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Abstract: A method to obtain explicit and complete topological solution of SU(2)
Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the
theory of coloured-oriented braids and duality properties of conformal blocks for
the correlators of SU(2)k Wess-Zumino conformal field theory are presented.
A large class of representations of the generators of the groupoid of coloured-
oriented braids are obtained. These provide a whole lot of new link invariants of
which Jones polynomials are the simplest examples. These new invariants are
explicitly calculated as illustrations for knots up to eight crossings and two-
component multicoloured links up to seven crossings.

1. Introduction

Topological quantum field theories provide a bridge between quantum physics on
one hand and geometry and topology of low dimensional manifolds on the other
[1]. The functional integral formulation of such quantum field theories provides
a framework to study this relationship. In particular, a class of topological field
theories which are related to knot theory have attracted a good deal of attention in
recent times. This started with the seminal work of Witten who not only put the
Jones polynomials [2] in a field theoretic setting, but also presented a general field
theoretic framework in which knot theory could be studied in an arbitrary three-
manifold [3].

In SU(2) Chern-Simons gauge theory, the expectation value of Wilson link
operators with doublet representation placed on all the component knots yields
Jones polynomials. Two variable generalization of these polynomials, the so-called
HOMFLY polynomials [4], are obtained as the expectation value of Wilson link
operators with N dimensional representation on all the component knots in an
SU(N) Chern-Simons theory. In fact Witten [3] has shown that the expectation
values of such link operators obey the same Alexander-Conway skein relation as
those by Jones and HOMFLY polynomials respectively. These relations can be
recursively solved to obtain these polynomials for an arbitrary link. Placing
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arbitrary representations on the component knots, corresponding generalizations
of Alexander-Conway relations can also be obtained [5, 6]. But unfortunately
these relations can not be solved recursively to obtain the link invariants. Therefore
there is a need to develop methods which would allow direct calculations of
expectation values of Wilson link operators with arbitrary representations living
on the component knots. In refs. 6, an attempt was made to develop one such
method. This allowed us to obtain invariants for links that can be constructed from
braids made of up to four strands. However, links related to braids with larger
number of strands still stayed elusive. Another interesting method based on the
construction of knot operators has also been developed [7]. It allows readily
calculation of invariants for torus knots in an elegant way. However, the scope of
this method also appears to be limited and it cannot be applied to obtain invariants
for other knots.

In this paper we shall present a general and simple method of obtaining the
expectation value for an arbitrary Wilson link operator in an SU(2) Chern-Simons
gauge theory on S3. The method can be generalised to other compact non-abelian
gauge groups as well as to manifolds other than S3.

The SU(2) Chern-Simons action is given by:

\ ( ^ V (1.1)
S3 \ 3 /

where A is a matrix valued connection one-form of the gauge group SU(2). The
topological operators of this topological field theory are given in terms of Wilson
loop (knot) operators:

(1.2)

for an oriented knot C carrying spiny representation. These operators are indepen-
dent of the metric of the three-manifold. For a link L made up of oriented
component knots Cu C2, . . . , Cs carrying spin j\,j29 . . .js representations
respectively, we have the Wilson link operator defined as

WJιh...j.lLl = i\WjlCβ. ' (1.3)
1=1

We are interested in the functional averages of these operators:

Vhh...j.lLl = Z-1 J ldAWhh...j.lLle*s , (1.4)
S3

Z=l [dA~]έkS. (1.5)
s 3

Here both the integrands in the functional integrals as well as the measure are
metric independent [8]. Therefore, these expectation values depend only on the
isotopy type of the oriented link L and the set of representations juj2 Λ
associated with the component knots. The partition function above is given by [3]:

The method of calculating the functional averages (1.4) developed in the present
paper makes use of two important ingredients:

(i) The first ingredient is the intimate relationship that Chern-Simons theory
on a three-manifold with boundary has with corresponding Wess-Zumino conformal
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field theory on that boundary [3,9, 7]. Consider a 3-manifold with a number of
two dimensional boundaries Σ(1\ Σ(2\ . . . Σ{r\ Each of these boundaries, Σ{ι) may
have a number of Wilson lines carrying spins j \ ι \ /= 1, 2, . . . . ending or beginning
at some points (punctures) Pz

(ι) on them. Following Witten [3], we associate with
each boundary Σ ( l ) a Hubert space J f(i). The Chern-Simons functional integral
over such a three-manifold is then given as a state in the tensor product of these
Hubert spaces, ®r 2tf^. The operator formalism developed in ref. 7, gives an
explicit representation of these states as well as determines the form of the inner
products of vectors belonging to these Hubert spaces. The conformal blocks of the
SU(2)k Wess-Zumino field theory on these boundaries Σ(ι) with punctures
P\ι\ 1= 1, 2, . . . carrying sρinsj;

(ι) determine the properties of the associated Hubert
spaces 3tfω. In fact, these provide a basis for these Hubert spaces #P(ι). There are
more than one possible bases. These different bases are related by duality of the
correlators of the Wess-Zumino conformal field theory. We shall need to write
down these duality matrices explicitly for our discussion here.

(ii) The second input we shall need is the close connection knots and links have
with braids. Theory of braids, first developed by Artin, is generally studied for
identical strands [10,11]. What we need for our purpose here is instead a theory of
coloured and oriented braids. The individual strands are coloured by putting
different SU(2) spins on them. The necessary aspects of the theory of such braids
will be developed here. In particular a theorem due to Birman [11] relating links to
plats of braids will be restated for coloured-oriented braids. This theorem along
with the duality properties of conformal blocks of correlators in SU(2)k Wess-
Zumino conformal field theory on an S2 then will allow us to present an explicit
and complete solution of SU(2) Chern-Simons gauge theory on S3. Alternatively,
a theorem due to Alexander relating closure of braids to links can also be stated for
coloured-oriented braids. This theorem also provides an equivalent method of
solving Chern-Simons gauge theory.

The knot invariants have also been extensively studied from the point of view of
exactly solvable models in statistical mechanics [12,14]. Wadati et al. have
exploited the intimate connection between exactly solvable lattice models with
knot invariants to obtain a general method for constructing such invariant poly-
nomials [14]. Besides these, knot invariants have also been studied from the point
of view of quantum groups [15].

This paper is organised as follows. In Sect. 2, we shall write down the duality
matrices relating two convenient complete sets of conformal blocks for the SU(2)k

Wess-Zumino conformal field theory on an S2 with 2m (m = 2, 3, . . .) punctures
carrying arbitrary SU(2) spins. Next, in Sect. 3, the required aspects of the theory of
coloured-oriented braids will be developed. A theorem due to Birman [11] relating
oriented links with plats will be restated for plats of coloured-oriented braids.
Alexander's theorem [16] relating closure of braids with oriented links can also be
restated for coloured-oriented links. In Sect. 4, a class of representations of the
generators of braid groupoids will be presented. These ingredients then will allow
us to write down the complete and explicit solution of S U(2) Chern-Simons theory
on S3. This will be presented in terms of a theorem which gives the expectation
values of Wilson link operators (1.4) in terms of properties of the plat of a corres-
ponding coloured-oriented braid. This main theorem and the sketch of its proof
has already been announced in ref. 17. Here we are presenting the details of the
proof as well as discussing some other implication of the theorem. For example,
a corresponding theorem which alternatively yields the link invariants in terms of
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closure of oriented-coloured braids will also be present in Sect. 4. Next in Sect. 5,
we shall illustrate how the main theorem can be used to write down the link
invariants. This we do by discussing a multicoloured three component link, the
Borromean rings. In Sect. 6, a few concluding remarks will be made. Appendix
I will contain explicit formulae for the duality matrices in terms of g-Racah
coefficients of SU(2)q needed in the main text. Invariants for knots up to eight
crossings and multicoloured two component links up to seven crossings as given in
the tables of Rolfsen [18] will be listed in Appendix II.

2. Duality of Correlators in SU(2)k Wess-Zumino Conformal Field Theory

To develop the solution for SU(2) Chern-Simons theory on S3, we need to make
use of duality properties [19] of correlators of SU{2)k Wess-Zumino conformal
field theory on an S2. We now list these properties.

Four-point correlators for primary fields with spins jί9j297*3 and74 (such that
these combine into an SU(2) singlet) can be represented in three equivalent ways.
Two such ways are given by Figs. l(a) and (b). In the first, each of pairs of spins jχ,j2

and 7*3, j 4 is combined into common spinj representation according to the fusion
rules of the SU(2)k Wess-Zumino model. Then these two spin j representations
combine to give singlets. For sufficiently large values of fe, allowed values of j are
those given by group theory: max(| Ί - ; 2 | , | j 3 -j4\)SjSmin(Ji +j2,h +U)* In the
second equivalent representation for the four-point correlators spins (7*2,73) and
U1J4) a r e first combined into common intermediate spin / representation and
then two spin / representations yield singlets, with max([/2 — 731, \j\—j\\
) ̂  / ̂  min(J2 +J3J1 +JA) for sufficiently large k. These two sets of linearly indepen-
dent but equivalent representations will be called φj(jiJ2J3J4.) and φΊ{jίJ2J3J4.)
respectively. These are related to each other by duality:

,ΦΊ(JlJ2J3h), (2.1)
.73 74 _

where the duality matrices an } are given [15,19, 6] in terms of g-Racah
L73 74J

coefficients for SU(2)q. We have listed these and some of their useful properties
explicitly in Appendix I. This fact that these two bases are related by g-Racah
coefficients is not surprising. The representation theory of integrable representa-
tions of SU(2)k Wess-Zumino field theory is the same as that of SU{2)q with the
deformation parameter as q = exp(— 2πi/(k + 2)).

h h h h h k

((jUi J2J3J4)

(α)

Fig. 1. Two ways of combining four spins into singlets
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The duality transformation (2.1) can be successively applied to obtain duality
properties of higher correlators. In particular, we shall be interested in the two
equivalent sets of correlators for 2m primary fields with spin assignments
JiJi, φ m , Φ(p,r)UiJ2 Jim) and φ[q;s)(jj2 . km) as shown in Fig. 2(a) and
(b) respectively. Here indices (p) and (r) collectively represent the spins
(PoPi - - - Pm-ί) a n < 3 ( r i r 2 ^m-3) o n the internal lines respectively as shown in
Fig. 2(a). Similarly, (q) = (qoqi qm-i) and (s) = (s1S2 . . . 5m_3) in Fig. 2(b). These
two figures represent two equivalent ways of combining spins 7Ί, j 2 . . . jim into
singlets and are related by duality. This fact we now present in the form of a theorem:

Theorem 1. The correlators for 2m primary fields with spins j1j2 72m? (w^2) in
SU(2)k Wess-Zumino conformal field theory on an S2 as shown in Figs. 2(a) and (b)
are related to each other by

Φ(p;r)UlJ2 -Jim)— Σ a{p,r)(q;s)

h

U Φ[q;s)UlJ2 -J2m), (2.2)

72m-1 J2n

where the duality matrices are given as products of the basic duality coefficients for
the four-point correlators (2.1) as

7i 72'
ϊfi-2

a(p;r)(q;s)
73 74

3 2m- 1 72w

Σ T-r /

L7t i t 2 . . . t M _ 2

r £ - l 72Ϊ+1

Si j 2

m-2 Γ
Π S«,+ i ,
/ = o l_7

72/+2]

2/+3 ^/+1 J
(2.3)

(a)

J 5 J 6

h h h k h

(b)

(p ; r)(q;s)

J\ J 2

J 3 J i

J2m-1 J2m

sm-3

Φ ' ( q . s ) ( J , J 2 ••••J2ml

Fig. 2. Two ways of combining 2m spins into singlets



294 R.K. Kaul

Hereto = A>> ^m-j=Pm-u ίo=7i> tm-1=j2m9 so = qo and sm-2 = qm-i and spins
7i + 72+ + J2m-i = J2m a n d the spins meeting at trivalent points in Fig.
2 satisfy the fusion rules of the SU(2)k conformal field theory.

Using the properties of the matrices aβ I 1 2 as given in Appendix I, we can

readily see that the duality matrices (2.3) satisfy the following orthogonality
property:

LJ a(p;r)(q;s)

7l

Jlm-l J2n

a(p ,r)(q';s')

7l

J2m-1

72

(2.4)

The proof of Theorem 1 is rather straightforward. It can be developed by
applying the duality transformation (2.1) successively on the 2m-point correlators.
For example, 6-point correlators, represented by φ(PoPιP2) and φ[qoqιq2), are related
by a sequence of four duality transformations each involving four spins at a time as
shown in Fig. 3. Thus

where

a(PoPιP2)(4o<li<l2)

7i

7*3

75

u
7*6

Ui jβ), (2.5)

7i

73

7*5

72

74

76

hi [ji hi

J2 J3 k J5 k

Pi! P2

h h k h k Ji h h k J5

J2 J3 h h k

V V

ψ ' (Ji J 2 - - - J 6 >
(qoq1q2)

q 2 J 6

Ji J2 J3 k k

Fig. 3. Duality transformation of 6-point correlators
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Similarly for 8-point correlators φ{PoPιp2P3;r1)(h -h) and Φ{qoqiq2q3 tSl)Ui -hi
which are related by a sequence of seven four-point duality transformations as
shown in Fig. 4, we have

* -Js)— Σ

with

a(Po - • ft;»Ί)(«o

J*7 j δ

Jl Jl

jl J8

/3

93 78 J L51
(2.7)

Clearly, in this manner Theorem 1 for arbitrary 2m-point correlators follows.

-Ί h h k h h h h h h k h k h

J, J2 h k h k h h

Po Pi

p3

Ji J 2 J 3 J/, J5 Je J7

t, r, t 2

h h k h Je J7 h r | Ί Ji J2 J3 J4

 J5 J6 h h

ti t 2

J, J2 J3 k h h J? J 8

y

h h k h k h J8

J, q V

}
γ Y

Fig. 4. Duality transformation of 8-point correlators
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These duality properties will be made use of in Sect. 4 to obtain the solution of
SU(2) Chern-Simons theory. But before we do that, we need to discuss the other
ingredient necessary for our purpose. As stated earlier, this has to do with the
theory of coloured-oriented braids.

3. Coloured-Oriented Braids

An n-braid is a collection of non-intersecting strands connecting n points on
a horizontal plane to n points on another horizontal plane directly below the first
set of n points. The strands are not allowed to go back upwards at any point in their
travel. The braid may be projected onto a plane with the two horizontal planes
collapsing to two parallel rigid rods. The over-crossings and under-crossings of the
strands are to be clearly marked. When all the strands are identical, we have
ordinary braids. The theory of such braids is well developed [10,11]. However, for
our purpose here we need to orient the individual strands and further distinguish
them by putting different colours on them. We shall represent different colours by
different SU(2) spins. Examples of such braids are drawn in Fig. 5. These braids,
unlike braids made from identical strands, have a more general structure than
a group. These instead form a groupoid [20]. Now we shall develop some necessary
elements of the theory of groupoid of such coloured-oriented braids.

A general n-strand coloured-oriented braid will be specified by giving n assign-
ments ji = (ji, Si), ί= 1, 2, . . . n representing the spinj\ and orientation ε, (ε£ = ± l for
the Ith strand going into or away from the rod) on the n points on the upper rod and
another set of n spin-orientation assignments k = (li9 ηi) on n points on the lower
rod as shown in Fig. 6. For a spin-orientation assignment /fA=(ji, ε,-), we define
a conjugate^ assignment as/;* = ( j i 9 - ε f ) . Then the assignments (k) are just a permu-
tation of (ji*). The shaded box in the middle of the figure represents a weaving
pattern with various strands going over and under each other. Such a braid will be

represented by the symbol 01 ( J l \2 ' ' '

h h

h h h h

Fig. 5. Examples of coloured-oriented braids

Ji J2 h Jn-1 Jn

Y//////////////M

Fig. 6. An oriented-coloured w-braid « 7 i h- -Λ
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Composition: Unlike usual braids made from identical strands, the composition for
two arbitrary coloured braids is notA always defined. Two such braids

{) I2'" J'A and J>(2) ( I] lp'"lp
j H jn) \h h - - - h)

orientations at the merged rods match, that is, the composition J > ( 1 ) J^ ( 2 ) is defined
only if// = /j* and composition J^ ( 2 ) J > ( 1 ) only iϊjj* = ΐl.

can be composed only if the spin-

Generators: An arbitrary coloured-oriented braid such as one shown in Fig. 6 can
be generated by applying a set generators on the trivial (no entanglement) braids

+1 A 2 *L I shown in Fig. 7. Unlike the case of usual ordinary braids, here
Jl Jl jn /

we have more than one "identity" braid due to the different values of spin-
orientation assignments/i,/2> - Jn placed on the strands. The set of n — 1 gener-
ators Bh 1=1, 2 . . . n— 1 are represented in Fig. 7. By convention we twist the
strands by half-units from below keeping the points on the upper rod fixed. Thus
the generator Bι introduces from below a half-twist in the anti-clockwise direction
in the /th and (/+l) t h strands. Like in the case of usual ordinary braids, the
generators of coloured-oriented braids satisfy two defining relations:

BiBj = BjBi (3.1)

These relations are depicted diagrammatically in Figs. 8(a) and (b) respectively. We
shall present a whole class of new representations of these generators in the next
Sect. 4. These in turn will finally lead to new link invariants.

Ji h Jn-1 J n Ji h Jt*i

u
n

F i g . 7. I d e n t i t y b r a i d s I ( I 1 I2 " ' l n ) a n d b r a i d g e n e r a t o r s 5 , ( i 1 "' Jj Jl*J~ '"{n

U * J f J ) \ j ? ..jl*+l j * ...

f A Λ

J i J i + 1 J i + 2

->* ~ # A*.
J U2 Jl+1 Ji

TΠΓ

Fig. 8. Relations among braid generators
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Platting of an oriented-coloured braid: Like in usual case of braids [11], we may
introduce the concept of platting of a coloured-oriented braid. Consider a col-
oured-oriented braid with an even number of strands with spin-orientation

7 7 *^ 7 7 ^^ 7 7 *^ \

/ ΐ* f" 7\ Γ /* I The platting then consti-
h It h *2 lm Imj

tutes of pair wise joining of successive strands (2i — 1,2i), i = 1, 2, 3, . . . m from
above and below as shown in Fig. 9. Such a construction obviously can be defined
only for braids made of even number of strands with above given specific spin-
orientation assignments. There is a theorem due to Birman which relates oriented
links to plats of ordinary even braids [11]. This theorem can obviously also be
stated in terms of coloured-oriented braids of our present interest. Thus we state

Theorem 2. A coloured-oriented link can be represented by a plat constructed from

an oriented-coloured braid it Ί I *

• Jm Jm

I ΐ*

Clearly, platting of these braids does not provide a unique representation of
a given knot or link.

Closure of an oriented-coloured braid: In addition to platting, we may also define
the closure of a coloured-oriented braid. For an m-strand braid with spin-orienta-

^ A A. A

jί h 3mtion assignments as in
Jt

, the closure of the braid is obtained by

joining the top end of each string to the same position on the bottom of the braid as
shown in Fig. 10. Clearly, closure is defined only if the spin-orientation assignments
are mutually conjugate at the same positions on the upper and lower rods. Now

i Ji h h

Plating

ti v t2 t* 1 . 1 :

Fig. 9. Platting of a coloured-oriented braid

ti^-Λ

Closure

Fig. 10. Closure of a coloured-oriented braid
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there is a theorem due to Alexander [16] which relates oriented links with closure
of ordinary braids. This theorem can as well be stated for our coloured-oriented
braids:

Theorem 3. A coloured-oriented link can be represented, though not uniquely, by the

closure of an oriented-coloured braid M I A A A™
\ 7 l Jl Jm

In the following we shall see that Theorem 1 with Theorem 2 or 3 provide
a complete solution to SU(2) Chern-Simons gauge theory on an S3.

4. Link Invariants from SU(2) Chern-Simons Theory

To develop a method of calculating the expectation value of an arbitrary Wilson
link operator (1.4), consider an S3 with two three-balls removed from it. This is
a manifold with two boundaries, each an S 2 . Let us place 2m (m = 2, 3 . . . )
unbraided Wilson lines with spins71,7*2, . . . 72m (such that all these spins make an
SU(2) singlet) going from one boundary to the other as shown in Fig. 11. Thus we

have put an "identity" braid / ( / I ' ' ' ?m I inside the manifold. An arbitrary
\7l Jl 72m/

coloured-oriented braid can be generated from this identity by applying the
half-twist (braiding) generators Bl9B29 . . . B2m-ι on the lower boundary. As
discussed in Sect. 1, the Chern-Simons functional integral over this manifold can
be represented by a state in the tensor product of vector spaces, J f(1) ® ^f(2),
associated with the two boundaries, Σ ( 1 ) and Σ(2\ Convenient basis vectors for
these vector spaces can be taken to correspond to the conformal blocks (Eq. (2.2)),
Φ(p;r)UiJ2 Jim) or equivalently φ[q;s)(jj2 . Jim) as shown in Fig. 2 for the
2m-point correlators of the corresponding SU(2)k Wess-Zumino conformal field
theory. We shall represent these bases for each vector space as | φ(p;r)(jiJi - Jim)>
and \φ[q S)(jίj2 . . -Jim)} respectively. For dual vector spaces associated with
boundaries with opposite orientation, we have the dual bases ^φ^^iji 72m)l
and {φ{q S)(jί . . 72m)l The inner product of these bases vectors for each of the
vector space, Jf(1) and Jf ( 2 ) are normalized so that

<Φ(p,r)(jlJl .Jlm)\Φ(p>;r')UlJl 72m) > = δ(p)(pΆr)(r') ,

<Φ(q;s){jlj2 j2m)\Φ[q';s')UlJ2 - Λm)> = ^(«)(«')^(r)(r') (4.1)

-*
2

J2π1-1 J

J2m-1 J 2m

Fig. 11. An identity braid in a three manifold with boundaries Z ( 1 ) and Σ{2), each an S2
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The two primed and unprimed bases are related by duality of the conformal
blocks given by Theorem 1:

/l7*2 -Jim)— Σ a(ρ;r)(q;s)

Jl

h

Ji

74

72m-1 Jin

IΦip MJl .Jlm)} (4.2)

with duality matrices as in Eq. (2.3).
The Chern-Simons functional integral over the three-manifold of Fig. 11 may

now be written in terms of any one of the above bases:

Vj
Jl jl Ji
* * 0

7 l J l - J i (p;r)(p';r')

MiKrHp';r')\ΦUr)(ji*• j2m)>\Φ(p';r>)(jl ' '72m)> -

Here we have put superscripts (1) and (2) on the bases vectors to indicate explicitly
that they belong to the vector spaces J f(1) and Jf (2) respectively. Now notice
glueing two copies of this manifold along two oppositely oriented boundaries, each
an S 2, yields the same manifold. Hence

Σ ^(p;r)(p';r')^(p';r')(p";r") = M(p;r)(p";r") -
(p' r')

This immediately leads to Mip;r)(P'.ir>) = δipχp>)δ{r)(r>)9 so that the functional integral
over the three-manifold of Fig. 11 can be written as

Jl Jl - -Jin
A A A.

jl jl - - -Jim
= Σ \Φ<£r)Uί Λ Ίim)> - (4.3a)

Equivalently we could write this functional integral in terms of the primed basis
using (4.2) and orthogonality property of duality matrices (2.4) as

Ji

J2

λ'<2>

(q s)
f • • • Jim)>\Φ«Mh • • • J 2 « » (4 3b)

The conformal blocks φ(p;r) (ji J2m) as shown in Fig.2(a) of the conformal
field theory and the corresponding basis vectors \φ(p;r)(jiji • -Jim)} are eigen-
functions of the odd indexed braiding generators. B2/+i? ' = 0,1 . . . (m-1) of
Fig. 7. On the other hand the conformal blocks φ{q;s)(jiji . . . jim) (Fig. 2b) and the
associated basis vectors | φ{q; s) (jj2 . . . j2m) > are eigenfunctions of the even indexed
braid generators, B2ι, /= 1,2,. . . (m— 1):

Bll+l\Φ(p;r)( -jll+ljll+l ) ) =^pι(jll+ 1 Jll+1)\ Φ(p;r)( - - -jll+ljll+1 • • • ) ) >

Bll\Φ(q;r)Ul ' 'Jlljll+l - - jlm)} = ^qι(jlhjll+l)\Φ(q;s)(jl - -jll+ljll 72m)>

(4.4)

The eigenvalues of the half-twist matrices depend on the relative orientation of the
twisted strands:

if εε'= - 1 , (4.5)
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where Cj=j(j+1) is the quadratic Casimir for spiny representation. When εεf = +1
above, the two-strands have the same orientation and the braid generator intro-
duces a right-handed half-twist as shown in Fig. 12a. On the other hand for
88'= — 1, the two strands are anti-parallel and the braid generator introduces
a left-handed half-twist as shown in Fig. 12b. Thus λ{

t

+\jjf) and λ(

t~\jj') above
are the eigenvalues of the half-twist matrix which introduce right-handed half-
twists in parallely and anti-parallely oriented strands respectively. These eigen-
values are obtained from the monodromy properties of the conformal blocks of
Fig. 2 of the corresponding conformal theory [19] and further compensated for the
change of framing introduced due to the twisting of the strands [3, 6]. There is
some ambiguity with regard to the ^-independent phases in these expressions for
the eigenvalues. However, this ambiguity along with that in the phase of the duality
matrix α,-, of Eq. (2.1) are relatively fixed by consistency requirements as will be
discussed in the Appendix I below.

Equations (4.4), (4.5) and (4.2) define representations of braids. This we express
in the form of a theorem:

Theorem 4. A class of representations for generators of the groupoid of coloured-
oriented braids of Fig. 7 are given {in the basis |φ(p ; r)>) by

B 21+1

7 *J

7l
7 *

72/+1

7*2/+2

7 *

72/+2
A

7*2/+1

7*ϊ

J2m
(p;r)(p';r')

and

ΓR i
ΰ2l I

L \
ll
Jl J2/+1

1*1+1 . /2*m\Ί

J21 •• J2mj J(p;r)(p';rf)

— ZJ Aqi(J2hJ2l+l)a(p',r')(q,s)

h J2

72/-1 72/+1

72/ 7*2/+2

72m-1 72m

a(p ,r)(q;s)

Jl )2

J21-1 J21

J21+1 J21+2

72m-1 72m

(4.6)

II

u
R.H.

Γ
J
L.H

(α)

(b)

II
R. H.

U
L.H

Fig. 12. Braid generators introduce (a) right-handed half-twists in parallely oriented strands and
(b) left-handed half-twists in anti-parallel strands
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Using the identities given in Appendix I, these can readily be verified to satisfy the
defining relations (3.1) of the braid generators.

Now let us place an arbitrary weaving pattern instead of an identity braid
inside the three-manifold with two boundaries (each an S2) discussed above with
specific sρin-orientatiθAn assignments as shown in Fig. 13. The spin-orientation
assignment Jll912 . . . lm) on the lower boundary are just a permutations of
(/*>/* 7m) The braid inside indicated as a shaded box can be represented in
terms of a word gβ in the braid generators Bt above. The Chern-Simons functional
integral over this three-manifold can thus be obtained by £8 (written in terms
generators Bι) acting on the state (4.3) from below:

It
t t*

7 I *

Jm Jm

ί t*
lm »m

= Σ (4.7)

We wish to plat this braid. This can be done by glueing one copy each of the
three-ball shown in Fig. 14(a) from below and above with spin-orientation assign-
ments matching at the punctures. The functional integral over this three-ball (Fig.
14(a)) can again be thought of to be a vector in the Hubert space associated with
the boundary. Thus we write the functional integral (normalized by multiplying by
Z ~ 1 / 2 , where Z is the partition function on S3) in terms of a basis of this Hubert
space as

V(7l/ί Ίmlm)= Σ N(p;r)\Φ(p;r)UJί jmjm)> ,

where the coefficients Nip;r) are to be fixed. Notice applying an arbitrary combina-
tion of odd indexed braid generators B2/+i o n Fig. 14(a) does not change this
manifold; the half-twists so introduced can simply be undone. That shows that the
vector v(jjf . . .jmj*) is proportional to \φio ,o)(jijΐ -Lk)} which is the
eigen-function of the generators £ 2/+i with eigenvalue one. Thus the only non-
zero coefficient is Λf(0;0). Further if we glue two copies of the three-ball of Fig. 14(a)
onto each other along their oppositely oriented boundaries, we obtain an S13

containing m unlinked unknots carrying spins j 1,7*2, 7m respectively. The in-
variant for this link is given simply by the product of invariants for individual
unknots. Now for cabled knots such as two unknots, the invariants satisfy the
fusion rules of the associated conformal field theory. Thus for unknots
VJXU~\ VJ2[U] = Σj Vj[ΐΓ\, where the spins (71,7*2,7) are related by the fusion rules
of the conformal field theory. For spin 1/2 representation using skein relations we
can obtain F 1 / 2 [ ί7] = [2], where square brackets define g-nu mbers as
[χ-]=(qχi2-e-

χl2)/(q1/2-q-1/2). Using this along with FO[C/] = 1, the invariant

Fig. 13. A three-manifold containing an arbitrary coloured oriented 2m-braid i
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(α)

(c)

Fig. 14. Three-balls containing m Wilson lines

for unknot U can be seen to be given by the ^-dimension of the representation
living on the knot Vj[U] = [2j+1]. This discussion leads to JV(0;0) = f [ [2/*+1]1 / 2

above. Thus

V(jjΐ • .jJZ) = ( Π [2/ί+l] 1 / 2 IΦiO oMΐ • • U£)> •
ί=l

(4.8)

Now we are ready to plat the braid in the manifold of Fig. 13 by glueing to it
manifolds of the type shown in Fig. 14(a) from below and above. This, invoking
Theorem 2, leads us to our main theorem:

Theorem 5. The expectation value (1.4) of a Wilson operator for an arbitrary
link L with a Jplat^ representation in terms of a coloured-oriented braid

jί jί jm jrn\
f f* i t * ) Qenerated by a word written in terms of the braid gener-

^ 1 1 *ΊΪI in /

ators Bh i = 1, 2, . . . (2m— 1), is given by

Φ(O;O){lfh • • th
h It

A A

h it L I
* ,\Φ(O;O){j*Jl . j ί

(4.9)

This main theorem along with Theorem 4 allows us to calculate the link
invariant for any arbitrary link. Before illustrating this with an explicit example in
the next section, we shall extend our discussion developed above to write down the
Chern-Simons functional integral over a three-ball with Wilson lines as shown in
Fig. 14(b). One way to obtain this functional integral is by applying a weaving
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pattern generated by B2m^1B2m . . . B3B2 on the functional integral (4.8) for the
three-ball shown in Fig. 14(a). Alternatively, since this functional integral is
unchanged by applying even-indexed braid generators B2h it is proportional to
\Φ[o;o)(jij2j* JmJmjf)} which is the eigenfunction of these generators with
eigenvalue one. This functional integral over the ball of Fig. 14(b) (normalized by
multiplying by Z ~ 1 / 2 ) is given by the vector

v'(ΛJz/2 .Jm

= (~)2jl ( Π ( - ) 2 m i n U l Λ)[2Λ+l]1/2)|φ{o;θ)(Λ/2;ί . / J i / ? (4.10)

Similarly the Chern-Simons functional integral for the three-ball Fig. 14(c) can
be constructed by applying the braid g2m = (Bm+1Bm)(Bm+2Bm+1BmBm.1)
(Bm+3Bm + 2 . . . Bm-2) . . . (B2m-ί . . . B3B2) on the vector (4.8) representing func-
tional integral over the manifold of Fig. 14(a). We write

IΦβJl Lk -jVΐ)>=girn\Φ(0;0)(j\jϊj2j2* Lfa)> (4.11)

Then the Chern-Simons normalized functional integral over this three-ball is

HhJi JJZ ./ί/f) = ( ft [2A + l]1 / 2)lί(/j2 ./J ί ./ί/f)> . (4.12)

This functional integral allows us to obtain a result equivalent to Theorem 5
for the links as represented by closure of braids. To do so, for a braid

-1 * ' ' Z) with m strands, construct another braid by adding

strands to obtain am
Jl H - - Jn

A u n t a n g l e d

H Jm 7m . . . jί jt

a 2m-strand braid

._. . . . as shown in Fig. 15 with the spin-
Jl ' ' Jl Jm Jl J l / F

orientation assignments as indicated. Then the closure of the original m-strand
braid &minS3 is obtained by glueing two copies, one each from above and below,
of the three-ball of Fig. 14(c) onto the manifold of Fig. 15 with proper matching of
spin-orientations on the punctures on the boundaries. Thus, we may state the result
for links represented as closure of braids as:

Theorem 6. For^ a link represented by the closure of an m-strand coloured-oriented

'/i Ji Jn
braid

Ji Ji
, the link invariant is given in terms of the extended

Fig. 15. m-braid &m extended to 2m-braid «
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7i 72
2m-braid

gled strands as in Fig. 15, by
7*2* Jm Jm

7i 7*2

71* 72*

Jm

ί
Jm

I * 7 * \

h 7i \
JΣ

72

72 7i

7*2 7*i

constructed by adding m untan-

Here the 2m-strand braid is written as a word in terms of the braid generators
Bί,B2, v . Bm-! introducing a weaving pattern in the first m strands only and the
vector \φ} is given by Eq. (4.11) above.

Theorem 5 or equivalently Theorem 6 provides a complete and explicit solution
of SU(2) Chern-Simons gauge theory on S3.

5. Applications of the Main Theorem

To illustrate the use of the main Theorem 5, let us calculate the invariant for
Borromean rings. This link is made from three knots. We shall place spin Ί , ^ and
j 3 on these knots. Figure 16 shows this links with orientation and spin assignments
as indicated. A plat representation for this link has also been drawn. The link is
given as a plat of a six strand braid B2B41B3BίB^1B3B21B^1. To apply
Theorem 5, first we evaluate B2~

1Bϊ1\φ(0)y. This we do by first converting the
basis vector |0(O)> to |0(/>> through duality matrix, and since B^B^1 introduces
right-handed half twists in anti-parallel strands:

Σ
(h)

7*2

7*i

7*3

7*2

7i

7*3

(α)

h h Ji Jι J3 h

i n n 1
I I H t I

h h h J2 Ji J3

J2 Ji J3 Ji J 2 J3

ft ft 11
J, J 2 J 2 JJ

(b)

Fig. 16. (a) Borromean rings and (b) a plat representation for it
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Next we apply B3 (which introduces a left-handed half-twist in the anti-parallel
strands) on this vector. For this we change the basis back to |</>(m)> through duality
transformation. Repeating such steps, we finally have using Theorem 5, the invari-
ant for the Borromean rings of Fig. 16 as

/2 + 1] [2/3

XB^\ φ(θ)ϋ2j$jijΐhβ)>

= [2ji + 1 ] [2/2 +1] [2/3 +

xa, h
h

h~

h
h

a(p)(q)

Ίί

jί

h

h
h
h

a(p)(n)

~ h

h
h

h

h

33

~ h

h
h

h
h

a(m)(l) h

h

h
h
h

α(0)(/) h

h

h
h

h

(5.1)

Similarly the knot invariants for example, for all the knots and links listed in the
tables given in Rolfsen's book [18] may be calculated. We shall present the result of
such calculations for knots up to eight crossings and two-component links up to seven
crossings in Appendix II. Some of these invariants were calculated earlier in refs. 6.

6. Concluding Remarks

We have here presented an explicit method for obtaining the functional average of an
arbitrary Wilson link operator (1.4) in an SU(2) Chern-Simons theory. Either of the
main Theorems 5 or 6 provides this complete solution. To develop this method, we
have made use of theory of coloured-oriented braids. In addition, following Witten [3],
we have used the equivalence of the Hubert space of Chern-Simons functional
integrals over a three-manifold with boundary with the vector space of the conformal
blocks for the correlators of the associated Wess-Zumino conformal field theory on
that boundary based on the same group and same level. This has helped us to find
a whole class of new representations of generators of coloured-oriented braids. These
in turn have finally led to the explicit solution of the Chern-Simons gauge theory. Of
the new link invariants so obtained, the Jones polynomial is the simplest. It corres-
ponds to a spin 1/2 representation living on all the components of the link. The new
invariants appear to be more powerful than the Jones polynomial as these do
distinguish knots which are known to have the same Jones polynomials.

Tables of the new invariants for knots and links of low crossing numbers have been
presented in Appendix II. We could read off the invariants for any other links as well
by the rules defined by Theorem 5 or 6. In particular, invariants for toral knots can be
obtained in this way.

Theorems 5 and 6 can also be used for an efficient calculation of the invariants on
a computer.
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The method developed has obvious generalizations to other compact semi-simple
gauge groups. It can also be extended to study Chern-Simons gauge theory on
three-manifolds other than S3.

Appendix I

Here we list the duality matrix aβ I n n I relating the two bases of four-point°'U hi
correlators of SU(2)k Wess-Zumino field theory as shown in Fig. 1. We shall also give
some of their useful properties. These duality matrices are given in terms of g-Racah
coefficients as [19,6]:

73 74 J \73 74

Here the triplets (77Ί72), (7737*4), (//ΊΛ) and (lj2fo) satisfy the fusion rules of the
conformal theory:

maxflΛ-j2\, 173-74l)^7^min(Λ +72,73 +74)

max(172 -j31,17Ί -j41) ^ / ̂  min{j2 +j3,7Ί +74)

7i +72 +h h +74 +h 7*2 +73 +1 and j x +74 + leZ . (A.2)

The phase in (A.1) is so chosen that it is real; (7Ί +j2 +73 +74) is always an integer.
The SU(2)q Racah-Wigner coefficients [15] are:

/ 2 , 1 2

.73 74 723

x £ (-Πm+iγ.{[_m-h-j2-j12γ.

x lm-J3-U-Λ2]![w-Λ-74-723]!

x [w -72 -73 -72 3 ] ! [ 71 +72 +73 +74 - m]!

x [A +73 +7Ί2+723 - w ] ! [72 +74 +7Ί2 +7*23 - m ] ! } " 1 , (A.3)

where

Here the square brackets represent the q-numbers (g=exp(—2πί/(/c + 2))):

x/2 -x/2

and [n]! = [rc] [ n - 1 ] . . . [3] [2] [1]. The SU(2) spins are related as /1 + /2 + J 3 = T4,

/ Ϊ J j l
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The g-Racah coefficients above satisfy the following properties [15]: Interchange of

any two columns of ( 2 1 leaves it unchanged. Further
\J3 J4 1/

i)( %{ %( % (A.4)

h h υ \ ( - y ~jίJ2~j>M ( A 5 )

h U l) Λ/[2/2 + 1 ] [2/3 + 1 ] '

διv, (A.6)

;)(;;

J q q - cJι/2 - ch/2 - c h l 2 - cM/2

Jί 1

h hj\h J5 h)\h U

(A.8)
U h

where Cj=j(j+1).
Using these we see that the duality matrices satisfy the orthogonality and sym-

metry properties as:

(A
U3 J*A L/3 J2J \_jί J*Λ L /i 72j

Further

h (A 9)

J2] [j UΊ

. y1+h-j-ι /[2/+l][2/+l] Π ; 2 Ί
= (~ ) V[2Λ + l][2;3+l]α Λ4' J '

«0i|

and

(-)2

pi ΛL(_y.+i,-. /I
U j j VC2/:2 + 1] [2/3

Ί Λ Ί
Λ 72 J '72

(A. 13)
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Jί

h]λ,(fJ3)apl\
J2 h]λp(j\f2)

Jj \_J3 J4.J

\{hh)p

 hλ , (A. 14)
Jl J4_\ \_J3 J4

Equation (A. 14) reflects the generating relation of the braiding generators
BiBi+1Bi = Bί+1BiBi+ι. Both (A.13) and (A.14) follow immediately from the ap-
plications of the identity (A.7).

The ^-independent phases in the eigenvalues λ\±\jj2) of the braiding matrices
given in Eq. (4.5) and also that in the duality matrix (A.I) are somewhat ambiguous.
The choice we make here differs from that in refs. 6. We have chosen these phases in

J ] \ 1
p

such a way that λ{

o'\jj)=l λi

ι

±)(0J) = διj and aJ ° J2] = aβ\
J2 °1 =

aβ\ ^ jAr \ = aΛ \ = δjj2(>ij4. The braiding relation (A.14) is not sensitive
L ° J2J [_J2 0 J

h i b i i f h H h h l i l fid b ii

to

L J [_ J
this ambiguity of phases. However, these phases are relatively fixed by requiring
some consistency conditions. One such condition is obtained by gluing a copy each
of the manifolds shown in Figs. 14(a) and (b) for m = 2 (and withyΊ =j2 =j) along
their oppositely oriented boundaries. This yields an unknot U carrying spin j in an
S3. Thus we have, using Eqs. (4.8, 10) for m = 2 and j i = j 2 5 the consistency
condition:

[2/+ in-)2J<ΦoUMf*)\ΦΌU*jΐ*j)> = [2/+ l]2(-)2j«oo β. j ]= Vjίin .

(A.16)

Another consistency condition is Eq. (A. 13). This reflects the equality of Chern-
Simons functional integrals over two three-balls as shown in Fig. 17 (a). A weaker
condition on λ\±\juj2) is

This condition is obtained by gluing two copies each of the diagrams of Fig. 17 (a)
to represent the same Hopf link in two different ways. Yet another consistency
condition is

p. ]o,p.
_J JJ U

This equation represents the fact that each of the knots in Fig. 17(b) is an unknot U.
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( a )

( b )

Fig. 17. Consistency conditions on λ]~\j1j2) and aΛ

h

Fig. 18. A cycle of five duality transformations

Next, Eq. (A. 15) follows directly from Eq. (A.8). This equation reflects that five
duality transformations on conformal blocks of the conformal field theory as
shown in Fig. 18 bring us back to the same block. However a phase may be picked
up in the process. With the phase of duality matrices as fixed above, there is no such
phase picked up by this cycle of five duality transformations.

The duality matrices for some low values of j can easily be computed explicitly.
For example,

fl/2 1/2
'2 1/2

Ί W -1 V[3]\

j-[2]l/[3] 1 )
(A.19)
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and

ri η i

-7Ϊ3]

-VC3]
[4] [2]

\
[5]

[4]

[4]

[2]

[4]

(A.20)

The general duality matrix α ( K r ) ( β ; s ) for 2m-point correlators of Wess-Zumino
conformal theory as depicted in Figs. 2 are given by Eq. (2.3) of Theorem 1. Using
the above four-point duality matrices, these can be shown to satisfy the ortho-
gonality and symmetry properties expressed in Eqs. (2.4). Further some special
values of these 2m-point duality matrices are

α,•(O OMβ s)

m - 2

[2/+1]

a(p;r) (O O) = Π [2/ + 1] ) tλ

where so = ̂ o , s m _ 2 Ξ^ m _ 1 ? ro = po, rm-2=pm-1. Further a useful identity is:

a{p;r)(q;s)

jl

7 2 / -

7 2 / -

7*2/ +

/2 m-

3

1

1

1

72

72/-2

72/

7*2/+2

72m

fl(p';r')(g;s)

72Z-3 Jll-2

hi-1 72/+1

7*2/ 7*2/+2

7 2 m - 1 72m

= ( Π Π
rl-2 72/-1

72/+1 H - l

Γ^/-2 72/- lΊ Γ r/_! 72/1

L 72/ P/-1 J L72/+2 ^/J

L72/+2 r/

/ - i 7 2 / + l

i = 0 , l , 2 , . . . ( m - l ) . (A. 18)
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Appendix II

It may be worthwhile to present a tabulation of the new invariants for knots and
links. This we present now for knots and links with low crossing numbers as listed
by tables of Rolfsen [19]. The naming of knots and links will be given as in this
book which reads clearly the crossing number (as the minimal number of double
points in the link diagram). We shall not present the link diagrams as shown in
these tables but instead give their plat representations so that Theorem 5 can
readily be used to write down the invariants.

IIA. Knots. In this subsection invariants for knots up to crossing number eight
will be given. All knots will carry spin j representations and we shall shorten the
notation for eigenvalues of the braid matrix introducing right-handed half-twists in
parallely and antiparallely oriented strands and also the duality matrices as:

JJ

jj

jj

The plat representation of knots studied here are given in Fig. 19 and their knot
invariants V-} using Theorem 5 are as follows:

Oi: [2/+1]

52: Λml

72:

73:

74: ΣV[2p+l] [2m + l ] ( - )

75:

76:
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m M ^\h
JΊ

(X
6 2

63

4, 5, 5 2

7, 7 2

75 7 7 8,

8 6 87

8 2 83

i
(X

810

nj
811 « 1 2

8u 815

Oxfl
In

8IQ 82(8 1 6 8 1 7 8 1 8 8 1 9 o 2 0

Fig. 19. Plat representations for knots up to eight crossing number

77:
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1O.

X a

12: Σ / P P +

13: Σ>/Ϊ> + ΪΪΪ2^(^^^

14: Σ
X

15 UJ+

X α(0)(β)0(p)(β)<2(p)(n)β(m) (n)

r ^ i - L 1 1 3 V ^ - ^ " " h - 1 ^ " V ^ " 1 " ^ " 1 j ( + ) 5 ( ~ V j ( ~

x α ( 0 ) (q) a^q) a{ p) ( π ) α ( m ) ( π ) α ( m ) ( / ) α ( 0 ) ( ί >

X α
( 0 ) (S)fl(r) (S) fl(r) (g) ^(p)(g)«(p)(n)^(m) (n)

X α(0)(q)a(p)(q)a(p)(n) a(m)(π) %

°21 _

X #(0) (q)a(p)(q) a(p)(n)#(m) (n)a(i

In the expressions above all the indices are summed over positive integers from
0 to min(2/, k — 2j). In these calculations we have made use of identities (A. 12) and
(A. 13). The results for knots up to crossing number seven as presented in the first of
ref. 6 are the same. Further these invariants for;= 1/2 and; = 1 respectively agree
with Jones-one variable polynomials [2] and those obtained by Wadati et al from
the three-state exactly solvable model [14]. To do this comparison we need to
multiply these polynomials of refs. 2 and 14 by [2/ +1], j= 1/2 and 1 respectively, to
account for differences of normalization before comparing with our results above.

Notice for q = l (which corresponds to fc->oo), the invariant for any knot is
simply the ordinary dimension of the representation living on it, Vj(q = ϊ) = 2j+1.

Change of orientation does not affect the knots and invariants do not depend
on the orientation. Thus orientation for knots may not be specified. However,
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mirror reflected knots are not isotopically equivalent in general. For any chiral
knot in the above list, the invariant for the obverse is obtained by conjugation
which amounts to replacing various braid matrix eigenvalues /l/(±) by their inverses
in the expression.

I IB. L inks. Now we shall list the invariants for two component links with cross-
ing number up to seven as listed in Rolfsens book [18]. Unlike in the case of knots
above, here we need to specify the orientations on the two components. There are
four possible ways of putting arrows on these knots. Simultaneous reversing of
orientations on all the components knots does not change the invariant. Hence
there are only two independent ways of specifying the orientations on the knots of
a two component link. We have made a specific choice of relative orientations of
the component knots as indicated in Fig. 20 where we have given plat representa-
tions of these links. We have also placed spin j x and j 2 representations on the
components as indicated. Then from Theorem 5, the invariants VJlJ2 for these links are:

0i: [2Λ + 1] [2/2 + 1]

JlJl

hh
jljl

Xa(m)(p)

~ hji

hh

hh

a(m)(l)

' hh~

hh

hh

a(0)(l)

~ hh~

hh
hh

J 2 J,,

$ 8
7 2

Fig. 20. Plat representation for two-component links up to seven crossing number
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62:

72:

\hJ2]
\J1J2J

IJiJi

ΓΛ/2Ί
U2J1]

1] [2m+ l](-) \-2

LJiJiJ IJ1J2J

jl72~| [jlJ2~\

tflJ LJ2J1J

Λ +1] [2;2 +1] 2

xa(t
J2J2

hh

a(m){n)

ΊlJ2

hh
hh

a(m)(l)

~ hH

hh
hh

a(O)(l)

~ j\h

hh
hh

ιΣrt:\

: a(m)(n)

HH
hh

hh

J2J2n

hh
hh

a(p)(q)

a(m)(l)

J2jl

hh
hh

"hh'
hh
hh

a{p)(n)

a(0)(l)

J2jl

hh
hh

~ hh

hh
hh
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76: [2Λ +1] [2/2 fc\&\%\

317

[2/1 +1] [2/2

78: 1] [2/2 + 1 ] 2

xa

xa(i

~ Jljl

J2J2

J2J2

a(p)(q)

'jljl

jiji

J2J2

a(p)(n)

'J1J2

J2J1

J2J2

"jljl

J2J1

J2J2

a(m)(D

' J1J2~

JlJ2

J2J2

'jljl'

J2J2

J2J2

hh
hh
hh

a(m)(n)

hh
hh
hh

a(m)(l)

hh
hh
hh

a(0)(l) hh
hh

XCί(0)(q)

xa.\m){ή)

J2J2

jljl

J2J2

' J2JΪ

J2J2

JlJl

a(p)(q)

Jljl

J2J2

jljl

' J2JΪ

J2J2

hh

β(p)(n)

β(O)(l)

J2Jί

J2J2

JlJl

' JlJl

Jljl

J2J2

Again identity (A. 13) has been used in above calculations. A corresponding
useful identity for six-point duality matrices is:

hh
hh

a(p)(q)

' hh
JίJ3

hh

\lmin(jι, h) + 2min(j2, j3 saip)io)

J2J1

J1J3

J3J2

where r = ± 1 , s= ± 1 .
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For mirror reflected links, the invariants are obtained by conjugation.
Notice for q = l (that is, fc->oo), every one of these invariants reduces to the

product of the ordinary dimensions of the representations placed on the two
component knots, Vhh(q=ί) = (2/Ί + 1)(2/2 +1).
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