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Abstract: A generalization of the relation between the simple random walk on
a regular lattice and the diffusion equation in a continuous space is described.
In one dimension we consider a random walk of a walker with exponentially
decreasing mobility with respect to time. It has an exact solution of the condi-
tional probability, that is expressed in terms of the Gaussian polynomials, a
generalization of binomial coefficients. Taking a suitable continuum limit we
obtain the corresponding transport equation from the recursion relation of
the discrete random walk process. The kernel of this differential equation is
also directly obtained from that conditional probability by the same continuum
limit.

1. Introduction

It is well k n o w n t h a t the diffusion equat ion in a c o n t i n u o u s space is obta ined as
a c o n t i n u u m limit of the simple r a n d o m walk process o n a regular lattice in
arbi t rary d imension (see, for example C h a p t e r 1 of [4]) . Let us consider the
one-dimensional case. T h e diffusion (or heat) e q u a t i o n

dP_ l d 2 P

has the kernel

P ( x , i ) = - L < r x 2 / i . (1.2)
fπt
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On the other hand the recursion relation of conditional probabilities of the simple
random walk

- l , m - l ] ) , (1.3)

has the kernel

where ( ) is the binomial coefficient. Consider this process to be a random walk
only on the even sites of the lattice, namely the probability P [w, m] is associated to
the even temporal point 2m and even spatial point 2n. The continuous kernel (1.2)
can be given from the lattice kernel (1.4) by the following scaling limit. Introducing
a small parameter ε, let

χ=znb, ι = Ynb , v^ ~v

be fixed, and let us take the limit,

n-»oo, m—•oo, ε-»0 . (1.6)

This means that we will see a long time and large distance behavior of the original
discrete process and we have,

±.( 2m V β - L e - * (17)

where and hereafter « means that we have neglected higher order terms with
respect to ε in the right-hand side. The same scaling limit (1.6) leads the recursion
relation itself (1.3) to produce the diffusion equation (1.1). To be precise; if P[n, m]
is a solution of (1.3) and there exists an analytic function P(x, t) that satisfies
P[n, m] = εP(x, ί) + o(ε2) under the scaling limit (1.6), this P(x, t) satisfies the
differential equation (1.1). In this sense there is a twofold correspondence between
the discrete system and the continuous system.

In one-dimension this correspondence between both kernels can be derived
directly in the real space as well as in the momentum space, owing to the above
explicit expression of the kernel (1.4) by means of the binomial coefficient. The
binomial coefficient appearing in (1.7) has originated from a combinatorial calcu-
lation in random walk. In partition theory a generalization of the set of the
binomial coefficients has been known as the set of Gaussian polynomials [1], that
was originally studied by Gauss about one hundred and thirty years ago. About ten
years ago Andrews et al. [2] have used these polynomials in the study of models of
statistical mechanics in two-dimensional space, and a generalization of the simple
random walk in finite intervals has been presented in their paper (Theorem 2.3.1. of
[2]). A natural question arises: can we take a continuum limit of this random walk
process as well as we have done above with the usual simple random walk?

In this paper a generalization of the correspondence between discrete random
walks and continuous transport phenomena is exposed, keeping in mind the
generalization of binomial coefficients to Gaussian polynomials. In Sect. 2 we
investigate a random walk process on a lattice of a walker whose mobility
decreases with respect to time exponentially, and show that a suitable scaling limit
produces a transport phenomenon in a continuous space. The correspondence
between the system on a lattice and that in a continuous space is twofold also in
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this case. The recursion relation goes to the differential equation while the solution
of the former, that is expressed in terms of the Gaussian polynomial, goes to that of
the latter. This is considered in Sect. 3 and we present a proposition (Proposition 2)
that is a generalization of (1.7). In Sect. 4 we give a summary. Proofs of the
propositions are given in Appendices. Since Proposition 2 is the main result in the
present paper, we shall give a full calculation of its proof in Appendix B. The proof
itself seems to have some interesting mathematics.

2. A Generalized Simple Random Walk and its Continuum Limit

In this section we present a generalization of the simple random walk in one
dimension and consider its continuum limit. We introduce correlations between
two successive steps in the simple random walk, at the same time we also introduce
a time dependence in the reversing probability per unit time. This turns out, as we
will see later, to cause a rather simple modification on the heat equation. The
process is governed by a set of two coupling recursion relations,

+ qm-1/2P±ln±lm-l;q']

+ q2m-ll2P±[n+Um-l q], (2.1)

with the initial condition,

i > ± [ w , 0 ; « ] = ^ . δ I l i o , (2.2)

where 0<<?<l. The coefficients such as qm, etc. show the walkers' exponentially
decreasing mobility with respect to time. As mentioned before notations are
accommodated to be in the even sub-lattice. In terms of the original lattice system.
P± [ft, m; q~] is the probability that the walker is located at 2ft at time 2m, and at
2ft + 1 at time 2m + 1 . In the step from time M to M + 1 the walker reverses (returns
to the point where he was located at time M— 1) with probability 1/(1 + qM/2) or
goes straight with probability qM/2/(l+qM/2). This intermediate process
2m — l-»2m+l of three successive steps 2m — 2->2m — l->2m->2m + l has been
summed up to give the set of recursion relations (2.1). The conditional probability
for time 2m and coordinate 2ft is therefore defined as

Pin, m; q~] = P + [ft, m; q] + P~ [ft, m; q] . (2.3)

This process is a ̂ -deformation of the simple random walk. If q goes to 1 then (2.1)
goes to (1.3). Since this process is linear and spatially translational invariant,
finding the fundamental solution (kernel) with this particular initial condition (2.2)
is sufficient to construct a Green function for any boundary condition. In the
course of the calculation of one-point function for regime III RSOS model in [2],
by the so-called corner transfer matrix method, they considered a Dirichlet prob-
lem of this process (Theorem 2.3.1. of [2]). That is a model of 2-dimensional
statistical mechanics describing a certain series of critical phenomena where q = 0
corresponds to the low temperature limit and q = 1 is considered as a multicritical
point. We shall display the kernel in the next section.
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We consider the following scaling limit for this process. In addition to (1.6) let
q go to 1. Let.

x = nε, t = mε2, λ = - (log q)/ε2 , (2.4)

be fixed and take the limit,

w->oo, m-»oo, q->l, ε->0 . (2.5)

We assume the scaling limit (2.5) of P ± [n, m; q~\ as

ίn, m; q] = | P ( X , t; λ)±ε2Q(x, t; λ) + o(ε2) . (2.6)

Let us substitute them in one of the recursion relations (2.1),

x, ί-ε2; λ)-ββ(x, ί-ε2;

(2.7)

The other is just as that with ε replaced by -ε . Let us expand (2.7) up to 0(ε2). Due
to cancellations of terms in both sides, the ε2's in the exponents of the pre-factors
have actually no effect on the result. Thus we get,

in O(ε) and,

^ ^ ( ^ ^ ^ (2.9)

in O(ε2). Putting them together we have a transport equation,

dP e~λt d2P
— (x, ί ; * ) = _ _

e dP
(x, ί ; * ) = _ _ ( * , t λ). (2.10)

The coefficient is modified by the factor e~λt in this case, depending on time as it
should be. This equation can be easily derived from the heat equation (1.1) in
another way. If P(x, t) is a solution of the heat equation (1.1) then P(x, (1 — e~λt)/λ)
satisfies Eq. (2.10). From that point of view this generalization of the heat equation
is somewhat trivial. However we emphasize here that we have naturally derived
this Eq. (2.10) from a corresponding discrete process, this is independent of that
transformation on the time variable. We shall investigate this continuum limit in
the next section from another point of view.
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3. Kernel of the Generalized Simple Random Walk and its Continuum Limit

We have obtained a rather simple transport equation (2.10) as the scaling limit of
the recursion relation. In fact the set of solutions of (2.1) with the initial condition
(2.2) is explicitly expressed as:

Proposition 1.
nn

2±n/2 Γ 9 ^

where [ ] is a Gaussian polynomial

A proof is given in Appendix A, that is essentially the same that they have shown in
[2]. Only the following two recursion relations of the Gaussian polynomials [1]
are needed for the proof,

:H:ik[V]
[:MΓ-lH":ι]

Both of them are ^-analogues of the recursion relation of the binomial coefficients.
Remarkably they are compatible. Explicitly the Gaussian polynomials are defined
by,

(3.4)
otherwise ,

where (#)„ = J3£ = 1 ( l — qk) and (q)0 = 1. Thereby these polynomials satisfy the two
recursion relations (3.2) and (3.3). Then the solutions (3.1) also satisfy the initial
condition (2.2), and we can see that the conditional probability (2.3) is in fact
a g-analogue of the kernel of the simple random walk (1.4), that is recovered as q-+1
of (2.3). Now let us apply the scaling limit (2.5) on the conditional probability (2.3)
itself. We present the result as a proposition, that is the main result of the present
paper. So far our discussion is also valid for q> 1, but in the sequel the constraint
0 < q < 1 is necessary for the proof of the proposition.

Proposition 2. Let
x = nε, t = mε2, λ = — (log q)/ε2 ,

be fixed and take the limit,

Then

2m 1 / λ Γ λx2 |

V ^ ( ]
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This proposition is a generalization of (1.7), that is recovered as λ->0. It means that
the assumption (2.6) is indeed correct with

λ

According to this probability density the variance <x2 > grows linearly for small ί,
and exponentially saturates to 1/λ. We can see that this P(x, t; λ) satisfies the
previously obtained Eq. (2.10) with the initial condition P(x, 0; λ) = δ(x\ namely it
is the fundamental solution of this equation. As we have mentioned in the end of
Sect. 2, this solution is related to the ordinary heat kernel as P(x, t;λ) =
P(x, (1 — e~λt)/λ\ where the right-hand side P stands for the fundamental solution
P(x, i) that appeared in (1.2). Although from that point of view this is an expected
result, an intriguing fact is that we can prove (3.5) directly, without resorting to the
assumption (2.6) and Eq. (2.10). We shall give a proof in Appendix B.

Consequently we have established a twofold correspondence between the
discrete process and the continuous process. That is, one is that of the recursion
relation (2.1) of the generalized simple random walk and the differential equation
(2.10), and the other is that of their fundamental solutions ((3.1) and (3.6)).

4. Summary

In this paper we have generalized a well-known correspondence between the simple
random walk in one-dimension and the diffusion equation. In another aspect we
have generalized the relation between the probability for binomial distribution and
the heat kernel. Our main result is Proposition 2, that contains the known result
(1.7) as a special case. The generalization of the simple random walk has been done
along with the g-deformation of the binomial coefficients to the Gaussian poly-
nomials. In addition to the continuum limit of space and time coordinates, we took
q to 1 simultaneously. We have succeeded to extract a feature of the Gaussian
polynomials and have obtained that simple differential equation (2.10) and its
fundamental solution (3.6). It should be emphasized again here that each has been
obtained independently from the corresponding result on the lattice, without
referring to one another. The result obtained in the limit should describe a long
distance and long time behavior of the generalized simple random walk process on
a lattice when the system is approaching the usual simple random walk.

Appendices

A. Proof of Proposition 1

Proof of Proposition 1. According to the two relations (3.2) and (3.3),

Γ 2m Ί Γ 2m-1 Ί Γ2m-lΊ
\ = qm~n\ +

|_m + rcj |_m + tt-lj Lm + n J
r 2-2-1 r 2.-2-11
\_m + n-2\ Im + n-lj)

f

,A.D
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Therefore we have

2(»-D

2(m—
( A 2 )

This is equivalent to the upper sign of (2.1) if P± [n, m; ̂ f]s are so defined as in (3.1).
Similarly we have,

Γ 2 m Ί Γ 2 » - l 1 +J2m-ll
\_m + n_\ \_m + n— l j |_m + n j

2 m ~ 2 1 + Γ 2m~2

- 2

and this proves the lower sign of (2.1) as follows,

. - 1 / 2 + C-! ) + ( .-1,/ 2

-l)+(n-l)J

2(m—1)

J

B. Proof of Proposition 2

Proof of Proposition 2. Since

q (q +q n )^e~λx> ( β χ )

is obvious, it suffices to prove,

1 Γ 2m
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Let us introduce the g-gamma function [3]

W-Brlr-Q-tf-"' ( B 3 )
where

(a q^flil-aq"). (B.4)

« = 0

The gaussian polynomial factor in (B.2) can be expressed in terms of <jf-gamma

functions, \ = Γq{2m+l)/Γq(m + n+ί)ΓJm-n + ί). Furthermore the LHS
\_m + n j

of (B.2) itself can be expressed only by g-gamma functions,
Γ I™ _L1 \ Γ I *v»_L

Γ 2m
Π ^ 1 ( l + ί(k/2

It can be shown as follows;

= π

Γ4(2m + 1) ( l-«

therefore

l/2\-2m
Ϊ/2

(B.5)

(B.7)
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Here we have used a ^-analogue of Legendre's duplication formula [3]. Then the
scaling limit can be estimated as follows,

ΓJm + l)2

Γq(m + n+l)Γq(m-n

Γ«{m + \
Γq(m + l)

1

sexp
e-λtλx2l

l-e-*J'

1-e -λt

r.(i) ^

(B.8)

(B 9)

(B.10)

The last estimation (B.10) is trivial, Γ of (l/2)«Γ(l/2) = v

/ π . The second relation
comes from

ΓM) λε2

(B.11)

hence

ΓΛm)

l-e~
(B.12)

In order to show the estimation (B.8) we can use the ^-analogue of Stirling's
formula [5],

1 "zi°g« udu
J eu— 1

B2 (B.13)

where Cq is a constant depending on q, Bn is the n th Bernoulli number and Pn(x) is
a polynomial of degree n. Using this formula we can estimate the LHS of (B.8) as
follows;

log
Γ,(m + 1)2

Γq(m + n + l)Γq(m-n + l)

Γq(m)2

zlog ^-^
Γq(m+ή)Γq(m—ή)

.2(m-l/2)logf-
ί-q
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-(m + n -1/2) log ( - ^ )-(m-n -1/2) log

1 /' " m - l o g β udu ~{m+")ϊosq udu -<m-^ι°i

\ -logq e *• -logq e •*• -logq

- w l o g
l - ς r m -

- (m + n) logq ..A.. -(m-n)

- m log q

The last three terms can be estimated separately.

(l-e-»)2 '

-»log(f-^]«-=log(l+ΐ

2λx2e2e~λt

ί-e-

_ m l o g 4 e - l

~~ε~λεx\ I eu-\+ ί e"-\

(B.15)

( B 1 7 )

Therefore (B.15) + (B.16) + (B.17) gives the required relation (B.8).
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