , (3.2)
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where (always for k > 2)

n - l fc-1

n fc

- ι

i=l i=2

U = Σ ^ i U ' U * - ί " Ί^U%1 Uk-V •

(3.3)

(3.4)

Equation (3.1) determines mk+ι in terms of m 3 , . . . ,mk_ι and all uι

2,>. ,uι

k, but
Eq. (3.2) requires solving a tridiagonal linear system

-i = b f c + 1 (3.5)

(3.6)

for each k>2, where ufc = (u\,..., υ% ι)τ ,

A) = (26) - 6)+1 - δ)~l)Ίj , (7o = 7n = °)

or
fill

~ 7 i

0

- 7 2

272

- 7 2

0 ..
~73 ••
2 73

0
0

0

0
0

0

\ 0 0 0 -Ίn-2

and bk+ι is the (n — 1) x 1-matrix representing the right-hand side of Eq. (3.2). It can
be written in the form

fc-2

6!b+i = "
1=1

k-l-2

r=2

with
1) [(I - l)mk_ι+ι

We need to show that this system can always be solved and that there are the right
number of initial data. This is achieved by the

Theorem 1, The recurrence relations (3.1), (3.2) determine uniquely all coefficients
mk and uι

kfor k > n once n — 1 arbitrary parameters have been chosen, one for each
equation with k=\tok = n— \.

The proof consists of several steps. We need to show that the (n — 1) x (n — 1)
coefficient matrix A — k(k +1)1 has rank n — 2 for k — 2 , . . . , n and is nonsingular
for k > n. Moreover, it must be shown that the vector bk lies in the left kernel of
A — k(k + 1)1 for fc < n. Finally, it will be convenient to make a systematic choice
of the free parameters that will serve as the initial data of the differential equation at
x = 0.
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Lemma 1. The matrix A has the eigenvalues 1 2, 2 3 , . . . , (n — 1) n.

Proof. Let χ^(A) := det(λl A •), where A is the upper left (j x j)-submatrix of A.
Then, by the cofactor expansion along the last column of λl^ - A^ ,

Xj(X) = (λ - 2 7 i ) χ , _1(λ) - ΊjΊj_ιXj-2W (3.7)

This recurrence relation is of the form of the one for the dual Hahn polynomials [11],

Rj(X) = R3{X\a,β,N) (fc = 0 , 1 , . . . , JV - 1)

defined by

-λi^ (λ) = DjR^iλ) - (Bj + D3)R3(λ) + B3Rj+ι(λ) (3.8)

with R0(X) = 1 (and R_{(\) = RN(λ) = 0), where Bj = (N-l-j)(a+l + j) and

Dj = j(N -f β - j). For ^.(λ) = (-l)jB0Bι... Bj^R^λ) the recurrence relation
becomes

which agrees with (3.7) if a = 1, β = — 1 and N = nΛt follows that

Xj(X) = (-l)j(j + l)!(n - l)(n - 2).. .(n - j)i?/λ),

in particular,

X(λ) = Xn_i(λ) - (- l) n - ι n!(n - D ϋ ^ λ ; 1, - 1 , n).

However, by Eq. (1.19) and (1.1) of [11] we have

1, fc + 1; 2, -n + 1; 1) = 2F1(-fe, fc + 1; 2; 1)

Γ(2)Γ(1)

Γ(2 + fc)Γ(l - fc)
= 0 for fc=l,2,...,

where from now on RZ(X) := R^X; 1, — l,n) and Qk(i) : Qk(i\ 1, — l,n). It follows
that χ(λ) vanishes when λ = fc(fc + 1) for fc = 1,2,..., n — 1. D

So far we have shown that the uk are uniquely determined by (3.2) for fc > n.
Moreover, when fc = 2 or 3 the right-hand side of (3.2) vanishes so that u2 and u3

are determined up to one new parameter each. However, if 3 < fc < n it must still be
shown that the linear system is consistent. This is best done by introducing a new basis
in the vector space of the uk, also constructed with the help of the Hahn polynomials.
With this method it is also easier to pick the free parameters in a systematic way.

Lemma 2. The right and left eigenvectors

of the matrix A to the eigenvalue fc(fc -f- 1) are given by

4 - — - Qk(i - 1) = — - 3F2(-fc, -i + 1, fc + 1; 2, -n + 1; 1) (3.9)
Ti — % Tί — %

and
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respectively. They satisfy the orthogonality relation

k / \ J ck (n + k)\(n —k — 1)1 k

with respect to the scalar product

n-\

( x , y > : = T^V (3-10)
n A <=i

Proof. For the right eigenvectors we solve Av = λv again by recursion and find
(choosing υι(X) = 1)

^(λ) = T " 1 ^ - ! - λ ) ^ - 1 - Ίi-2^~2] (2 < i < n - 2), (3.11)

so that ΐ^(λ) is a polynomial in λ of degree i—1. The last equation is then a polynomial
of degree n - 1, proportional to the characteristic polynomial of A that must vanish.
Equation (3.11) can be brought into the form (3.8) by putting vι = θ^1, θ0 = 1 and
adjusting the factors θt. We find

v\X) = ~ i^ίλ; 1, -1, n) (i = 1,..., n - 1)
n — i

so that we obtain for the eigenvector \k to the eigenvalue λ = k(k + 1),

4
n - 1

(-^5 - i + 1, fc + 1; 2, - n + 1; 1). (3.12)

Note that, in particular, v\ = 1 and vk — 1 Vi, k so that the eigenvector to λ = 2 is
v = ( 1 , . . . , l ) τ (which can also be verified directly).

The left eigenvectors wh of A are derived in a very similar manner and come out
proportional to

w

k = (i + l)3F2(-fe, -i + 1, k + 1; 2, - n + 1; 1) = — ί — Ίiv\ . (3.13)
n — 1

Since w v̂̂  = 0 for /c φ I the right eigenvectors \k are orthogonal with respect to
the scalar product (3.10) in Rn~ι. Directly from the recurrence relation for the Hahn
polynomials ([11], Eq. (1.2)) one can derive the normalization

n-l

dk := wk\k = (vfc, vfc) = (n - 1) V —^— Qfc(i - I) 2

(n + * ) ! ( n - * - l ) ! D

(n - l)!(n - 2)!jfe(jfe + 1) (2Jfe + 1) '

It is now clear that for k = 2 , . . . , n the coefficient matrix of (3.5) has a 1-dimensional
left and right kernel. Since b 2 = b 3 = 0 by (3.2) it follows that

u2 = βιyι and u3 = β2v2 , (3.14)

while
UL.,I = uί, i + βk\k for k — 2 , . . . , n — 1,
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provided
w f c b f c + 1 = 0 for fc = 2 , . . . , n - l . (3.15)

Here u^+ 1 is a special solution and β2,. ., βn-\ are arbitrary parameters. However,
since bk will depend on the βx,..., βk_2 it is best to fix the choice of uk by imposing
an additional condition on uk before attempting to prove (3.15). We choose

vrkuk+ι=dkβk for k = 1,... ,n - 1, (3.16)

which is compatible with (3.14).

Lemma 3. Whenever (3.15) is satisfied then the linear system

fc=lj...>n_1

has a unique solution for given βk.

Proof. Uniqueness will follow if we show that the coefficient matrix Ak of the
combined system has rank n— 1. Now Ak = A — k(k+1)1 has rank n—2. Suppose that
the last row wk of Ak is a linear combination of the other rows, i.e. wfc = XAk. Then
0 = wfcAfc = λAfcAfc. But A has n — 1 distinct eigenvalues and is thus diagonalizable
so that it follows that λ = μwfc, whence wk = μwkAk = 0, a contradiction. To prove
existence suppose that xτA f c = 0, i.e. xτAk + xnw fc = 0, then it follows similarly
that xn = 0 and x τ = ̂ wfe, whence x τ b f c + 1 = vwkbk+ι = 0. D

To prove that (3.15) is satisfied for k = 3 , . . . , n — 1 is more easily done in terms
of the bases {v̂ ,} and {wk}. We have

n - l

and let
n- l
Σ ^ v i ( * = 1,2,...)- (3.17)

Equation (3.2) then becomes

fc-2 r n- l

= - Σ i ̂ M^,i + Σ [(1 α ^ α + * ) + s ( s

j=l I r,β=l
k-j-2 n-l ^

+ 5 Σ Σ [P(P + l )W;^iC H -,] , (3-18)
1=2 p,r,s,t=l J

where
n-l

and (3.16) gives

= βk • (3-20)
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The consistency condition (3.15) for (3.18) is now obtained by putting a = k in
(3.18).

It is clear from (3.18) that

{/{* = 0 for a > 1 and £/2

α = 0 for a > 2.

We will now show by induction on k that

Όl = 0 for α > k (1 < /c < n), (3.21)

and that the right-hand side of (3.18) vanishes if α = k, thus proving consistency of
the linear system. This can be done since strategic components of d%s are zero.

Lemma 4.

n- l

cijk := V ^ — Q2(r - 1)Q ,(r - l)Qfc(r - 1) = 0 if i + j <k (3.22)
r=l

for all 2, j , fc £ {1,.. . ,n - 1}, w/ẑ r̂  Q^(r) w ̂  m (3.12).

Proof Clearly c2 j f c = c ^ fc), i.e. cijk is totally symmetric in its indices. From the

orthogonality relation given in Lemma 2 we have, since Qx(r — 1) = (n — r)/(n — 1),

n- l

^-^ r n ~ τ n ί

n-l

r=l

1

in particular, if 1 +j < k. Assume now that (3.22) is true for alH = 1,2,..., I < n— 1.
To prove the induction step we use the recurrence relation for the Hahn polynomials
(Eq. (1.2) of [11]),

-rQi(r) = d&^ir) - (6, + dJQ^r) + 6,Qi+I(r), (3.23)

where

Applying (3.23) to Q^r - 1) and then to Qk(r - 1) in (3.22) gives

Cijk = ί-di-\Cι-2jk + dkCi-\,k-l+(K-\+di-l-bk-dk)Ci-lj^

Choose now i = I + 1 in this equation and assume that (/ + 1) + j < k. Then on
the right-hand side, by the induction hypothesis, cI_ι-k = 0, since / — 1 + j < k,
cIjk_ι = 0, since / 4- k < k - 1, cIjk_{ = 0, since / ' + j < k — 1, and cIjk+ι = 0,
since I + j < k + 1. Thus all terms of the right-hand side vanish completing the
induction step. D

Now we have, in view of (3.19), (3.12) and (3.13),

^ = ( 7 1 - 1 ) ^ - ^ = 0 if r + s<a.
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Making now the induction hypothesis (3.21) for fc = 1,... ,UΓ we have for (3.18)
with k = K H- 1 for the first term on the right-hand side

κ-\

=0 if α > l f + l ,

since j < K — 1 in the sum. Using (3.21) in the second term gives

κ-\ j κ-j

y y r α(α + 1) + s(s + 1)\dr9uA Uκ—ή •>
j = l r = l 5=1

but now r + s < j>+jfif — j = i { Γ < α in this sum so that d%s — 0 in every term.

Similarly, for the last term,

K-\ K-j-l n~\ J l-\ K-l-j
1 V~^ V~^ V~"V V~^ V ^ \ ~ ^ Γ y -*-. rn ,„ τ r r τ τ e τ r +— τ / / > / / / [p(p+ l)d (KfU Uf_λUKi_Λ,
2 Z—/ Z—• / > Z—/ Z—/ Z__^ •^ v x^ rp be j i L J\ i j 7

j=\ 1=2 p=l r=\ s=l t=l

so that s + t < K — j — 1, and therefore dζt = 0 unless p < K — j — 1. But in the
latter case r + p < K — 2 < a which means that the factor d^p = 0. So all terms in
the sum individually vanish. This proves the induction step and completes the proof
of Theorem 1.

Fortunately, the asymptotic expansion at x — oo is obtained in a very similar
manner. Substituting x = \/z in (2.21) gives

9 Λ T d2u du; 1

d z 2 CU2? 2 ^

with

n- l

A power series ansatz,

oo

k=0 k=0

where we also write m^ for m0 and we can assume uι

0 — 1 (since an overall sign
can be put in later), leads to the recurrence relations (for k > 0)

( fc-4 \

i=0 / + 1 ^ ^ /

k-l

-
(3-25)
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where qk is given by (3.4),

n - l fc-2 n fe-1

Gfc = Σ Ύi Σ < * + 1) (* - ' - l)«ί+i«'fc-i-i and Pfc = 5 Σ Σ «?«*-«
2 = 1 Z = 0 i = l Z = l

The linear system (3.25) is again of the form

(A - k{k + l)I)ufc = bfc ,

where A is as in (3.6) and b^ is now given by

fc-l

&i = - Σ
Z = l

with

k-l

u'"*-'+ H Σ 4u>i-«-r

M := -2/(Z

Again, the coefficient matrix is singular for k = 1,. . ., n — 1, and the system can be
supplemented by the conditions

v?kuk = dkak for k = 1,.. ., n - 1. (3.26)

Then we have the

Theorem 2. The recurrence relations (3.24), (3.25), together with (3.26) determine
uniquely all coefficients mk and u\ in terms of the parameters m^ and aλ,..., cκn_1.

Proof. The method is completely analogous to the one in the proof of Theorem 1
once we put

n-l

l=\

Finally, we consider solutions with a regular black hole horizon at x = xH > 0,
so that N(xH) — 0 and v — dN/dx(xH) > 0. While this is also a singular initial
value problem finding a formal power series solution (u^x),... ,un_ι(x),m(x)) at
x = χH is completely straightforward. If with t — x — xH we let

oo oo

u. = > UA ut and m = > mΛ ,

then ra0 = ^ XH a n c* m e n— \ values ui 0 = U^XJJ) can be assigned freely subject

to the condition that

where

= 7i^io ~ 7i-i^i-io + 2ΐ - n -

In terms of these data the coefficients i ^ + 1 and mk+1 become polynomials of the
coefficients of lower order divided by v. The formal power series of u{{x) and m(x)
are thus completely determined in terms of the n— 1 values u^Xfj). Note, incidentally,
that

vxH < 1. (3.27)
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At this point it is worth observing that our choice of the initial data βi at x = 0 and
at at x — oo is quite convenient.

From the results of Sects. 1 and 2 it is clear that choosing all β% and all ai except
the first to be zero leads to a solution with all functions u{(x) being the same. We have
also already observed in Sect. 2 that changing the sign of any u^x) leads to another
local solution of the system (2.21) so that in the regular case we could normalize
uτ(0) to be 1. But the signs of the u^oo) and ai are still arbitrary.

It turns out that there is at least one other symmetry of this system that can be
exploited to reduce the number of parameter values that must be investigated to find
numerical solutions of the boundary value problem.

Proposition3. Under

π:{u γ{x),..., un_x{x\ m{x)) h-> (un_x(x),..., u{(x), m(x)), (3.28)

the set of local solutions of (2.21) is mapped into itself

Proof Since ηι = r)n_ι we have (in the notation of (2.21)) (qi o π) [f] (x) =

+ + +

—qn-ι+\[f] so that Q{oπ) = Qn_^, and therefore POTΓ = P and similarly Goπ = G.
It follows immediately that (β' o π) [f] = πJ^ff). D
Equations (2.2), (2.4), and (3.28) then imply that for such solutions the Yang-Mills
field (up to a relabeling of the basis of the Lie algebra) and the stress-energy tensor
as well as the total gravitational mass m^ are the same. These solutions are thus
physically equivalent.

Since on the black hole horizon x = xH the initial data are simply the values of
u%(xH) it is clear how to generate the other solution when one is known. It is not
quite so obvious which initial data at x = 0 and at x = oo generate solutions related
by π, but due to our particular choice of these data we still have a simple rule.

Proposition 4. For initial data βi and βi to generate solutions f and π(f) o/(2.21),
respectively, it is necessary and sufficient that

Similarly, initial data {ai1 m^} and {ά^rh} at x = oo generate solutions related by
π if and only if

ai = (-lT+lai a n d ^oo = m oo

Proof. Both at x — 0 and x = oo the result follows immediately from (3.17) and
(3.20) since

which, in view of (3.9) is a consequence of the following lemma. D

Lemma 5. The Hahn polynomials Qk(i) = Qk(i; 1,-1, ri) satisfy the relation

iQk(i - 1) = (-l) f c + 1 (n - i)Qk(n - i - 1), (1 < i, k < n). (3.29)

Proof. Since by the definition
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where (α)n = a(a + 1)... (α + n — 1), Eq. (3.29) follows from

Σ jl(j I i ) ! ω ,

for y = i and z = 1 — n. The expression G being a polynomial of degree fc + 1 in
y vanishes identically if it, as well as the k + 1 first forward differences with respect
to y, vanish for y = 0. But if ΔG(k,y,z) := G(k,y + l,z) — G(k,y,z), then for
ra = 0, . . . , fc+ 1,

^ ^ ϋ ω 0 m+l)!

x [ ( - i ) m ( - i ^ _ m + 1 + (-Dk(y

so that, for y = 0,

, 0, z) = (-1)"
(m - 1)!

+ (-D "

Since (/c + l ) J + m _ 1 = (fc + l) m _ 1 (fc+m) J the term with the sum in the last expression
becomes

( m - 1 ) !

_ /_i\fc

(m - 1)! (m)k_m+λ

so that it cancels the first term, showing that ΔmG(k, 0, z) = 0. D

4. Local Existence and Uniqueness Proofs

The standard local existence theorems for systems of ordinary differential equations
do not apply at the singular points x — 0 or z — 0 or where N = 0. Thus to prove that
the power series constructed in Sect. 3 define unique regular solutions for a particular
choice of parameters one must either prove that they converge (e.g. by a variation of
Cauchy's majorant method) or adapt the fixed point method to this singular case (see,
e.g. [9]). It turns out that the method of [18] can be generalized to n > 2 in a fairly
straightforward way. One could prove existence and uniqueness of a Cn+α-solution
with the appropriate initial conditions but, for simplicity and since we really expect
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our solution to be analytic, we will treat only the analytic case, i.e. we show that a
unique analytic solution exists which will then be given locally by the power series of
Sect. 3 and will therefore also depend analytically on the parameters. Since limits of
sequences of real analytic functions need not be analytic we must work with complex
analytic functions of a complex variable x. But this causes no problem since all the
constructions in Sect. 3 go through for complex x (and even complex initial data).

Near x = 0we write

u%ix) = Ufa) + Vjix) and mix) = Mix) + μix),

where
n π—1

Ujix) := 2_^ukx a n d Mix) := 2_^mkx i
k=0 k=Q

and the u\ and the mk are the coefficients of the power series for uτ and m,
respectively, obtained in Sect. 3. They are thus polynomials in x and in the parameters
β\,. , βn-\- On the other hand vi and μ represent the remainder terms and vanish to
order n and n — 1, respectively, at x = 0. More precisely, if BR := {x G C| \x\ < R}
for given R > 0, and k a nonnegative integer, let

D°R: = {f:BR^C\f analytic},

UR - U e υR I JlV) - J W ----- J yV) - U) ,

i^-^ : = {f:BR\{0} —> C| / analytic with a pole of order fc at x = 0} ,

and define

ll/llo = ll/lloo == sup |/(x)|, / e D 0 , ,

as well as

ll/llfc+i == sup
^ l 5 x 2

Co ti' i
for

Here sup stands for sup with xx φ x2. Clearly, DR c D ^ is continuously

imbedded for k > I > 0. We define no norm on DR for k < 0.

Then ^ G £>#+1, μ G Dg and, if we let σ = (Ί>15 . . . ,υ n _ 1 ,κ ; 1 , . . . , tϋ n _ l J μ)
then a local solution of the system (2.21) can be regarded as a fixed point of a map
T : σ h-> σ given by

#(:r) = / wτis)ds ,

o

wt(a0= ί N(sΓ\Fιoξ)is)ds, (4.1)

o

μ(x)=

o

where the path from 0 to x can be chosen arbitrarily in BR.
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Here ξ:tv

are functions

-+(*,

on a

F i -

w^f), μ(t)) and

- JJX \TTh Γ\j~-.'3L

--κn(NG + P)

subset of C x C " 1 x(Cn~ι x C

x-\qz

which

+ 1 ~ ft) 5

are polvr

H.R

lomials in

Kiίnzle

(4.2)

(4.3)

ΊL , W.

and μ with coefficients that are analytic in x except at x — 0 where some have poles.
More specifically, if we denote somewhat symbolically, for example, a homoge-

neous polynomial of degree d in υ 1 ? . . . , υn_ι with a coefficient that is a function of
x in L>£ (Λ G Z) by / f c υ d , then

= fn-l

+ (Λ (4.4)

and

• ^ = /n

as follows from (4.2), (4.3) if the form of the first terms in the power series for ui

and m is used. The coefficient functions are complicated expressions depending on
the polynomials U^x) and M(x) but can be considered fixed.

Let now

(4.5)

where α, 6, c are positive constants to be chosen later and define for some ρ > 0,

XR := {σ G Dn

R

+ι x . . . x Dn

R

+x x D\ x . . . x Dn

R x I>5| | |σ|| < ρ}. (4.6)

We need to show that for a given (small enough) ρ (i.e. a small enough neighborhood
of 0 in the space of parameters βt) there exists a R > 0 such that (i) X Λ is a complete
metric space, (ii) T maps XR into itself and (iii) T is a contraction. This will follow
from repeated use of

Lemma 6.
(a) / € Dk

R,g e
(b) H/<fc) | lo = l l / I
(c) \\f\\k<#-k\\k<

\\fg\\k < Σ
(e)

(f)

^fg& Dk

R

+ί\/k,l G Z,

(/eD°Λ,A;>O),
\l(f€Dl

R,l>k>0),

WMIfc-i. (/,5 e ̂ , k > o),

||fc||5||, (0 < j < min(fc,/), / G DR, g e

, ( fc , ί>0,/eD' Λ ) ,

ll/ll*+ί. (*.i > 0, / e

^ <

. Part (a) is obvious. For (b) we have

= sup
xi€f

< sup

lim
X i

L2 ^l
- WJWk
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and

ll/||fc < sup

389

xux2
- Xi

and for (c)

||o= sup \fk\x2) - fk\θ)\
B

SUp \X2 — X\ I fc+1 (4.7)

if / e DR SO that the result follows by induction.
Part (d) follows from \\fg\h < ||/U<?||i + | | / | | i N | 0 and Leibniz's rule, part(e)

from (d) and (c). Part (f) is derived easily from (d) with the help of

X i =
(k - 1+ 1)... kRk~ι if / < k ,

.0 if / > k.

To prove (g) note first that f e DR=> x~kf e D°k and

1 1 1

x~kf(x) = J dtkt
k

k~
ι J ... j dtj^it, ... tkx),

0 0 0

1

which follows by induction on k from x~ιf(x) = J f'{tx)dt. Then, if f E DR and
o

\\x-kf\\i < SUP
xux2

i - i

1 i

aτkτk ... i τιτι

. ^\x2

1 1

Jdtkt
k

k

+ι-1...Jdtιt\ \\\J\\k+l (4.8)

The proof for / = 0 uses (b) and is very similar. D

To show that XR is a complete metric space assume that {σk} is a Cauchy sequence
in XR. Then the components of σk are Cauchy sequences in D7^1 or D7^ and, by
(b) of Lemma 6 their ( n + l)st derivatives are Cauchy sequences in D^. But D®R is a
complete metric space since these analytic functions converge uniformly on compact
subsets of BR to analytic functions vi{x)J wτ(x), μ, respectively (cf. [9]). Define υ^x)
by integrating fyOzOn + 1 times from 0 to x and similarly for w^x) and μ(x). This
defines σ(x) as an analytic function and σk —> σ and ||σ|| < >̂ follow.

To show that T:X
\\w,\\n < ρ,

R —• X

\n < ρ. Now
observe that from ||σ|| < >̂ it follows that |

< ρ and
< g,

L = sup \y -
xux2
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| | / J | n _ i < fl||/J|n = consti?, | | / , M I U _ I < consti?|[μ||n by parts(e)
and (c) of Lemma 6, where the constants are positive and depend on the func-
tions /, i.e. on the initial conditions. For the other terms we have, for example,

||/-2O
2Hn-l = ll*~2/θ<>2|ln-l ^ C 0 Π S t H ^ " ^ ) C ^ L - l < COΠSt Rn+l\\χ-lv\\2

n <
constRn+ι\\υ\\lι+ι < constR n + 1 ρ 2 . All other terms are handled similarly so that it

follows that | |μ | | n _ 1 < i?(const + const ρ + O(ρ2)). In the same way one finds that

| | $ J | n _ i < const + const | |μ | | n + const | | υ | | n + 1 < const + const ρ + constO(ρ2). Thus

11̂ (0") 11 < Q provided both ρ and R are small enough.
We now need to prove that T is a contraction, i.e. that \\Tσ2 — Tσx || < ||σ2 — σx \\

for small enough R and ρ, or, since T is differentiable, | |d σ T| | < k < 1, where

\\dσT\\= sup \\(dσT)(Σ)\\.
\\Σ\\ = l

Let

and

(dσT)(Σ) = Σ = (VV..., Vn_γWv.

then

and similarly for Wj and L. It follows from (4.1) that

Vi(x) =

so that

Similarly we find from (4.3)

L(x) = 2κn ίdaί - s-ιGL + NΣΊΛWk - s~2^ ΊkukQkvX

so that

\\L\\n <2κJ -χ-ιGL + N

+ C2max | |W || + C3max | | ^ | | n + 1 ) , (4.9)

where Ck denote constants depending on σ, but not on R and where parts (c), (f) and
(g) of Lemma 6 have been used together with the observation that G,uf

k G Dι

R and
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Differentiating wι in (4.1) gives

W,(x) =

where

ω = -2x~2N~ι(m - κnxP),

and therefore

391

uiUk - Qk(δτk + 4κnΊkuku[)],

\rn\n < + .,+

From (4.4) we have F z G D ^ " 1 and since from the power series expansion (and the
remark after (3.12)) U[(x) = 2pxx\/i it follows that

Similarly it is seen that
9Ck = Aιkx~2[l + O(x)],

while ω G Dι

R. Using repeatedly Lemma 6 we therefore have the following estimates

_, <o(R2) IIWJU, (4.io)

I U - ^ ^ 1/3,1+ O(ϋ)) | | i | | n , (4.11)

n - 1

k=\

n-\

i - l

i-l k=\

n-1 n-1

fc=l i=0

n
+

0{R)
( 4 1 2 )

where we used the fact that there are only three terms in the sum the matrix A being
tridiagonal.

From (4.5) we now have a||V t | |n + 1, 6||W | ] n , c\\L\\n < \\Σ\\ so that

| | £ | | < m a x < j ^ U

n + 1 a n
^ + OCR),
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Thus the constants a,b,c can be chosen such that \\Σ\\ < \\Σ\\ provided R is small
enough, for example,

This proves that T: XR —> XR is a contraction for small enough R. In summary we
have the

Theorem 3. For any (small enough) choice of the parameters /?1 ?...,/?n_i there
exists an R > 0 such that the formal power series for u^x) and m(x) constructed
in Sect. 3 converges for \x\ < R. Hence the system of Eq. (2.21) admits a unique local
solution near x = 0 which moreover depends analytically on the parameters βτ.

The proof of the existence and uniqueness of solutions with the chosen asymptotic
properties at x = oo is almost identical and will be omitted.

The corresponding result at a regular black hole horizon is proved similarly and
only an outline will be given. Let again the black hole horizon be given by xH and
put x = xH + t. We use the same terminology as for the initial value problem at
x = 0 and define the dependent variables vfo), w^t) by what remains after the initial
conditions have been imposed, i.e.

ui = Uι,0 + Uι,\t + Vi(t) a n d m = \ XH + MO

The initial value problem is then again equivalent to finding a fixed point of
the map T:Xε —> Xε given by (4.1) and (4.2)/(4.3) except that now Xε :=
D2

ε x . . . x D2

ε x D\ x . . . x D\ x D\ again with a norm of the form (4.5). Observing
that all quantities (4.1) and (4.2), (4.3) are now finite at t = 0 except N = (t- 2μ)/x
we find that

I N I 2 = l k l l i , \\β\\i<κn\\NG + P\\Q and H ^ < WN'1^.

Since also Fz e Ό\ it follows that T : Xε -> Xe for small enough ρ.
To show that T is contracting one calculates again the differential dT with the

same notation getting instead of (4.9)

However, the quantities in (4.10) have now different limits at x = xH, namely

h = -— («i,i + 2xHuit2) - + 0(1) = - ^ 1 + 0(1),
X tr L V

.0%,0 - Qί,Oδίk - Kn^ f c T (

xHτ

so that

ί (ξ) I I J I , + O(ε)max |
XH J k

and
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Recalling (3.27) we see that T becomes contracting for small enough ε if we choose,
for example,

0 < a < 1, 6 = 1 and c >
Γ .

\l-yχH\

5. Some Numerical Results

At this stage it is unfortunately not very clear what rigorous technique could be
used to analyze the set of all global solutions of this boundary value problem. Even
finding solutions numerically is quite difficult and very time consuming. As in [13]
we use the "shooting to a fitting point" method ([17], Sect. 17.2) which incorporates
a fourth order adaptive step size Runge-Kutta integration and choose as initial data
(aι,..., OLU_1, m ^ ) at x = oo and either the (/^,..., βn_\) at x — 0 or the values
of (u{(xH),... ,un_ι(xH)). Just to determine the possible value of the total mass
m^ one can simply integrate upwards from x0 = ε or x0 = xH + ε (where ε, for
example, 0.1 or 0.01) and choose the initial parameters such that | ^ ( # # ) | < 1 and
N > 0 for as large values of x as possible. An algorithm was used that finds initial
conditions at x = 0 or x = xH which maximize the value xm a x of x at which the
solution will finally violate one of the necessary conditions for an acceptable smooth
global solution, namely \uτ(x)\ < 1, N(x) > 0. While this technique does not give
reliable values for m^ it determines approximate values of βτ or u%{xH). Similarly,
approximate values for m^ and ai can be found by integrating downwards from a
large value x^ of x, say x^ = 104, (checking also that m(x) > 0). The parameter
sets thus obtained (for which the upward and the downward solutions are defined on
overlapping intervals) are then used in the "shooting to a fitting point" method with
the hope that Newton's method will converge. This happens very rarely, but when it
does there is a very high probability that a genuine solutions is being approximated.

The numerical integration is quite delicate already in the SU(2) case since it
appears that TV always has one minimum value (near x = 1) that seems to approach
0 for those solutions with highly oscillating functions uv One approaches here an
extremal black hole (JV = 0, N' = 0) which is a very singular limit. Therefore no
solutions where u% has more than about seven zeros have been found, but Lavrelashvili
and Maison [15] were able to approximate analytically near this point a function
analogous to the u% in a somewhat simpler dilaton model.

In view of this difficulty it is best to integrate with the highest possible precision
and to start off the integrations after summing the power series at xQ and x^ with as
many terms as necessary to achieve a precision of about 10~10. This is done easily
(for arbitrary n) directly by means of the recursion relations (3.1, 3.2) and (3.24,
3.25). These recurrence relations themselves were derived with the help of Maple
and Mathematica and verified to solve the differential equations. The validity of the
corresponding code in C-language was tested with some numerical parameters against
the values produced in the Mathematica program and also against the Runge-Kutta
numerical integration by evaluating the series at a few small x-values and integrating
the differential equation between the two points.

Once some promising initial values have been found at both ends they must be
paired and fed into the shooting algorithm. We consider a solution found if the sum
of all jumps in \uτ\, \u[\ and m is less than about 10~10. Since Newton's method
very rarely converges even for such a carefully selected starting point in a In — 1-
dimensional parameter space (for n > 2), whenever it does, there can be little doubt
that the solution is genuine. It is harder to judge the error in the parameter values
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(and the zeros of the i^s). Some information is obtained from the way the parameters
change from one iteration to the next in Newton's method, and also by varying the
initial and the fitting points and the precision of numerical integration. The values of
m^ and of the βi are probably accurate to about five or six decimal places, but the
a values are less precise.

Table 1. Total mass, initial values, and number of zeros of u{ for some solutions of the 5C/(3)-EYM
theory

0.82865

0.84769

0.93774

0.97135

0.97354

0.98963

0.99532

0.99564

0.99830

0.99924

0.99929

0.99987

0.99998

1.00000

-1

-1

-1

1

1

1

-1

-1

1

1

-1

1

-1

o) u
2
(oo)

-1

-1

1

1

1

-1

1

1

1

-1

1

-1

"1

-0.8934

-1.7628

-4.4302

-8.8639

-13.4353

-30.3178

-58.9326

-85.598

-189.558

-366.335

-528.489

-2252

-13817

-84757

a
2

0

-4.1579

14.6598

0

-151.01

512.83

0

-5501.7

18941.5

0

-205740

0

0

0

ft

-0.45372

-0.53766

-0.63437

-0.65173

-0.66743

-0.69114

-0.69704

-0.69852

-0.70139

-0.70488

-0.70396

-0.70617

-0.70638

-0.70641

β
2

0

0.26077

0.33228

0

0.26081

0.34189

0

0.25790

0.34283

0

0.25735

0

0

0

Zeros

u
λ

1

1

1

2

2

2

3

3

3

4

4

5

6

7

u
2

1

1

2

2

2

3

3

3

4

4

4

5

6

7

So far we have only searched for numerical (non-scaled) soltions of the SU(3)-
EYM theory. We need to pick negative values of βx and can, in view of Proposition 4,
confine ourselves to positive values of β2. At x = oo, however, all possible values
for Uγ(oo), u2(oo) and a2 must be considered while m^ must be positive and a2

negative. Table 1 lists the parameters of the solutions found so far. Recall that all
values are normalized by (2.16). For example, the total masses m^ of the SU(3)
model (in Planck units) are obtained by multiplying those in the table by λ3 = 2.

The solutions with a2 = β2 = 0 are the scaled 517(2) solutions. But not only
are there solutions in which ux and u2 have different numbers of zeros, there are
also solutions in which they have the same number of zeros, but are nevertheless
not proportional. Two such solutions are shown in Fig. 1 and Fig. 2. It seems that
with the chosen scaling m^ still increases with increasing number of zeros of the
u% and approaches an upper limit of 1. Moreover, the scaled SU{2) solutions lead
to the smallest mass for a given number of zeros of the (ux, u2) pair. The behavior
of the matter density and pressure functions and of the Yang-Mills curvature is not
qualitatively different from the n = 2 case, i.e. from the one for the scaled solutions.
Unfortunately it is not yet possible to speculate whether there are more than two, or
even infinitely many, solutions for which both ux and u2 have the same number of
zeros, although it does seem to be a discrete set.
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Fig. 1. Regular SC/(3)-soΓution with
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Fig. 2. Regular Sl/(3)-solution with
-0.66743, β2 = 0.26081
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There seems to be no reason why non-scaled black hole 5ί7(3)-EYM solutions
should not also exist, probably for any radius of the black hole horizon. In spite of a
considerable effort, however, no such solution has been yet been found.

Many questions can be asked in view of this fairly strong evidence for the existence
of a discrete set of solutions of the SU(3)-ΈYM equations, in particular in the light of
the interpretations given in [21]. While in this "purely magnetic" case (Ao = 0) there
is no evidence for any continuous family of soliton or black hole solutions, Gal'tsov
and Volkov [6] have shown that "superpositions" of the scaled SU(3) solutions
with Reissner-Nordstrom like solutions (parametrized by a continuous charge) may
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exist. This possibility has not yet been investigated in the general (non-scaled) case.

(The corresponding differential equations are considerably more complicated and the

singularities at xH and at oo also have a different structure.)

The stability of the presented non-scaled soliton solutions against time dependent

perturbations has not yet been investigated. Zhou and Straumann [22] showed that

the scaled solutions are unstable, and there is no reason to expect stability for the

new non-scaled ones (which are generally "higher resonances").

An interesting conjecture is, however, that all static, asymptotically flat "purely

magnetic" soliton solutions of the SU(n)-ΈYM equations are spherically symmetric

and thus belong to the discrete set of solutions discussed in this paper. This could be

expected in view of the black hole uniqueness theorems and similar results for static

perfect fluids. But as far as the author knows no work has been done yet towards a

proof of this conjecture.
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