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Abstract: The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of
a Lie group are considered. For the natural Poisson brackets the symplectic leaves in
these manifolds are classified and the corresponding symplectic forms are described.
Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson
groups.

Introduction

The method of geometric quantization [9] provides a set of Poisson manifolds
associated to each Lie group G. The dual space 2P* of the corresponding Lie algebra
S? plays an important role in this theory. The space SP* carries the Kirillov-Kostant
Poisson bracket which mimics the Lie commutator in S?. Having chosen a basis {εa}
in SP, we can define structure constants f£b:

c

where [, ] is the Lie commutator in 5?. On the other hand, we can treat any element
εa of the basis as a linear function on «<F*. The Kirillov-Kostant Poisson bracket is
defined so that it resembles formula (1):

c

The Kirillov-Kostant bracket has two important properties:
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i. the r.h.s. of (2) is linear in εc,
ii. the group G acts on S^* by means of the coadjoint action and preserves the
bracket (2).

The Kirillov-Kostant bracket is always degenerate (e.g. at the origin in ^ * ) .
According to the general theory of Poisson manifolds [2, 15] the space SP* splits
into the set of symplectic leaves. Usually it is not easy to describe symplectic leaves
of a Poisson manifold. Fortunately, an effective description exists in this very case.
Symplectic leaves coincide with orbits of the coadjoint action of G in 2P*. Kirillov
obtained an elegant expression for the symplectic form Ω on the orbit [9]:

Ωx(u,v) = (X,[eu,ευ]). (3)

Here (, ) is the canonical pairing between & and ίF*. The value of the form is
calculated at the point X on the pair of vector fields u and v on the orbit. The
elements εu, ευ of the algebra 2P are defined as follows:

u | x = a d * ( ε J X , (4)

where ad* is the coadjoint action of $? on SP*. The purpose of this paper is to
generalize formula (3) for Lie-Poisson groups.

Lie group G equipped with a Poisson bracket {, } is called a Lie-Poisson group
when the multiplication in G

GxG^G, (5)

(9,9f)->99f (6)

is a Poisson mapping. In other words, the bracket of any two functions / and h
satisfies the following condition:

{/, h} (ggf) = {f{gg\ h{gg')}g + {f(gg'), h(gg')}g,. (7)

Here we treat f(gg'), h(gg') as functions of the argument g only in the first term of
the r.h.s., whereas in the second term they are considered as functions of g'.

In the framework of the Poisson theory the natural action of a group on a manifold
is the Poisson action [4, 13]. It means that the mapping

Gx M -> M (8)

is a Poisson one. In Poisson theory this property replaces property (ii) of the Kirillov-
Kostant bracket. There exist direct analogues of the coadjoint orbits for Lie-Poisson
groups. Our goal in this paper is to obtain an analogue of formula (3). However, it is
better to begin with the Lie-Poisson analogue of the cotangent bundle T*G described
in Sect. 2. The symplectic form for this case is obtained in Sect. 3 and then in Sect. 4
the analogue of the Kirillov form appears as a result of reduction. Section 1 is devoted
to an exposition of the Kirillov theory. In Sect. 5 some examples are considered.

When speaking about Lie-Poisson theory, the works of Drinfeld [5], Semenov-
Tian-Shansky [13], Weinstein and Lu [10] must be mentioned. We follow these papers
when representing the known results.

The theory of Lie-Poisson groups is a quasiclassical version of the theory of
quantum groups. So we often use the attribute "deformed" instead of "Lie-Poisson."
Similarly we call the case when the Poisson bracket on the group is equal to zero the
"classical" one.
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1. Symplectic Structures Associated to Lie Groups

For the purpose of selfconsistency we shall collect in this section some well-known
results concerning Poisson and symplectic geometry associated to Lie groups. The
most important part of our brief survey is a theory of coadjoint orbits. Our goal
is to rewrite the Kirillov symplectic form so that a generalization can be made
straightforward.

Let us fix notations. The main object of our interest is a Lie group G. We denote the
corresponding Lie algebra by ^. The linear space S? is supplied with Lie commutator
[, ]. If {εa} is a basis in S? we can define structure constants f"b in the following
way:

[εa,εb] = Σf?εc- (9)
C

The Lie group G has a representation which acts in S?. It is called an adjoint
representation:

ε9=Ad(g)ε. (10)

The corresponding representation of the algebra S? is realized by the commutator:

ad(ε)η = [ε,η]. (11)

We denote elements of the algebra S? by small Greek letters.
Let us introduce a space ^ * dual to the Lie algebra &. There is a canonical

pairing (, ) between 2^* and S^ and we may construct a basis {la} in S^* dual to
the basis {εa} so that

(la,ε
b)=€- (12)

We use small Latin letters for elements of SP*. Each vector ε from S? defines a linear
function on S^*:

He(l) = ( l , ε ) . (13)

In particular, a linear function Ha corresponds to an element εa of the basis in ^ .
By duality the group G and its Lie algebra S? act in the space ^ * via the coadjoint

representation:

* )ε) , (14)

( ( ) . (15)

The space S? can be considered as a space of left-invariant or right-invariant vector
fields on the group G. Let us define the universal right-invariant one-form θg on G
which takes values in W\

θg(ε) = -ε. (16)

We treat ε in the l.h.s. of formula (16) as a right-invariant vector field whereas in the
r.h.s. as an element of W. The minus in the r.h.s. of (16) reflects the fact that the
isomoφhism of the algebra of right-invariant vector fields on the Lie group and the
corresponding Lie algebra is nontrivial and may be represented by —id at the group
unit. Since the one-form θg and the vector field ε are right-invariant the result does
not depend on the point g of the group. θg is known as the Maurer-Cartan form.

Similarly, the universal left-invariant one-form μg can be introduced:

μ^(ε) = ε, μg = Ad(g~ι)θg, (17)

where ε is a left-invariant vector field, Ad acts on values of θ .
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In the case of matrix group G the invariant forms θg and μg look as follows:

\ (18)

μg=g-ldg. (19)

For any group G there exist two covariant differential operators VL and VR taking
values in the space ^ * . These are left and right derivatives:

(VL/, ε) (g) = - j t /(exp(ίε) <?), (20)

(VRf,ε)(g)= jtf(gcxV(ε)), (21)

where exp is the exponential map from a Lie algebra to a Lie group. The simple
relation for left and right derivatives of the same function / holds:

VR/ = - A d * 0 / - 1 ) V L / . (22)

From the very beginning the linear space SP* is not supplied with a natural
commutator. Nevertheless, we define the commutator [, ]* and put is equal to zero:

[ Z , m ] * = 0 . (23)

The main technical difference of the deformed theory from the classical one is that
the commutator in 5^* is nontrivial. As a consequence, the corresponding group G*
becomes nonabelian. This fact plays a crucial role in the consideration of Lie-Poisson
theory. In the classical case the Lie algebra ^ * is just abelian and the group G*
coincides with S^7*.

The space 5^* carries a natural Poisson structure invariant with respect to the
coadjoint action of G on ̂ * . Let us remark that the differential of any function on
5^* is an element of the dual space, i.e. of the Lie algebra S .̂ It gives us a possibility
to define the following Kirillov-Kostant Poisson bracket:

(24)

In particular, for linear functions Hε the r.h.s. of (24) simplifies:

{Hε,Hη} = H[εη], (25)

{Ha, Hb} = Σ ffH0 • ( 2 6 )

The last formula simulates the commutation relations (1).
In the general situation the space ^ * supplied with Poisson bracket (24) is not

a symplectic manifold. The Kirillov-Kostant bracket is degenerate. For example, in
the simplest case of 2P = su(2) the space ^ * is 3-dimensional. The matrix of the
Poisson bracket is antisymmetric and degenerates as any antisymmetric matrix in an
odd-dimensional space.

The relation between symplectic and Poisson theories is the following. Any Poisson
manifold with degenerate Poisson bracket splits into a set of symplectic leaves. A
symplectic leaf is defined so that its tangent space at any point consists of the values
of all hamiltonian vector fields at this point:

vh(f) = {h, f} • (27)
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Each symplectic leaf inherits the Poisson bracket from the manifold. However, being
restricted onto the symplectic leaf the Poisson bracket becomes nondegenerate, and
we can define the symplectic two-form Ω so that:

Ω(υf,vh) = {f,h}. (28)

The relation (28) defines Ω completely because any tangent vector to the symplectic
leaf can be represented as a value of some hamiltonian vector field.

If we choose dual bases {ea} and {eα} in tangent and cotangent spaces to the
symplectic leaf we can rewrite the bracket and the symplectic form as follows:

( a b ) , (29)
ab

Ωabe^eb. (30)
ab ab

Using definition (28) of the form Ω and formulae (29), (30) one can check that the
matrix Ωab is inverse to the matrix Pab:

ΣΩacP
cb = δb

a. (31)

For the particular case of the space ^ * with Poisson structure (24), there exists a
nice description of the symplectic leaves. They coincide with the orbits of coadjoint
action (14) of the group G. Starting from any point l0 we can construct an orbit

OZo = {Z = Ad*(0)Zo, geG}. (32)

Any point of ^ * belongs to some coadjoint orbit. The orbit O1Q can be regarded as

a quotient space of the group G over its subgroup St :

Oh « G/Sk , (33)

where S1Q is defined as follows:

SlQ = {geG, Ad*(g)lo = lo}. (34)

In the case of G = SU(2) the coadjoint action is represented by rotations in the 3-
dimensional space ^ * . The orbits are spheres and there is one exceptional zero radius
orbit which is just the origin. The group S1Q is isomorphic to U{\) and corresponds
to rotations around the axis parallel to Zo. For the exceptional orbit SL — G and the
quotient space G/G is a point.

Let us denote by pL the projection from G to O1Q :

plQ:g->lg = Ad*(g)l0. (35)

We may investigate the symplectic form Ω on the orbit directly. However, for
technical reasons it is more convenient to consider its pull-back β p = pf Ω defined
on the group G itself. We reformulate Kirillov's famous result in the following form.
Let Ox be a coadjoint orbit of the group G and pι be the projection (35). The Poisson
structure (24) defines a symplectic form Ω on Oι .
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Theorem 1. The pull-back of Ω along the projection pt is the following:

β g = | ( < f i ί ί ί ί ) (36)

Let us remark that dlg and θg are S?* and S^ valued 1-forms. In formula (36) we
wedge them as differential forms (the sign Λ) and apply the canonical pairing (,) to
their values.

We do not prove formula (36), but the proof of its Lie-Poisson counterpart in
Sect. 3 will fill this gap. Let us make only a few remarks. First of all, the form Ωf

actually is a pull-back of some two-form on the orbit Oz . Then, Ωf is a closed form:

dΩξ = 0. (37)

This is a direct consequence of the Jacobi identity for the Poisson bracket (24). The
form β p is exact, while the original form Ω belongs to a nontrivial cohomology
class. The left-invariant one-form

a=(lg,θg) = (l0,μg) (38)

satisfies the equation
da = Ωξ . (39)

In physical applications the form a defines an action for a hamiltonian system on
the orbit:

(40)
• / -

Returning to the formula (36) we shall speculate with the definition of G*. In our
case G* = £P* and we may treat lg as an element of G*. For an abelian group the
Maurer-Cartan forms θ and μ coincide with the differential of the group element:

θι=μι = dl. (41)

Using (41) we rewrite (36):

where I is the function of g given by formula (35). Expression (42) admits a
straightforward generalization for Lie-Poisson case.

The rest of this section is devoted to the cotangent bundle T*G of the group G.
Actually, the bundle T*G is trivial. The group G acts on itself by means of right and
left multiplications. Both these actions may be used to trivialize T*G. So we have
two parametrizations of

T*G = GxS?* (43)

by pairs (g, I) and (g,m), where I and m are elements of ^ * . In the left parametriza-
tion G acts on T*G as follows:

L h: (#, m) —> (hg, m), (44)

R h:(g,m)-^(gh-\Ad*(h)m). (45)

In the right parametrization left and right multiplications change roles:

L h:(g,l)->(hg,Ad*(h)l), (46)

R h:(g,l) -^ (gh~ι,/). (47)
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The two coordinates I and m are related:

I = Ad* (g)m. (48)

The cotangent bundle T*G carries the canonical symplectic structure Ωτ G [2].

Using coordinates (#, /, m), we write a formula for Ωτ G without the proof:

The symplectic structure on T*G is a sort of universal one. We can recover the
Kirillov two-form (36) for any orbit starting from (49). More exactly, let us impose
in (49) the condition:

m = mo = const . (50)

It means that instead of T*G we consider a reduced symplectic manifold with the
symplectic structure

Ωr = \{dl,θg), (51)

where I is subject to constraint

/ = Ad*(s)m0. (52)

Formulae (51), (52) reproduce formulae (35), (36) and we can conclude that the
reduction leads to the orbit OmQ of the point ra0 in &*.

The aim of this paper is to present Lie-Poisson analogues of formulae (36) and
(49). Having finished our sketch of the classical theory, we pass to the deformed case.

2. Heisenberg Double of Lie Bialgebra

One of the ways to introduce a deformation leading to Lie-Poisson groups is to
consider the bialgebra structure on 2P. Following [5], we consider a pair (^, S?*),
where we treat 2P* as another Lie algebra with the commutator [,]*. For a given
commutator [,] in S? we cannot choose an arbitrary commutator [,]* in &*. The
axioms of the bialgebra can be reformulated as follows. The linear space

?* (53)

with the commutator [, ] ^ :

[ε, η]& = [ε, η], (54)

[x,ί/]^ = [x,2/]*, (55)

[ε, x]& = ad*(ε)x - ad*(x)ε. (56)

must be a Lie algebra. In the last formula (56) ad*(ε) is the usual ad*-operator for
the Lie algebra S? acting on ^ * . The symbol ad*(x) corresponds to the coadjoint
action of the Lie algebra ^ * on its dual space ^ .

The only thing we have to check is the Jacobi identity for the commutator [,]^.
If it is satisfied, we call the pair (S^, S^*) a Lie bialgebra. Algebra & i s called a
Drinfeld double. It has the nondegenerate scalar product (, )@:

((ε, x), (ry, y))& = (y, ε) + (x, η), (57)
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where in the r.h.s. (,) is the canonical pairing of 2P and 5^*. It is easy to see that

( S P , S ^ = O, ( S f * , S ? % = 0 . (58)

In other words, 2P and S^* are isotropic subspaces in <$ with respect to the form
(> )j? We call the form (, )@ on the algebra & standard product in &.

We shall need two operators P and P * acting in if?. P is defined as a projector
onto the subspace ϊ?\

P(x + ε) = ε. (59)

The operator P * is its conjugate with respect to form (57). It appears to be a
projector onto the subspace SP*:

P*(x + ε) = x. (60)

The standard product in & enables us to define the canonical isomorphism
J : J?* —> @) by means of the formula

(J(α*),6)^ = <α*,6), (61)

where α* is an element of J?* and 6 belongs to if?. In the r.h.s. we use the canonical
pairing of <$ and if?*. The standard product can be defined on the space if?*:

(α*,6%* = (J(a*),Jφ*))&, (62)

where α* and 6* belong to il?*. The scalar product (, )@ is invariant with respect to
the commutator in J?:

(63)

It is easy to check that the operator J converts ad* into ad:

J ad* ( α ) J ' 1 =ad(α) . (64)

Using the standard scalar product in @J, one can construct elements r and r* in
2" which correspond to the operators P and P * :

(a 0 6, r * ) ^ 0 ^ = -(α, P * 6 ) ^ . (66)

In terms of dual bases {εa} and {/α} in ^ and S^*,

r = ^ εa (8) Zα , r* = - ^ Zα ® εa . (67)

The Lie algebra ® may be used to construct the Lie group D. We suppose that D
exists (for example, for finite dimensional algebras it is granted by the Lie theorem)
and we choose it to be connected. Originally the double is defined as a connected and
simply connected group. However, we may use any connected group D corresponding
to Lie algebra if?. Property (64) can be generalized for Ad and Ad*:

J Ad*(d)J~ι = Ad(d), (68)

where d is an element of D.
Let us denote by G and C* the subgroups in D corresponding to subalgebras 5^ and

5P* in ̂ . In the vicinity of the unit element of D the following two decompositions
are applicable:

d = gg* = h*h, (69)
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where d is an element of D, coordinates g, ft belong to the subgroup G, coordinates
g*, ft* belong to the subgroup G*.

To generalize formula (69), let us consider the set 3 of classes G\D/G*. We
denote individual classes by small letters i,j,.... Let us pick up a representative di

in each class i. If an element d belongs to the class i9 it can be represented in the
form

d = gdι9* (70)

for some g and g*. In the general case the elements g and g* in decomposition (70)
are not defined uniquely. If S(dτ) is a subgroup in G,

) = {he G.dr'hd, e G*}, (71)

we can take a pair (gh, d~ιh~ιdig*) instead of (g, <?*), where ft is an arbitrary element
of Sidj). We denote T ( ^ ) the corresponding subgroup in G*:

T(di) = drιS(dι)di. (72)

So we have the following stratification of the double D:

D = \J GdτG* = U G . (73)

Each cell
G = Gc/,G* (74)

in this decomposition is isomorphic to the quotient of the direct product GxG* over
Sζdj), where

(<?.<?*)-(</,£*') if (75)

g' = gh, g^^d-ιh-ιdzg, ft e S(d,). (76)

For the inverse element d~1 in the relation (70) we get another stratification of D
in which G and G* replace each other:

ι \ J . (77)

Now we turn to the description of the Poisson brackets on the manifold D. Double
D admits two natural Poisson structures. The first was proposed by Drinfeld [5]. For
two functions / and ft on D the Drinfeld bracket is equal to

{/> h} = (VL/ 0 VLft, r) - (VR/ ® VRft, r), (78)

where (,) is the canonical pairing between <S)§§^ and ^Γ*(g)^Γ*. The Poisson bracket
(78) defines a structure of a Lie-Poisson group on D. However, the most important
for us is the second Poisson structure on D suggested by Semenov-Tian-Shansky [13]
(see also [11]):

{/, ft} - - « V L / 0 VLft, r) + <VR/ 0 VRft, r * » . (79)

The brackets (78) and (79) are skew-symmetric because the symmetric parts of both
r and r* are Ad-invariant.

The manifold D equipped with bracket (79) is called the Heisenberg double or
D+. It is a natural analogue of T*G in the Lie-Poisson case. When 2^* is abelian,
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G* = SP* and D+ = T*G. If the double D is a matrix group, we can rewrite the
basic formula (79) in the following form:

{d\d2} = -(rdιd2 + dιd2r*), (80)

where dι = d® I, d2 = I <g> d.

The problem which appears immediately in the theory of D+ is the possible
degeneracy of the Poisson structure (79) in some points of D. It is important to
describe the stratification of D+ into the set of symplectic leaves. The answer is
given by the following

Theorem 2. Symplectic leaves of D+ are connected components of nonempty inter-
sections of left and right stratification cells:

Diά = Ci n Cj = Gdfi* n G*d~ιG. (81)

Remark. The double D+ is a symplectic manifold if the product GG* provides a
global decomposition of D [12].

Proof. The tangent space T^ to the symplectic leaf at the point d coincides with the
space of values of all hamiltonians vector fields at this point. For concrete calculations
let us choose the left identification of the tangent space to D with &. We can rewrite
the Poisson bracket (79) in terms of left derivatives VL:

{/, h} (d) = - ( ( V L / <g> VLr) + (Ad*(d"1)VL/ 0 Ad*(cΓ V L A , r*))

= - ( V L / ® VLfe, r + Ad(d) 0 Ad(d)r*). (82)

Here we use relation (22) between left and right derivatives on a group.
A hamiltonian h produces the hamiltonian vector field vh so that the formula

(df,υh) = {hj} (83)

holds for any function /. Using (82), (83) we can reconstruct the field vh:

vh = (vLft, r + Ad(d) Θ Ad(d)r*)2 . (84)

Here the subscript 2 in the r.h.s. means that the pairing is applied only to the second
component of the r-matrix expression r + Ad(d)0 Ad(cf)r*. Having identified J^ and
J^* by means of the operator J, we can rewrite the r.h.s. of (84) as follows:

vh\d = 3?dh = (P - Ad(d)P* Ad(d"1))J(VL/ι(ίi)), (85)

where & acts in &\
3? = P - Ad(d)P* Ad(d" ι ) . (86)

It is called a Poisson operator. Using the fact that the value of VL/ι at the point d is
an arbitrary vector from ^ * , we conclude that T^ coincides with the image of the
operator ίP\

$ (87)

The most simple way to describe the image of & is to use the property:

* i - . (88)

Here conjugation and the symbol _L correspond to the standard product in J^. The
operator ^ * is given by the formula

&>* = p * - Aά(d)P Ad(<Γ ι). (89)
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Suppose that a vector a = x + ε belongs to

^>*(a; + ε) = 0. (90)

Let us rewrite the condition (90) in the following form:

(Ad(d"V* - PAd(d~1)) (x + ε) = 0, (91)

or, equivalently,
Ad(d"1 )x = P( Ad(<Γι )x + Ad(d" ι )ε). (92)

Using the property

P + P* =id (93)

of the projectors P and P * , one can get from (92):

P * (Ad(d"* )x) = P(Ad(d" ι )ε). (94)

The l.h.s. of (94) is a vector from S^* whereas the r.h.s. belongs to &. So Eq. (94)
implies that both the l.h.s. and the r.h.s. are equal to zero.

Let V(d) be the subspace in SP defined by the following condition:

V(d) = {εe^, Ad(d~ι)ε e 5?*} . (95)

In the same way we define the subspace V*(d) in ̂ * :

V*(d) = {εe S?*,Ad(d~ι)ε e S?} . (96)

It is not difficult to check that V(d) and V*(d) are actually Lie subalgebras in ΪF and
S^*. The kernel of the operator ^ * may be represented as a direct sum of V(d) and

= V(d) θ F*(d). (97)

The tangent space T^ to the symplectic leaf at the point d acquires the form

Γ | = (y(d)θ^*(d))- L . (98)

The result (98) can be rewritten:

f ^ Π ̂ ( d ) 1 - = (Vid)1- Π ̂ * ) 0 (F*^)- 1- Π SO . (99)

Here the last expression represents T^ as a direct sum of its intersections with 3?
and S?*.

Now we must compare subspace (99) with the tangent space T'd of the intersection
of the stratification cells (Theorem 2). Suppose that the point d belongs to the cell
D-- of the stratification. We can rewrite the definition of Ό as follows:

Diά = GdG* Π G*dG = C(d) Π c(d). (100)

The tangent space to D^ may be represented as an intersection of tangent spaces to
left and right cells C(d) and c(d):

(loi)

For the latter the following formulae are true:

Td(C(d)) = S? + Ad(d)^* , (102)

Td(c(d)) = S?* + Ad(d)^. (103)
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The space Td(C(d)) coincides with F(d) ± . Indeed, Td(C(d))^ lies in S? because
^ c &1- = S .̂ On the other hand

= 0. (104)

Formula (104) implies that Ad(d~ι)Tίi(C(d))-L c &*L = &*. So ^(Cίd)) 1 - is the
subspace in 3? which is mapped by Ad(d~ι) into £?*. It is the subspace V(c?) that
satisfies these conditions. So we have

= V(d), Td(C(d)) = V(dΓ (105)

Similarly,
Γd(c(d)) = V:¥(d)± (106)

Comparing (99), (101), (105), (106), we conclude that the tangent space Td to
the cell Dτj coincides with the tangent space Td to the symplectic leaf. Thus the
symplectic leaf coincides with a connected component of the cell DZJ.

We have proved Theorem 2. The next question concerns the symplectic structure
on the leaves D-.

3. Symplectic Structure of the Heisenberg Double

Each symplectic leaf Dxj introduced in the last section carries a nondegenerate Poisson
structure and hence the corresponding symplectic form Ωi3 can be defined. To write
down the answer we need several new objects. Let us denote by Li3 the subset in
G x G* defined as follows:

Li3 = {(9,9*) £Gx G*,gd{g* e Di3} . (107)

In the same way we construct the subset M%- in G* x G:

Mτj = {(ft*, ft) e G* x G, ft*d71ft G Dtj} . (108)

Finally let N{j be the subset in L
{j

x

x Mφgdi9* = h*djιh}. (109)

We can define the projection

plJ:NtJ-,Dij, (110)

Pij:[(9,9*)Λh*,h)]-+d = gdig* = h*dj1h, (111)

and consider the form pfjΩτj on JV^ instead of the original form Ω^ on Ό% . It is
parallel to the construction of the Kirillov form on the coadjoint orbit (see Sect. 1).
Parametrizations (107), (108) provide us with the coordinates (g,g*) and (ft*, ft) on
N{j. We can use them to write down the answer:

Theorem 3. The symplectic form P*3Ωi3 on Ni3 can be represented as follows:

PΪjΩϋ = \ Wh. ? θg) + (/V ? Aίh» (112)

In formula (112) θg,θh^,μh,μg^ are restrictions of the corresponding one-forms

from (GxG*)x (G* x G) to 7V .̂ The pairing (,) is applied to values of Maurer-Cartan
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forms, which can be treated as elements of & and SP* embedded to <$ — & + S^*.
So we can use (, )@ as well as (,).

Proof of Theorem 3. The strategy of the proof is quite straightforward. We consider
the Poisson bracket (79) on the symplectic leaf £) . If we use dual bases {ea} and
{eα} (α = 1,... ,n = άimD) of right-invariant vector fields and one-forms on D,
formula (79) acquires the following form:

{/, h} (d) = -(V L / <g> VLft, r + Ad(d) 0 Ad(d)r*)
n

= ~ Σ^J,eα) {\JLh,eb) (e\^Jeb). (113)
α,6=l

The last multiplier in (113) is the Poisson matrix corresponding to the bracket (79):

^>αb = (eα^Jeb). (114)

Here & is the same as in (86). The matrix SPαh may be degenerate. Let us choose
vectors {eα, α G sτj = {1,. . . , ni3; = dim ^ j } } so that they form a basis in the space
Td tangent to Dtj. &αh is not zero only if both α and b belong to s-. The symplectic
form Ω%- on the cell D- can be represented as follows (see Sect. 1):

nl3

α,b=l

where the matrix Ω satisfies the following condition:
nij

Y^Ωαc^
cb = δb

α. (116)
c=\

So what we need is the inverse matrix £P~ι for SPαh. To make the symbol SP~X

meaningful we introduce two operators ^ and 5/\\

, (117)

^ 2 = (P* -Ad(d)P). (118)

^ may b decomposed in two ways, using &\ and ^ :

^ = &y&>* = -&»2gf . (119)

Some useful properties of the operators ζPχ and ζP2 are collected in the following
lemma.

Lemma 1.
I m ^ = V{d)L, Im^2 = y * ^ ,

) F*(d)P ( K e r ^ ) = 2

Proof. First let us consider the formula

I m ^ = (Ker^1*)-L. (121)

The operator ^ * looks as follows:

^ * = p * + P A d W 1 ) . (122)
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The equation for Ker^f ,

( P * + P ACKGΠ1)) (z + ε) = 0, (123)

leads immediately to the following restrictions for x and ε:

x = 0, Aά(d-ι)ε e S?*. (124)

Comparing (124) with definition (95), we see that K e r ^ f = V(d) and hence

If a vector x + ε belongs to the kernel of the operator ζpχ, it satisfies the following
equation:

(P + Ad(d)P*) (x + ε) = 0. (125)

It can be rewritten as a set of conditions for the components sc, ε:

Ad(d" ! )ε € 3?* , x = - Ad(d~ι)ε. (126)

ε again appears to be an element of V(d). This fact may be represented as the equation
P ( K e r ^ ) = V{d).

We omit the proofs of formulae (120) concerning the operator £P2 because they are
parallel to the proofs given above.

The following step is to define inverse operators:

Φ~ λm Φ —± <%ϊ/ Kex Φ (Ml)

*^s **\ JL111«_/ <Λ * =ŵ ^ / X\.^l «-/ O \ -̂- ^*Ό /

The solution of the equation

^ α = b (129)

exists if and only if a G \m£Pl2 and 6 is defined up to an arbitrary vector from

1>2

Now we are ready to write down the answer for Ωab:

Ωab = (eo, Ωeh)ej , Ω = P ^ f 1 - P * ^ " 1 . (130)

First of all let us check that matrix elements Ωab are well-defined. Vectors eb form
the basis in the space Td = (V(d) Θ V*(d))^. Both ^f 1 and S?2~

x are defined on Td

because Td c Vid)1- = I m ^ and also Td c V*^)1- = I m ^ . So the vector Ωeb

exists but it is not unique. It is defined up to an arbitrary vector,

δ e P ( K e r ^ ) + P*(Ker^ 2 ) = V(d) + V*(d). (131)

Fortunately the vector ea G T d and (eα,5) = 0 for any δ of the form (131). We
conclude that the ambiguity in the definition of the operator Ω does not lead to an
ambiguity for matrix elements Ωab.

Now we must check condition (116):

α c a ))^ . (132)

C=\ C=\

The product Ω~P can be easily calculated using (119), (130):

= P&>{-1&[&? + P*^fιdpf

= P(P - P * A d ^ " 1 ) ) + P^iP^ -f P A d ^ " 1 ) ) = P + P* = I. (133)
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We must remember that the vector Ωd^J(eb) is defined up to an arbitrary vector from
V(d) Θ V*(d) because in (133) we used the "identities"

^f1^ « ̂ f1^ ~ id (134)
The ambiguity in (134) does not influence the answer:

b))^ = (e\ea)=δb

a (135)

as it is required by (116).
We can rewrite formula (130) in more invariant way:

Ωt} = (θ% ® ΩθV)# , (136)

where Θ1J is the restriction of the Maurer-Cartan form to the cell D^. Expression

(130) for the operator Ω still includes inverse operators SP^ implying that some
equations must be solved. To this end we consider the pull-back of the form Ω-:

PΪjΩij = <J>ΐjθa*Ωp*θH)g. (137)

There are coordinates (g, g*) and (/ι*, h) on Nτj. The Maurer-Cartan form pfjθιj can
be rewritten in two ways:

(138)

t j ^ h k (139)

Representations (138), (139) allow us to calculate ^Γ^pfj^J explicitly:

^Γlvtθji=θh,-μh. (141)

Let us mention again that solutions (140), (141) are not unique. We can take any

possible value of ΩΘ1J. The answer for the form Ω^ is independent of this choice.
Putting together (130), (137), (140) and (141), we obtain the following formula

for the symplectic form:

pfjΩy = ((θg + Ad(d)μg*) f θg)m - {(βh. + Ad(d)μh) f θh*)3

= (Ad(d)/i9. ?θg)s- (Ad(d)μh f θh. ) s . (142)

Actually, the form (142) is antisymmetric. To make it evident, let us consider the
identity

= {Aά{d)μh ® θh.)s + (θh* ® Ad(d)μh)^ . (143)

Or, equivalently

(Ad(d)μg* ® θg)s, - {Ad(d)μh f θh*)s

= -ψg® Ad(d)μg*)& + (θh. ® Ad{d)μh)& . (144)

Applying (144) to make (142) manifestly antisymmetric, one gets:

V%% = i ((Ad(d)μfl* ί ί»9)^ + {θh.
 A, Ad{d)μh)®). (145)
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Using representation (111) of d in terms of (g,g*) and (/i*, h), it is easy to check
that formula (145) coincides with

^ + (θh * Ad(^ K * ) ^ ) . (146)

To obtain formula (112) one can use (138), (139):

Ppd =Θ9+ Aά{d)μg* = θh* + Aά(d)μh . (147)

Or, equivalently,

θg - Ad{d)μh = θh* - Ad(d)μg* . (148)

Due to antisymmetry we have

((θg - Ad(d)μh) * (θh* - Ad{d)μg*))& = 0. (149)

Therefore,

= \ ((Ad(d)μg* Λ θg)& + (^* ? Ad(d)μΛ>^) = ft* % , (150)

which coincides with (112).
Now we have to check that the r.h.s. of formula (112) does represent the pullback of

some two-form on Ό-. The problem is in the ambiguity of formula (70). Coordinates
g and g* are defined only up to the following change of variables:

g' = gs, g*' = tg*, (151)

where
sd t = d^ (152)

Here 5 is an element of Sid^ and t belongs to T(cy. The parameter s determines t
by means of formula (152). Similar ambiguity exists in the definition of h and /ι*.
We can construct an infinitesimal analogue of formula (151). The vector field vε on

vε = (Adfo)ε, - Ad(d~ι)ε), (153)

does not correspond to any nonzero vector field on D^. Here we use coordinates

(g, g*) on Ni3 and left identification of vector fields o n G x G * and S^+ ^ * . So the

first term is an element of S^ and the second one belongs to ^ * . Therefore Ad{g)ε

belongs to F ( ^ ) (see Sect. 2).
Actually we must check two nontrivial statements:

i. Form V%^ij *s invariant with respect to change of variables (151). It follows from
the definition of the Maurer-Cartan forms θ and μ.
ii. Tangent vectors (153) belong to the kernel of pfjΩ^.

It is convenient to use expression (146) for p^Ω-:

where

\ ( W ? Ad(d)6»> + Ψ * A<Ud)μh*)®) = -\ (ω, + ω2), (154)

(155)

(156)
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We have to consider ω{{., υε) and ω2( •, vε),

ω,(. ,vε) = (μ^Adiditfg.iυ^g, - (μg(υε), A d ^ ) ^ * ) ^

= (μg, Ad(^) Ad(drι)ε)0 + (Ad(g-1)Ad(g)ε,Ad(di)θg*)^

^ε)^ . (157)

Here we use properties (16), (17) of the Maurer-Cartan forms. It is easy to see that
both terms in the last expression (157) are equal to zero. The first of them

(μg,ε)& = 0, (158)

because both ε and a value of μg belong to S .̂ All is the same with the second term:

i)ε)^ = 0 (159)

because for Ad(g)ε e Vid^ the combination Ad(d~ι)ε belongs to SP*. We remind
that both S? and ^ * are isotropic subspaces in &.

We omit the proof for the second term ω2 in (154) because it is quite parallel to
the one described above. We conclude that form (112) indeed corresponds to some
two-form on the symplectic leaf D^.

It is known from general Poisson theory that

dΩ = 0, (160)

but it is interesting to check that form (112) is closed by direct calculations. Rewriting
Eq. (148) we get:

θg - θh* = Aά(d)μh - Ad(d)μg* . (161)

Taking the cube of the last equation we get:

+ 3(θg ? θh* Λ θh*)& - 3(θg A θg Λ θh*)&

= W * Vh Λ Vh)@ - (/V ^ Vg* Λ Vg*)®
+ 3(μh Λ μg* Λ μg*)@ - 3{μh Λμh* μg)@ . (162)

Asθ9Aθg=l2 Wg * θgl a n d ^h Λ μh = \ ίμh t μh] take values in S?, ̂ ^* Λ ̂ ^* -
I [θh* * θh*] and /x̂ * Λ μp* = | [μ^* ^ μp*] take values in SP* we may use the
pairing (, )@ for them. Moreover, as both ^ and 2P* are isotropic subspaces in j ^ ,
we rewrite (162) as follows:

//) Λ /) Λ Λ \ /Λ Λ Λ Λ /3 \
\ ^ > y / ι * Λ ^ ^ i * / ^ ~ \ ^ Λ ^ ' 0 ^ 1 * / ^

- (μΛ Λ ̂ # Λ ^ # ̂  + ^ μ ^ Λ ^ > f f * > ^ - 0 . (163)

We remind that cί^ = θn Λθn and dμn = —μn Λ uπ. Thus,

y y y y y y

dpΐjΩij = ~(dθg ί βfcΦ>^ + (θg Λ dβ f c . )^

μg*)® + (μh

/ϊdμg*)® = 0. (164)
Now it is interesting to consider the classical limit of our theory to recover the

standard answer for T*G. There is no deformation parameter in bracket (79) but it
may be introduced by hand:

}. (165)
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For the new bracket (165) we have the symplectic form:

Ωr = I Ωi.. (166)

The classical limit 7 —> 0 makes sense only for the main cell corresponding to
di = dj = I. The idea is to parametrize a vicinity of the unit element in the group
G* by means of the exponential map:

g* = exp(7m), (167)

h* - exp(7/), (168)

where m and I belong to S?*. Coordinates m and I are adjusted in such a way that
they have finite values after the limit procedure. When 7 tends to zero, the formula

d = gg* = h*h (169)

leads to the following relations:

g = h, l = Ad*(g)m. (170)

Expanding the form ΩΊ into the series in 7 we keep only the constant term (singularity
7" 1 disappears from the answer because the corresponding two-form is identically
equal to zero). The answer is the following:

Ω^ = \{{dm^μg) + (dl^θg)), (171)

and it recovers the classical answer (49) (see Sect. 1). Deriving formula (171), we use
the expansions for the Maurer-Cartan forms on G*:

, (172)

h (173)

We have considered general properties of the symplectic structure on the Heisen-
berg double D+ and now we turn to the theory of orbits for Lie-Poisson groups.

4. Theory of Orbits

In this section we describe reductions of the Heisenberg double D+ which lead to Lie-
Poisson analogues of coadjoint orbits. We consider quotient spaces of the double D
over its subgroups G and G*: F R = D/G, F* = D/G*9 FL = G\D9 F * = G*\D.
They inherit the Poisson bracket from the double D+. Indeed, let us pick up FR as an
example. Functions on FR may be regarded as functions on D invariant with respect
to the right action of G:

f(dg) = f(d). (174)

The right derivative VR/ is orthogonal to S? for functions on FR:

( V R / , ^ ) = 0 . (175)

For a pair of invariant functions / and h the second term in the formula (79) vanishes
because r* e ^ * 0 S .̂ The first term is an invariant function because the left
derivative VL preserves the condition (174). So we conclude that the Poisson bracket

{/,Λ} = -(V L /®V L Λ,r) (176)
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is well-defined on invariant functions and hence it can be treated as a Poisson bracket
on FR. The purpose of this section is to study the stratification of the space FR into
symplectic leaves and describe the corresponding symplectic forms on them. One can
consider F L , FR, F* in the same way.

Using stratification (77) of the double D we can obtain the stratification of the
space FR:

\J */T_J = {JG*. (177)

Each stratification cell G* is just an orbit of the natural action of G* on the quotient
space FR = DG by the left multiplication. We denote the orbit of the class of unity
in £> by G*. It is a quotient of G* over discrete subgroup W = G* Π G, G* = G/g.

We have factorized the double D over the right action of the group G. However,
the same group acts on the quotient space by the left multiplications:

g:dG-^gdG. (178)

Here the class dG is mapped into the class gdG. In the vicinity of the unit element
on the maximum cell GG^ Π G^G the action (178) looks as follows:

99*=g*'(g,9*)g/(g,g*). 079)

The element g*'(g,g*) is a result of the left action of the element g on the point
g* G G* C FR. in the classical limit, when g* and g*' are very close to the identity,
formula (179) transforms into the coadjoint action of G on ̂ * :

0 * = J + 7Z + . . . , (180)

0*/ = J + 7Z
/ + . . . , (181)

l' = Ad*(g)l. (182)

For historical reasons transformations (179) are called dressing transformations. We
denote them AD* to recall their relation to the coadjoint action:

g*'(g,g*) = AD*(g)g*. (183)

As we have mentioned, the transformation AD* is defined on the space FR

globally. For some values of g and #* in (183) the element g*f does not exist and
the result of the action of g on #* belongs to some other cell G* of stratification

(177). So we have a correct definition of the AD*-orbit in the Lie-Poisson case.
The question is whether they coincide with symplectic leaves or not. In general the
answer is negative. Characterizing the situation we shall systematically omit the proofs
concerning standard Poisson theory [2,15].

A powerful tool for studying symplectic leaves is a dual pair. By definition a pair
of Poisson mappings of symplectic manifold S to different Poisson manifolds PL and

PR-

S
/ \ (184)

is called a dual pair, if the Poisson bracket of any function on S lifted from PR

vanishes when the second function is lifted from PL and in this case only. Symplectic
leaves in PR can be obtained in the following way. Take a point in P L , consider its
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preimage in S and project it into PR. Connected components of the image of this
projection are symplectic leaves in PR.

As an example let us consider the following pair of Poisson mappings:

D+

/ \ (185)

This pair is not a dual pair because D+ is not a symplectic manifold. However, the
pair (185) is related to a family of dual pairs:

(186)

Here we use symplectic leaves Di3- instead of D+. One can prove [13] that the pair
of mappings (186) is a dual pair by direct calculation with bracket (79). Choosing
dual pairs with different indices ij, we cover all space FR and find all the symplectic
leaves in this space.

Let us apply the general prescription to the dual pair (186). We pick up a
class Gx e ImLZ)^ c T \G* C FL. Its preimage in Di3- is an intersection
Ki3 {x) = Gx Π Di3 . Projecting Ki3(x) into FR, we get a symplectic leaf:

AD* (G)xG Π ImR Diά . (187)

Let us remark that ImR Diή is an intersection G*n( \J AD*(G)dig
:¥G\. It implies

that we may use G* instead of ImRDio in the formula (187). So all the symplectic

leaves in FR are intersections of orbits of dressing transformations AD* and orbits
G* of the action of G* in FR. To get all the leaves we have to use all the cells D{j

in D. The orbits of AD*-action in FR appear to have a complicated structure. Each

orbit Op = AD*(G)p0 (po e FR) may be represented as a sum of its cells:

°P0 = U (AΌ*(°)Po n G*) = IJ °io ( 1 8 8 >

Each cell of stratification (188) is a symplectic leaf in FR.
Now we turn to the description of symplectic forms on the leaves (188). As usually,

it is convenient to use coordinates on the orbit and on the group G at the same time.
Formula

gh$dJιG = h*dJιG (189)

for the action of AD* on the point h^T_j £ G* provides us with the projection from
the subset

G,.(Λj) = {geG, gh*djι e G*dJιG} (190)

to the cell θ{* of the orbit:

(191)

(192)
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where ft* is the same as in (189). Instead of the symplectic form Ω on the cell O^*

we shall consider its pull-back P*QIQ)ΩJ defined on G^ft*). It is easy to obtain the
answer, using formula (112) for the symplectic form on D-. We put the parameter
of the symplectic leaf g* = g$ = const. It kills the second term and the rest gives us
the following answer:

p^hζ)Ωj = ^(θh^θg). (193)

There is no manifest dependence on dj in (193), but one must remember that g
takes values in the very special subset of G (190). The dependence is hidden there.
Anyway, the final result of our investigation is quite elegant. Each orbit of the dressing
transformations in FR splits into the sum of symplectic leaves (188) and the symplectic
form on each leaf can be represented in the uniformed way (193).

As in Sect. 3 one can check independently that two-form (193) is really a pullback

of some closed form on O^*. We suggest this proposition as an exercise for an

interested reader.
We have classified symplectic leaves in the quotient space FR = D/G and in

particular in its maximum cell G* = G* jW. In this context the idea to find symplectic
leaves in the group G* itself arises naturally. To this end let us consider the following
sequence of projections G*j —> G* —• GQ, where Gfj is a universal covering group
of the group G*. The group G*, is a Lie-Poisson group. The Poisson bracket on
the group G^ is defined uniquely by the Lie commutator in W [5]. The covering
G*/ —> GQ appears to be a Poisson mapping. Using this property one can check
that G* is a Lie-Poisson group and the corresponding Poisson bracket makes both
projections Gy —> G* and G* —» GQ Poisson mappings. It implies that symplectic
leaves in G*/ and in G* are connected components of preimages of symplectic leaves
in GQ. Corresponding symplectic forms can be obtained by pull-back from (193). On
the other hand, the formula (193) gives an expression for symplectic forms on the
leaves in G*/ and G*, if we treat ft* as an element of one of these groups and g as
an element of Gv, universal covering group of G. Then we define the action of Gυ

on GQ by the formula (189) (g is a projection to G of some element gv G Gv) and
lift the action of Gυ from GQ to G^ or G*. It is always possible by the definition of
the universal covering group. We can identify symplectic leaves in G^ or G* with
orbits of the action of Gv, which we have just defined.

It is remarkable that in the deformed case the groups G and G* may be considered
on the same footing. Formula (193) defines symplectic structure on the orbit of G*-
action in D/G* as well as on the orbit of G-action in D/G. The only thing we have
to change is the relation between g and ft*:

ft*ViG* = 9diG* . (194)

To consider the classical limit we can introduce a deformation parameter into the
formula (193):

^(θh^θg). (195)

In this way one can recover the classical Kirillov form (36) as we did it for T*G in
Sect. 3.
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5. Examples

In this section we shall consider two concrete examples to clarify constructions
described in Sects. 2-4.

1. The first example concerns the Borel subalgebra J T ^ of semisimple Lie algebra
^ . The algebra J$+ consists of Cartan subalgebra 3@ C & and nilpotent subalgebra
jy^ generated by the Chevalley generators corresponding to positive roots. In the
simplest case & = sl(ή) J?+ is just an algebra of traceless upper triangular matrices.
We may define the projection p:J?+ —> β&. Let us call p(ε) G β& a diagonal part of
ε and denote it εd.

The dual space J?+ can be identified with another Borel subalgebra JB_ C 2^,
where J?_ = 3$ + JVi includes the nilpotent subalgebra ΛC corresponding to
negative roots. The canonical pairing of JS+ and 3B_ is given by the Killing form

εd). (196)

The natural commutator on &* = J3_ defines a structure of bialgebra on JS+. The
double @ί is isomorphic to the direct sum of 3? and 3@\

+ (197)

Isomoφhism (197) looks as follows:

(x,ε)^(x + ε,xd-εd). (198)

The first component of the r.h.s. in (198) belongs to S? and satisfies the corresponding
commutation relations, while the second component is an element of 3@. Elements
of ^ , satisfying the conditions

x = xd, ε = εd, xd + εd = 0, (199)

belong to the center of &.
The group D in this case is a product of semisimple Lie group G and its Cartan

subgroup H:

D = GxH. (200)

The groups B+ and B_, corresponding to the algebras J? + and J$_9 can be embedded
into D as follows:

B+^(B+,(B+)d), (201)

B_^(B_,(B_)jkh (202)

where (B+)d,(B_)d are diagonal parts of the matrices B+,B_. The decomposition
(73) in this case may be described more precisely:

D = (J B+WiB_ , (203)
ίew

where W is Weyl group of G and the pair W% = {wi, I) consists of the elements wi

from W and the unit element / in H. For nontrivial wi spaces ViW^, Vr*(Wi) (95),
(96) are nonempty.
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For the algebras ^ + and J$_ we can use matrix notations (18), (19) for the
Maurer-Cartan forms. For example,

B + + - \ d b + b - 1 ) , (204)

μB_ = (BZldB_,-bZldb_). (205)

Here b+ and b_ are diagonal parts of B+ and B_ correspondingly. The invariant
pairing (, )@ acquires the form:

((0 iΛ), (02> h))®

Now we can rewrite form (112) on the cell D- in this particular case:

d = (B+WiB_,(B+)d(B_)-1) = (BLwrιB'+, {Bf_)d\Bf

+)d), (207)

V*.Q.. = I Tτ(dB'_B'zι Λ dB+B~ι + db'_b'Zι Λ (ft+6"1

+ B Z ^ B . Λ Bf~xdB'+ + δ l 1 ^ Λ 6 / " 1 d6 + ). (208)

We have the symplectic structure on D+ and it is interesting to specialize the
Poisson bracket (79) for this case. We use tensor notations and write down the Poisson
bracket for matrix elements of g and h, (g, h) e D:

{g\g2} = -ir+glg2 + gxg2r_), (209)

{9\h2} = -(ρgιh2 + gιh2ρ), (210)

{h\h2} = 0. (211)

Here r+ and r_ are the standard classical r-matrices, corresponding to the Lie
algebra 5^:

\Σi®hi+ Σ e α^β_ α , (212)
aβΔ+

hi®ti- Σ e-a ® ea , (213)
aeΔ+

and ρ is the diagonal part of r + :

\ Σ hi 0 ti . (214)

As a result of general consideration we have obtained the symplectic structure
corresponding to the nontrivial Poisson bracket (209)-(211). At this point we leave
the first example and pass to the next one.

2. Now we take a semisimple Lie algebra $? as an object of the deformation. It
is the most popular and interesting example. The dual space SP* may be realized as
a subspace in J

^ * = {(χ,ί/) e JB+ θ J8L, χd + yd = 0} . (215)

The pairing between 5^ and 5^* is the following:

((x,y),z)=Tτ{(x-y)z}, (216)
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and the Lie algebra structure on ^ * is inherited from JS+ Θ $)_. It is easy to prove
that the algebra double is isomorphic to the direct sum of two copies of W [5]:

(217)

{x,(y,z)} -^(x + y,x + z) = (d,d'), (218)

2 - d ί 4 ) , (219)

where Ϊ G ^ , ( | / , 2 ; ) G S^*. Therefore, the group double D is a product of two copies
of 6?:

D = GxG. (220)

The subgroups G and G* can be realized in D as follows:

G = {(g,g)eD}, (221)

G* = {(L+, L_) G A (L + ) d (L_) d = /} . (222)

Let us introduce subgroups 3^i in the Cartan subgroup 3$ as 3^i = {hw~ιhwi,
he β#}.

Any pair (X, Y) e D can be decomposed into the product of the elements from
G* and G by means of the Weyl group W and Cartan subgroup 3@\

X = L+wi9, (223)

Y = L__hg. (224)

Here (L+, L_) G G*, p G G, Λ e 3% and ^ is an element of the Weyl group W. So
we have the following decomposition:

D= U G^W^G, (225)

where W (6) = (w , ff) and ft belongs to the class b in
In this example we do not consider the symplectic structure on D+ and pass

directly to the description of orbits. The space FR = D/G can be decomposed as in
general case:

U (G*/r_<(6)), (226)

where T_i(b) is the subgroup of B+, generated by the positive roots, which transform
into the negative ones by the element wi of the Weyl group:

T_• = {teB+, (hwrHwJi^ = t~ι wrιtwi eB_}. (227)

The dressing transformations act on the space FR as follows:

gL+w^Llw^g', (228)

ghL_ =L9_h9g', (229)

where (L+, Lg_) is the result of the dressing action AD*(g) and i9 is the index of the
cell, where it lies. By the general theory the symplectic leaves in FR are intersections
of the cells (G*/T_^(6)) and the orbits of the dressing transformations. The analogue
(193) of the Kirillov two-form can be rewritten in the following form:

p¥

jΩj = i Tr^L+L; 1 - dL_LZι) Λ dgg~ι. (230)
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It is convenient to define the matrix

L = L+wih~ιLZι. (231)

It transforms under the action of the transformations (228), (229) in a simple way

[13]:
L9 = L9

+wi9(hgΓ\Lg_yι = gLg-1 . (232)

Being an element of G, the matrix L defines a mapping from FR to G by means of
the formula (231). On each orbit of the conjugations (232) we can find a matrix L of
canonical form. Let us denote it by Lo:

L9 = gLog-1 = L9

+wi9(h9Γ\L9_Γι. (233)

Using two different parametrizations of the same matrix L, we can rewrite (230):

p* Ωj = \ Ύτ{g~ιdgL0 Λ g~ιdgL^ι + L~1 dL+wάh~ι A L~_ιdL_ hw~ι} . (234)

Formula (234) was obtained for wi = I in [7] as a by-product of the investigations
of WZ model. The first term in (234) is rather universal. It depends neither on the
choice of the Borel subalgebra in the definition of the deformation nor on the cell
of FR. On the contrary, the second term keeps the information about the particular
choice of the (B+,B_) pair and it depends on the element wi of the Weyl group
characterizing the cell of the orbit.

It is instructive to write down the Poisson bracket for the matrix elements of L.
Using the classical r-matrices r+,r_ (212), (213) and tensor notations, we have [13]:

{L\L2} = r+LιL2 + LιL2r_ - Lιr+L2 - L2r_Lx. (235)

Let us recall that the same symplectic form (230) corresponds to another Poisson
structure

W,g2} = r+gιg2 - gιg2r+ = r_gιg2 - gιg2r_ , (236)

if instead of conditions (228), (229) we impose the following set of constraints on
£+, L_ and g:

L+gwi=gLwiLL'+, (237)

L_gh = gLhLLr_ . (238)

6. Discussion

In this section we formulate several problems related to the symplectic structures
described in the paper. The first of them concerns the quantum version of the presented
formalism. In the classical case the Kirillov symplectic form appears in the content of
the theory of geometric quantization. Roughly speaking, some coadjoint orbits of the
group G equipped with the Kirillov form correspond to irreducible representations of
the Lie algebra ^ . The cotangent bundle T*G with its canonical symplectic structure
corresponds to the regular representation of &. Actually, we may restrict ourselves
to the latter case because all the particular irreducible representations can be obtained
from the regular one by means of the reduction producedure. For Lie-Poisson groups
the problem is not so simple even for D+. After the quantization the Poisson algebra
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(80) becomes the quantum algebra of functions on D+. Its basic relations can be
written in the following form:

dιd2 = Rd2dιR* , (239)

where we use tensor notations, R and R* are quantum i?-matrices corresponding to
the classical counterparts r and r*. The result we expect as an outcome of geometric
quantization is an irreducible representation of the algebra (239) correponding to a
symplectic leaf in D+. It is easy to find such a representation for the main cell
Doo = GG* Π G*G. Algebra (239) Funkq(D+) acts in the space Funkq(G). It is an
analogue of the standard regular representation in the space of functions on the group
G. The algebra Funkς(G) is defined by the basic relations [6]

Rgιg2 = g2gιR. (240)

On the cell Doo we can decompose the element d as a product

d = gh* = g*h (241)

of elements from G and G*. Matrix elements of G act on the space Funkς(G) by
means of multiplication and matrix elements of G* generalize differential operators.
The regular representation in Funk^(G) was considered in [14], where the quantum
analogue of the Fourier transformation was constructed.

We expect that representations corresponding to other symplectic leaves D^
can be found and presented in a similar form. This would give a good basis for
the geometric quantization in the direct meaning of the word, i.e. establishing of
the correspondence between the orbits and the quantum group representations. For
G = SU(n) this correspondence has been described in [8] by means of quantization
of orbits of the dressing transformations. It is a simple case because for G = SU(ri),
D = GG* = G*G and the orbits are symplectic leaves. It should be mentioned that
this correspondence appears in a natural way in the course of investigations of the
quantum group representation theory for the deformation parameter q being a root of
unity. If qN = 1, there exists an irreducible representation of the deformed universal
enveloping algebra Uq(S?) corresponding to any orbit of dressing transformations [3].

Another problem which we would like to mention is a possible application of the
machinery of Sects. 3 and 4 to physics. Having the closed form Ω, we can solve at
least locally the equation

da = Ω. (242)

The one-form a may be treated as a lagrangian of some mechanical system so that
the action looks as follows:

S0 = Ja. (243)

If we add an appropriate hamiltonian H, we get a system with the action

S= [(a-Hdt). (244)

Symplectic structure described in Sects. 3 and 4 provide a wide class of dynamical
systems (244). For the classical groups one obtains many interesting examples in this
way. Among them one finds the WZNW model and the gravitational WZ model [1].
Realizing the same idea for the Lie-Poisson case, one can hope to construct integrable
deformations of these systems.
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