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Abstract: We reduce Ferretti-Rajeev models to the usual sigma models with
Chern-Simons terms (0-terms), and show that whether θ is quantized or not
corresponds to the fact n4r(Gjfn)^π^(U(j)) = Z or 0 of the topology in the process
of our reduction. We also reconsider the topological in variance of the Chern classes
in the language of the field theory.

Introduction

Two dimensional chiral models have widely been studied from both the classical
and quantum point of view. See, for example, [16] and its references. But new
developments were brought by Witten [15]. Namely he added the so-called
Wess-Zumino-Witten term to the kinetic one of chiral models. Then the conformal
invariance of the theory was recovered and the boson-fermion correspondence in
the quantum level was shown. Unfortunately it is not easy to extend these models
in higher dimensions. See, for example, [10].

Next two dimensional nonlinear Grassmann σ models have also been studied
from both classical and quantum levels and many interesting results have been
obtained, see [16]. These models are known as a good toy model for QCD.

Recently Ferretti-Rajeev [3] tried to give a Wess-Zumino-Witten like ap-
proach to these models. Namely they proposed new models adding the 2nd Chern
class to the kinetic term (of these models). Unlike the Wess-Zumino-Witten
models, these ones, of course, do not have the conformal invariance. But these ones
are renormalizable in the 1/iV-expansion, see [3].

They have also rewritten their Grassmann models with chiral fields, and gave
current algebra forms in 3-dimensions. In passing to the quantum level, these
algebras must be made the abelian extension (not central extension in the case of
WZW models), so that it is not easy to treat. See [11], [7].
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The aim of this paper is as follows. The target manifold of dynamical variables
of F-R models is the Grassmann manifolds Gjn. They rewrite F-R models using the
unitary group U(ή) as stated above. On the other hand we rewrite F-R models
using the Stiefel manifold Vjtn. Then F-R models reduce to the well-known ones
"kinetic term + 0 Chern-Simons term" (see, for example, [9]), which is a satisfac-
tory result.

We take interest in the fact whether θ is quantized or not. Then we show that
this corresponds to the fact of the homotopy group π4(G ; i W)^π3(£/(j)) = Z or
0 according to 2^j^n — 2 or j= 1. Our arguments are more familiar with Witten's
ones than that of F-R.

Moreover we consider the case j = 1 (θ is not quantised). Then the theories in the
case of n ^ 3 (<EPn~ *-model) are distinct from the case of n = 2 (CP1-model). See
[2]. With respect to this point we compare our argument with that of Pak [13] in
the appendix.

Our results are summarized as follows: A consistent correspondence between
a quantization of θ and homotopy theory is shown through this paper.

Principal Bundles over Grassmann Manifolds

Let <CΠ be the n-dimensional complex vector space. For l^j^n we denote by
M(nJ; <C), the n xj-matrices over (C. We abbreviate M(n, n\ <C) as M(n; <C).

Now we define our manifolds. For 1 tίjύn we set

j lj} , (1-1)

Gln = {PeM(n; <C) | P 2 = P, P* = P and trP =j} , (1-2)

where 17 denotes a unit matrix in M(j; (C).

For

Fj = (eί,e2,...,ej), (1-3)

Ej = {el9e29...9ej909...90)9 (1-4)

where e} denotes a j t h unit vector in Cn, it is easy to check that

(1-5)

j j } , (1-6)

where U(n) denotes unitary matrices in M(n; <C). From these facts we have

(1-7)

) . (1-8)
We note that Vhn is a real manifold, and Gjn a complex manifold, so that their

dimensions are

, (1-9)

(1-10)

We also note by (1-8) that

GΛ» = G»- Λ I . (1-11)
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If we define a map

π:Vj,n^Gj,H9 π(Z) = ZZ*, (1-12)

then it is easy to check

π(Z)2 = π(Z), π(Z)t = π(Z) and trπ(Z) = /,

so that π(Z) defines

π : Vln^Gln . (1-13)

Since

π(Zg) = Zff(Zff)t = Zflfflft z t = ZZ^ = π(Z)

for geU(j\ this π defines a principal t/(;)-bundle

>VjtH-UGJtH. (1-14)

See [5].
At last let us make some preparations from topology. We denote πk(X) by the

kth homotopy group of the space X.

(a) In the case of7 = 1 (Gίifl = (CPn~ί) we have

1 i f M = 2 (1-15)
) if n ^ 3 , l '

I2 i fn = 2

(b) In the case of n — 2 ̂ j ^ 2 we have

) = 0 . (1-17)

) = Z . (1-18)

We note that f o r n ^ 2

π3(C/(n)) = Z , (1-19)

For the mathematical physicists unfamiliar to these facts, refer to [8] or [14].

II Ferretti-Rajeev Models

Let us make a brief review of the paper of Ferretti-Rajeev [3]. For a dynamical
variable

P : S3^GJtH (II-l)
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the kinetic term is given by

where/is a coupling constant and * is a Hodge dual operator.
By the way since π3(G i jΛ) = 0 except for the case n = 2J=l (CP1-model) any

P: S3-»G7> can be extended to

P:B*->Gln,P\s3 = P, (Π-4)

where B* is a 4-dimensional ball whose boundary is S3. On the other hand since
the cohomology group of Gjn are given by

(a) in the case of 7 = 1 (CP""1-model)

H4(CP"-1;WL) = WL. (11-5)

(b) in the case of n — 2 ̂ 7 ^ 2

Making use of integrations we can express the action containing P as follows:

- 4 ί tr{PdPΛdP)2 . (II-7)
4 π BAr

This expression is a bit different from that of F-R[3] apparently. But since
P2 = P9 we have easily

PdPdP = dPdPP. (II-8)

Hereafter we omit the wedge product Λ of exterior products for simplicity.
Therefore we have

Under above preparations we introduce a Ferretti-Rajeev term

LFR^LFR(P, P)~ j tv(PdPdP)2 (11-10)

~ 2 \ trP(dPr . (Π-ll)

Therefore Ferretti-Rajeev models are given by

This action is defined by a pair (P, P) not P. But since a lifting P of P is not
unique, this action is not single-valued. This fact makes some troubles. But in the
Feynman integral approach we only need the fact eπiL (not L) is single-valued.
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For a fixed P in (II-1) let two liftings of P be P+, P_., namely

P + ) P _ : £ 4 ^ G ; , Π , P+ |S3 = P_|sa = P . (11-13)

For the triplet (P+ ,P-,P) we can construct a map P

P : S4->GΛπ (11-14)

as follows:

Then it holds

£ ίp p ) ZF R(P P )= f tr(P dP dP )2 f tτ(P-dP-dP-)2

=Ξ— \ tΐ(PdPdP)2=^Ί f tr{PdPdP)2 .
4 τ r R 4 t ; _ R4 4πz L

(11-16)

Here we took a orientation of B4 into consideration. That is, B4 = B+
and — B4=Bt. For simplicity we set

^ ί tr{PdPdPf . (Π-17)C 2 ( P ) r ^ ί

This is a well-known Chern class.
By the way since π 4 (CP"" 1 ) = 0 for n^3 and π4(Ghn) = Έ for n - 2 ^ j ^ 2 by

(1-16), (1-18), we have

C2(P) = 0 for C P " " 1 , (Π-18)

C2{P)eZ for G Λ w . (11-19)

Therefore

C 2 ( P ) = 1 ( Π _ 2 0 )

Here we must take two cases into consideration.

(a) ; = 1 (CP^-model) and n ^ 3 . In this case since C2(P) = 0 (Π-20) holds
automatically. Therefore θ takes any values, so that θ is not quantized.

(b) n - 2 ^ 7 ^ 2 (G7>-model). Jn this case C2(P)eΈ. But since C2(P) takes any
integers by changing pair (P+, P_) of P, so that (Π-20) holds if

θ=^n9 neZ. (11-21)

Namely θ is not admitted to take any values, so θ is quantized.
We note that we cannot take a Wess-Zumino-Witten like approach to the

CP^model because 1 2
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III. Reduction of Ferretti-Rajeev Models

The action f̂orm (II-12) of F-R models is unbalance because it contains both P and
its lifting P. To remove it we change a dynamical variable P. Hereafter we take an
another route from F-R.

For each point pteB4, P(pt) can be factorized as follows

by (1-12). By the way since B* is contractible, P can be factorized on the whole

P = ZZ\ Z\B*-+Vhn. (IΠ

Therefore we have

P = ZZ\ Z = Zy:S3->Vjtn, (IΠ

since P = P|S3. Hereafter we use (Z, Z) instead of (P, P).

Mi)

S3'

For simplicity we now set

A = ZUZ, A=ZHZ.

Then it is easy to check that

See [1], [10]. The right-hand side of (IΠ-4) is a well-known Chern-Simons
form. Therefore F-R action can be rewritten as follows:

- i j f t rdPΛ*dP+-^ | f tr(PdPdP)2

~ 4 / 2 J 3

 Γ 4π £3 Γ '

or, in the form using Z,

1
=τrFϊ J t r {dZ* * dZ + Z*dZ-•

2J s3

~ J tr{ZtdZrf(Zt^Z) + ̂ (ZtdZ)3} (ΠI-6)
s 3 ^



Ferretti-Rajeev Term and Homotopy Theory 279

or, in the usual form,

1 f

~2/ψ
+ —I J d3xε"vλtr{ZdμZdv{ZdλZ)+\

Now removing the boundary condition of Z, we take Z as

Z R x S 2 ^ , , , . (IΠ-8)

Then our model is given by

where

RxS 2

= J d3x2cs

!Rx52

2 J ί / 3 x ε ^ t r { Z t δ μ Z 5 v ( Z t a λ Z ) + ^ Z t δ μ Z Z t 5 v Z Z t 3 λ Z } . (ΠI-11)
R x ιS2

For the abelian case 0 = 1)

o = - L J d 3 χ ( δ | l Z
t δ ' l Z + Z t 5 μ Z Z t θ μ Z ) , (IΠ-lla)

2 7 JRx52

c s = ^ f d3xεμvλZidμZdv{Z*dλZ). (IIMlb)
4 π 2

We introduced unnecessary degrees of freedom to represent the F-R action in
a local form. Namely we used Z instead of a pair (P, P). Therefore we must
investigate influences which unnecessary degrees of freedom act our model.

For a transformation

Z->Zg, g:WLxS2->U(j), (111-12)

Z^dZ transforms

ZΐdZ^-^dZtf + ίΓ 1 ^ , (IΠ-13)

so that we have
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after some calculations. See [9]. Namely under the transformation Z-*Zg, £ 0 is
invariant and £ c s changes only by total divergent term + topological term. There-
fore our action (ΠI-9) is not invariant under the above transformation. But in the
Feynman integral approach we need only that β4 i L ( Z ) (not L (Z)) is invariant.

Here for

9 : S3->U(j)

(we impose the boundary condition on g) we set

Since π3(U(l)) = 0 and π3{U{j)) = π3(SU(j)) = Z for n^2 by (1-19), we have

n(g) = 0 forί/(l), (ΠI-17)

n(g)eZ for U(j)(j*2) . (111-18)

Therefore

e4i{L0(Z) + ΘLcs(Z)}==e4i{L0(Zg) + ΘLc

^ e4iθ{Lcs(Zg)-Lcs(Z)} = ι

Here we must take two cases into consideration.

(a) j=ί ((/(l)-case) and π^3. In this case since n(g) = 0(111-19)holds automati-
cally. Therefore θ is not quantized.

(b) n — 2^ j^2 (U(j) — case). In this case (III-l) must hold for any n(g)eΈ, so
that θ must take

e=^n, neZ. (IΠ-20)

Namely θ is quantized.
We conclude that a quantization of θ in F-R models and in our models

corresponds to the fact π4(G7 5M)^π3((7(j)) = Z or 0 of the homotopy theory in
a perfect manner.

IV. Abelian Chern-Simons Terms

Let us recall the homotopy groups of C P " " 1 once more.

(IV-1)

S 2 i f " = 2 πrn

Therefore for CP""1-model (n^3), θ is not quantized as discussed in the
previous sections. But for (CP1-model, our discussion is not applied since

1 2
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We cannot take a Wess-Zumino-Witten like approach to the CP1-model.
But, interesting sufficiently, we can consider the action (IΠ-9) with (III-10a)
and (Ill-lib) even in this case. Namely we can add a Hopf term (Ill-lib) to
the kinetic term (IΠ-lOa) by hand. In fact such a model has been treated in [2].
But the problems which we treat in this paper and is treated in [2] are completely
different.

At any rate we consider the abelian Chern-Simons term

(IV-3)

-θ
Here we omitted the coefficient — ^ for simplicity. From this term can we

^ 7 Γ

understand the difference in (IV-3) between n = 2 and n^3? Let us investigate this
point. For that purpose we write Z using a local coordinate.

A parametrization of Z which we use is

where α e R and z = (zl9z29. . .9zn- ί)
te(Cn~1

9 and |z | 2 = z fz. Z(α, z) above is also
rewritten as

Z(α,z) =
l-ίa +

2z

Next taking α and z as

a = a(xo,x1,x2\ Zj = Zj(xo9xl9

(IV-5)

(IV-6)

Ui\)

JRxC

1
c

n-1 Z

n-ί

I
CP"'1

We compute (IV-3). The result is as follows.
If we set

then we have

ϊ) = Aε{idμoι{dlίJzzdlιz)}d^dλz.
l fΊ

Now we investigate the case n = 2 in details. From (IV-7) we have

(IV-7)

(IV-8)
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This term cannot be written as a total divergent form. Refer to Appendix. Up to
this time we cannot understand the difference between n = 2 and n ^ 3 apparently.
Next we take a variational approach. Namely

(IV-9)

Then we have after some calculations

8ι

iff

This is just a total divergent form. For n ̂  3

is not rewritten as a total divergent form. It is this point that the difference between
π 3 (CP 1 ) = π3(S2) = Z and π3(€P"~1) = 0 (n^3) appears.

In last we compute the Hopf index in the case of n = 2. By (IV-8)

) ^ f dxε f . (IV12)

Here we choose

α = x0, z = x1 + ix2. (ΓV-13)

Then since

εμvλdμadvzdλz =

we have

4rf dxO{ d2 X
π2 j 0 J

π/2
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where in the process of our calculations we used the fact

1 _ π

Our choice (IV-5) with (IV-13) gives a Hopf index 1.
We note that our discussion of this section is a bit different from that of Pak

[13]. We will argue our differences in the appendix.

V. Topological Invariance of the Chern Classes

Let us recall the homotopy groups of Gjn once more,

n2(Gln) = Έ for n - 1 ^ 1 , (V-l)

;:2"2

These are expressed as Chern forms. For P: S2k-+Gjtn, the feth Chern class is
given by

see [6]. In particular when fc = 1 and k = 2, we have

d ( P ) = - ^ J tτPdPdP , (V-4)

^ ί tr(PdPdP)2 . (V-5)

Chern classes are well-known as a topological invariant, see [12]. For
P, Q: S2k->GjtΛ, which are homotopic (P^Q), then we have

Ck(P) = Ck(Q). (V-6)

But the proof is not so easy. In this section we show the spirit of the proof (of
course our proof is not complete) in the case where k = 1 and k = 2.

For
Ut: S2k^(U(n)), (V-7)

where q(U(ή)) is the Lie algebra of U{n\ eUίPe~Uί is contained in Map(S2*, Ghn)
and homotopic to P. Then the connected component in Map(iS2k, Gjn) containing
P is generated by

Q = eUieUi-1 . . .eUιPe'υ\ . .e-^-'e'^ (V-8)

for appropriate i. Therefore if we can show that

Ck(eυPe-u) = Ck(P). (V-9)

for U: S2k-*$(U(ή)), then we have Ck(Q) = Ck(P) by inductive arguments.
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For simplicity we set A = eu. Remarking that XxPdPdP = tr PdPdPP we investi-
gate how two form PdPdPP behaves under the transformation

P-+APA-1 . (V-10)
After short calculations

, (V-ll)

so that we have

APA-1d{APA~1)d{APA-1)

This is a fundamental form of our calculation. Using this we calculate (V-3) in
the case where k = 1 and k = 2. The result is as follows.

tr{APA- ίd(APA- ί)d(APA- ί)} = tτPdPdP + dtvA~γdAP , (V-

1 d(APA " x ) d(APA " x ) } 2 = tr (PdPdP)2 + d {^ " γdAPd(A ~ι dAP)

+ idPdPA'HAP

+ 2dPA~ίdAPA-1dAP} . (V-14)

We note that the total divergent term (V-14) contains the Chern-Simons terms

XdX+^X3 (V-15)

with X = A'1dAP. We have (V-9) from (V-13), (V-14).
Unfortunately we cannot give an explicit form to (V-3) in the case where n Ξ> 3.

We leave it to the readers as an open question.

VI. Conclusion

We show the difference between F-R method and our method once more.
Let us consider a dynamical variable

P : B^Ghn.

(i) F-R method. They decompose P into

and rewrite the action (II-12) using g and g = g\s*> The whole diagram is as follows:

U(j)xU(n-j)
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(ii) Our Method. We decompose P into

P~ — 7 Zt 7' R 4 —• V

and rewrite the action (II-12) using Z and Z = Z|S3. The whole diagram is as
follows:

Some remarks are in order.
We have not given a geometric quantization of our model (see Pak [13] for

CP""1-model). The bose-fermi correspondence may exist in our model as sug-
gested in [3]. What is an explicit form? We must also perform a 1/iV-expansion in
the Feynman integral of our model, see [4].

We will investigate these points in future works.

Appendix

In [13] Pak calculated the abelian Chern-Simons term (the generalized Hopf term
in the language of [13])

to clarify the difference in the case where n = 2 and n^3. For that purpose he also
used a local coordinate different from ours, see Sect. IV. To clarify the difference in
between our method and his one let us make a short review of [13]

His parametrization of Z is

where z=(zuz2,. . . . z ^
φ = φ(xo,x1,x2),

n + \z\2Lz_
- 1 and |z | 2 = ztz, and Zj=i

U(ί)

(b)

x2),

ExS2 ' B - l

si
I

Cpn-1

In the strict sense this Z is not a local coordinate of S£. In this expression each
and φ does not mix. Compare (b) with (IV-5).
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Using this Z let us calculate (a). The result is as follows:

^ ( c )

When « = 2 (CP^model), the last term in (c) drops and (a) reduces to

after a short calculation. That is, the abelian Chern-Simons term (a Hopf term)
becomes a total divergent form. When n^3 this term does not become a total
divergent form due to the last term in (c).

Note added in proof: In Sect. I (or Sect. IV) we defined two principal bundles over the Grassmann
manifold GJ>n. Here we shall unite two diagrams of principal bundles into one diagram as follows.

xU(n-j) -

ϊ
>U(n)

1
Gj,n

We note that first horizontal diagram is a trivial bundle, and each of the square diagrams
commutes.

In Sects. Ill and IV we showed that the 3-dimensional CP1-model had not a Wess-
Zumino-Witten like term due to the topological fact π 3 (CP 1 ) = Z. That is, the 3-dimensional
(CP1 -model was our exceptional case. In spite of this fact we can add a Hopf term to the
CP1-model by hand. As to this point we refer to

Otsu, H., Sato, T.: "Local" versus "nonlocal" Hopf terms are they equivalent? Mod. Phys. Lett.
17, 1571-1578 (1992)
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