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Abstract: A mathematical investigation of the limiting behavior of particle-like
solutions of Einstein-Yang-Mills equations leads to a discovery of a new type of
black hole solution.

1. Introduction

In the paper [4], we proved the existence of a countably infinite number of smooth,
static, spherically symmetric solutions of the Einstein-Yang/Mills equations (EYM)
with 517(2) gauge group (first observed by Bartnik and McKinnon in [1]). These
solutions are indexed by a bounded real parameter λn. Our first objective here is to
study the limiting solution corresponding to the parameter value λ, where

A = lim Λn ,

and to describe some of the rather interesting mathematical properties of this solution.
In particular, we prove that this solution is the first "crashing" solution, (in the sense
that a metric coefficient becomes singular) and that this solution crashes at r = 1.
Next we show that this degenerate orbit admits (at least) one pseudo-continuation
(PC) defined for all r > 1. The concatenation of the λ-orbit, defined for r < 1, and
the "PC orbit" defined for r > 1, (w(r), w'(r), A(r)), satisfies, (for some subsequence
{λn,}of{λn}),

l\^(wnj(r,Xn^w'n^Xn^An^Xn^ = (w((r),w'(r\ A(r)).

In addition, lim(A(r, λ), A'(r, λ), w(r, λ)) = (0,0,0) = lim (A(r), A'(r), w(r)\ but
r/Ί _ ' r \ l

neither lim w'(r), nor lim wf(r, λ) exists. Now although the λn-orbits are all particle-

like solutions of the EYM equations, the PC orbit in r > 1 can be interpreted as a
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new type of black hole solution with event horizon at r = 1. This new black hole
solution is very different from those black hole solutions obtained rigorously in [5];
see also [2, 6, 7, 9, 10] for numerical results, and see too the related paper [8].

The EYM equations, for static, spherically symmetric solutions with SU(2) gauge
group reduces to the following system of ordinary differential equations cf. [1, 3-5]),

_ /» ,2\2Ί

r2Aw" + r(l - A) -
r

n\

'+ ̂ (i _ ̂ 2) = o, (1.1)

rAr + (1 + 2wf2)A = 1 - v , ' , (1.2)
TL

ΓΠ _ ?/; 2 N) 2 Ί

2rATf = - -f (1 - 2w'2)A - I T . (1.3)
L r J

Here the unknowns A and T are metric coefficients, where the metric is given by

ds2 = -T~2(r)dt2 + -|- dr2 + r2(dθ2 + sin2 θ dφ2),

and w(r) is the unknown su(2) connection coefficient. Since (1.1) and (1.2) do not
involve T, we solve these first, and then use (1.3) to obtain T.

Equations (1.1), (1.2) are considered together with the following initial conditioins:

A(0) - 1, w(Q) = 1, w'(Q) = 0, w"(Q) = -X < 0.

All solutions are parametrized by λ, and in [4], we proved the existence of a sequence
{λn} C (0,2), for which the corresponding solutions are non-singular, and

lim θ(r, λn) = —nπ , n = 1 ,2 , . . . .
r-»oo

Here 0(r, λ) is defined by 0(r, λ) - ΎarΓl(w'(r, X)/w(r, λ)), if r > 0, and 0(0, λ) = 0.
Moreover, A(r, λ ) > 0 for all r > 0 and lim A(r, λ ) = 1. On the other hand, we

r-^ oo
showed in [3], that if λ > 2, there is an f = f(X) such that

lim A(r,λ) = 0, (1.4)
r/ f

and both
lim w(r) = w > 0, and lim w'(r) — —oo
r/f r/f

hold; that is, if λ > 2, the λ-orbit crashe_s; (see also [2]).
In this paper, we shall show that the λ-orbit is the first crashing orbit, and crashes

at f = 1, in the sense that
lim A(r, λ) = 0,

r /Ί

but for λ < λ, A(r, λ) > 0 for all r > 0, provided that w2(r, λ) < 1. Moreover we
shall show that

lim w(r, λ) = 0,
r X l

and i(/(r, λ) is unbounded near r = 1. In [4] we proved that a limit of non-crashing
orbit segments having uniformly bounded rotation converges to a non-crashing orbit
of bounded rotation. In the case considered here, the λn-orbit has rotation —nπ, and
hence the set of λn-orbits has unbounded rotation.
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Next, we shall show that for the PC orbit, the corresponding metric coefficient
T~2(r,λ) can be chosen so as to satisfy T~2(l,λ) = T~2(l). Furthermore, the PC
orbit has infinite rotation as r \ 1, in the sense that for any ε > 0,

lim [(9(1 + ε) - 0(r)] - -oo ,
r \ l

where θ(r) = Ίm~l(wf(r)/w(r)). The proof of this statement is based on the fact that
the λ-orbit crashes at r = 1, and relies on a technique introduced in [4]. We prove
too that the PC orbit is a connecting orbit" in the sense that

lim (w(r)X(r),A(r)) = (±1,0,1).
r— KX)

Thus the PC orbit can be interpreted as a black hole solution with event horizon at
r = 1.

It is interesting to note that the black hole PC solution is the limit of the λn-orbits.
On the other hand, in Sect. 6 we shall show how the black hole solution enables us to
obtain information about the λn-orbits. In particular, we use this black hole solution
to prove that for any ε > 0, there is a constant c = c(ε) > 0, such that if r > 1 + ε,
each λn -orbit has rotation bounded below by — c(ε). Thus for large n, "most" of the
rotation takes place before r exceeds 1 + ε.

The plan of the paper is as follows1 The next section recalls some crucial facts
from [3,4]. In Sect. 3 we show that the λ-orbit is the first crashing orbit. In Sect. 4 we
construct the PC orbit and study some of its properties. Section 5 is a fairly technical
section where we derive certain properties of the λ-orbit near r = 1. The last section
consits of some concluding remarks, together with a short discussion of some open
problems. In particular we use the PC orbit to prove that the λn -orbits have uniformly
bounded rotation if r > 1 + ε. We also construct the Einstein metric for the black
hole solution in the region r > 1.

2. Preliminaries

Static, spherically solutions of the EYM equations with SU(2) gauge group correspond
to solutions of the following system of ordinary differential equations, (see [1,3, 4]):

rAf + 2wf2A = Φ/r , (2.1)

τ2Aw" + Φwf + w(l -w2) = Q , (2.2)

where
(1 - w2Ϋ

Φ = Φ(r, A, w) = r(\ -A)- - - - . (2.3)
r

It is useful to define
v = Aw' , (2.4)

and from (2.1) and (2.2) we see that υ satisfies the equation

=0. (2.5)
r T

If we consider regular solutions of (2.1), (2.2); i.e., smooth solutions defined for
all r > 0, then the following initial conditions are required to hold:

A(0) - 1 , w(Q) = I , w'(0) = 0 , w"(0) = -λ < 0 . (2.6)
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Any solution to (2.1), (2.2), (2.6) is uniquely determined by λ; (see [3]), i.e. there is
a unique solution

)X(r,λ),r), (2.7)

defined on an interval 0 < r < s(λ). We shall refer to the solution (2.7) as the λ-orbit.
Now we define the region Γ C M4 by

Γ = {(A,w,w',r) : A > 0, w2 < 1, (wX)^(0,0), r > 0};

as in [4], we shall only be concerned with orbits in Γ. We denote by re(λ), the
smallest r > 0 for which the λ-orbit exits Γ; re(X) = +00 if the λ-orbit stays in Λ
for all r > 0. If the λ-orbits exits Γ through A — 0, we say that the λ-orbit crashes.
In [3, Theorem 4.1], we proved that if λ > 2, then the λ-orbit crashes; (see too [2]).
Furthermore, we showed in [5, Lemma 3. 3], that if an orbit crashes, then it crashes
for r < 1. If we define 0(r, λ) by 0(0, λ) = 0, and for r > 0,

0(r, λ) - Tan" V(r, X)/w(r, λ)) ,

then the rotation number of the λ-orbit, J?(λ), is defined as

β(λ) = --0(re(λ),λ).
7Γ

In [4, Theorem 3.7], we proved that there is an increasing sequence 0 < λ j <
. . . < 2, such that

β(λn) = n. (2.8)

An orbit for which β(λ) = fc, will be called a k-connecter. By construction each \k

is the smallest k -connecter.
Since the sequence {\k} is increasing and bounded, it has a limit; thus set

λ = lim Xk . (2.9)
k — > oo

It is a major purpose of this paper to investigate the properties of this λ-orbit. In the
next section we shall prove that the λ-orbit is the first crashing orbit, and in Sect. 5
we shall investigate the interesting behavior of this orbit.

In order to study the λ-orbit, we will need the following two results which
were proved in [4, Lemmas 4.1 and 4.2]. Before stating the results, we introduce
a definition; namely if P E M4 lies in Γ, we call P a good point.

Lemma 2.1. Suppose Σn = {(w^(r), w'n(r), An(r), r) : an < r < bn}, n = 1, 2, . . . ,
is a sequence of orbit segments in Γ such that for all_n, wn(bn) = 0, ^4(6n) ^ 0,
w'(an) = 0, and (wn(r),w'n(r)) lies in1 Q2 (resp. Q4), for an < r < bn. If the
right-hand endpoints ((0,tί;^(6n), An(bn), bn) converge to a good point P, then the
backwards orbit through P, defined for r < b = lim bn, reaches the hyperplane wf = 0
at a point Q E -Γ, and this orbit segment lies in Γ.

We shall need a similar result for quadrants Qλ and Q3.

Lemma 2.2. If Q — (w, 0,^4,6) e Γ, then the backwards orbit through Q, reaches
the hyperplane w — 0 at a point P E Γ, and this orbit segment lies in Γ. In particular
if Σn = {(wn(r), w'n(r), An(r), r) : an < r < bn} is a sequence of orbit segments in
Γ such that for all n, w'n(bn) = 0, wn(bn) ^ 0, wn(bn) = 0, and (wn(r),wf

n(r)) lies
in Q{ (resp. Q3),for an < r < bn. If the right-hand endpoints converge to a good

{ is the first quadrant in the w — wf, plane, etc.
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point Q, then these orbit segments converge uniformly to the orbit segment from P, to
Q, and this orbit segment lies in Γ.

The principal consequence of these two lemmas, is the following result [4, Corol-
lary 3.3].

Theorem 2.3. Suppose that λn —> λ, and that

Λn = {w(r, λn), w'(r, λn), A(r, λn), r): 0 < r < rn} ,

is a sequence of orbit segments in Γ, where rn = re(Xn), and Ω(Xn) < N. Then the
X-orbit lies in Γ for 0 < r < re(λ), and Ω(X) < N.

3. The First Crashing Orbit

In this section we shall prove that the λ-orbit is the first crashing orbit.

Theorem 3.1. The X-orbit crashes; i.e., there is an f < 1 such that lim A(r, λ) = 0.
9 — >r

Moreover, if X < X, then the X-orbit doesn't crash; i.e., A(r, λ) > 0 for all r,
0 < r < re(λ).

Proof. We first show that if the λ7 -orbit crashes then λ7 > λ. To see this, note that
from Theorem 2.3, the set of λ-orbits, with λ < λ7 cannot have bounded rotation.
Since the λ = 0 orbit has zero rotation, it follows from [4, Corollary 3.6], that for
every integer k > 0 there is a λ7

fc, 0 < λ'fe < λx, such that Ω(X'k) = k. Thus by
definition of X k , Xk < λ7, and so λ < λ7.

We now show that the λ-orbit crashes by eliminating all other possibilities:
1. The λ-orbit cannot exit the region Γ through w2 — 1. (If it did, then by "continuous
dependence on initial conditions," the same would be true for the Xk -orbit if k is large,
and this is obviously false.)
2. The λ-orbit cannot exit the region Γ through (w,w') = (0,0). (The point (0,0)
is a "rest point" of the system (1.1), (1.2), and cannot be reached in finite r; see [4,
Remark 4].)
3. The λ-orbit cannot be a connecting orbit. (If the λ-orbit were a A -connecter, then
as was proved in [4, Proposition 3.4], if λ is near λ, Ω(X) < fc-f 1, and this contradicts
(2.8).)
4. The λ-orbit canot stay in the region Γ for all r > 0, (i.e., re(λ) = oo), with
Ω(X) < cxo. (In [4, Proposition 2.10], we proved that orbits with finite rotation staying
in Γ for all r > 0, must be connecting orbits. This possibility was eliminated in
Case3.)_
5. The λ-orbit cannot stay in the region Γ for all r > 0 (i.e., re(λ) = oo, and
β(λ) = oo).

To eliminate this last possibility requires some work. Thus, assume

(3.1)

and
(3.2)

We shall show that these lead to a contradiction, in a series of steps:

Step 1: We define a function H which is a "Lyapunov function" for large r; i.e.,
H'(r} > 0.
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Fig. 1.

Step 2: We show that for large r, H(r) < ^.

Step 3: We show that there exists a c > 0 such that H increases by at least c for
every rotation of the orbit. This implies that the λ-orbit cannot satisfy (3.1), since this
violates Step 2.

We now proceed with the details.
We define the function H(r) by

H(r) = P(w(r))
r2A(r)w'2(r)

(3.3)

where

(3.4)

so that P'(w) = w(l - w2); cf. Fig. 1. Then using (2.1) and (2.2), an easy calculation
gives

Φ
H'(r) = w'2\ --- h rA - rAw

so that
H'(r) > rwί2 [f A - \ - Aw'2} .

To show that Hf > 0, we show A —> I and Aw'2 — * 0 as r

Lemma 3.2. A(r) — » 1 as r — > oo.

Proof. We define the function μ(r) by (cf. [3]),

(3.5)

(3.6)

oo.

Now in [2] it was proved that there is a constant c > 0 such that μ(r) < c for all

r > 0. Thus since A(r) = I , we see that A(r) —> 1 as r —» oo. D
r

Lemma 3.3. Aw'2 —» 0 as r —> oo.

• If v = Aw', then (2.5) shows that when v' = 0, |υ|3 = \w(l-w2)A2/2r\ < —.

Thus if rn < rn+1 are two consecutive "Neumann" times (w'(r') = 0 = w'(r"),

w(r) φ 0 if r' < r < r"), then we see |t>(r)|3 < -— on this interval, and as

j?(λ) = GO, rn —> oo, so that v(r) —> 0 as r —> oo. Thus since Atί;/2 = v2/A, we see
that in view of the last lemma, Aw'2 —> 0 as r —>> oo. D

In view of the last two lemmas, we see that we can find f > 0 such that if r > f,
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Fig. 2. w2

and thus using (3.6), we have

H'(r) > \ rw'2(r), if r > f . (3.8)

This inequality yields Step L
To prove Step 2, we have the following lemma.

Lemma 3.3. H(r) < | for > r.

Proof. Let r > f, and let rλ > r be such that w'frj = 0. Then H(r) > H(rλ) =

P(w(rι)) <\. Ώ

Now let r < rl < r2 < . . . be a sequence of "Neumann" times satisfying
wr(rk) = 0, and

-1 < w(rk) < 0 , > 0 if r < r <

where r^ is the next "Dirichlet" time; i.e., rk > r fc, and (see Fig. 2)

w(rf ) = 0 , and if rk < r < r® , tϋ(r) < 0 .

Then Sre/? J is a consequence of the next lemma.

Lemma 3.4. There exists c > 0 such that for k = 1 ,2, . . . ,

ff(rfc)-ff(r£)>c.

Proof. For ease in notation, set

i^ = tuCr j,) , and w® = w(^) .

Now since H'(r) > 0 if r > f, we have P(wk+l) > P(wk), and thus

wk >wk+v, k = 1 , 2 , . . . .

(3.9)

(3.10)

(3.11)

(3.12)

Now let w(r) be such that wl = w(rλ} < w(r) < 0, where r < rf. Then since
^Γ7 > 0, we have

P(w) + r2A(r)w'(r)2 ,

or

A
> (3.13)
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since A < 1. Hence from (3.8) and (3.13),

ff(rf) - HtrJ = I H'(r)dr> ί \ rw'2(r)dr

o o

/

/•
- rwf dw > ^/P(wl) - P(w) dw = c > 0

j

that is,
ίf(rf) - ff^) > 00.

Now from (3.12), w2> w{, so there is an r7 > r2 for which w(r') = w(rλ). Then

H(rξ) - H(r2) > H(τζ) - H ( r f )

H'(r)dr

o
rw'

~2~

o

Continuing in this way, we see that (3.11) holds. D

Now in view of (3.11), it follows that after a finite number of rotations that

H(rn) > i, and this contradicts Lemma 3.3. The proof of Theorem 3.1 is complete.
As a consequence of the method of proof of Theorem 3.1, we have the following

corollary.

Corollary 3.4. There is no solution of (2.1), (2.2) which has infinite rotation, and
stays in the region Γ for all r > 0.

4. The Pseudo-Continuation of the λ-Orbit

It was shown in [4] that there is an increasing sequence \l < X2 < . . . < 2 such that
Ω(λn) = n; i.e., the λn-orbit is an n-connector. Let b > 1, and let Λn denote the
following set of orbit segments defined form 0 < r < 6:

Λn = {(w(r, λn), w'(r, λn), A(r, λn), r) : 0 < r < b} .

From [4, Proposition 3.2], we can find a subsequence {λnfc} C {λn}, such that the

right-hand endpoints Pnfc = (w(b, \nk),w'(b, λnfc), A(b, λnfc),6) converge to P G Γ;
i.e.,
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that is, P is a good point; namely w2 < 1, \w'\ < oo, A > 0, (w,w') Φ (0,0), and
1 < b < oo. (Informally, P is the point where the λ-orbit would be if it didn't crash.)
We consider the orbit (w(r), w'(r), A(r), r) through P, defined for 1 < r < 6, and we
call this orbit segment the pseudo-continuation (PC) of the λ-orbit, for reasons which
will become clear below. In this section we shall investigate the rather interesting
properties of the PC orbit. These are summarized in the following theorem.

Theorem 4.1. The PC orbit satisfies the following :
1) lim A(r) = 0.

r— *1

2) The PC orbit has infinite rotation; i.e., lim [θ(b) — θ(r)] = —oo, where θ(b) =

3) lim w(r) = 0.

4) lim Φ(r) = 0.
r— » 1

5) w'(r) is unbounded near r = 1.

Remark. In view of 1, 3, 4, we see that the λ-orbit, and the PC orbit can be
concatenated.

In order to prove this theorem we begin with the following lemma, which shows
that PC orbit does not crash if r > 1. This lemma is the most technical part of this
section.

Lemma 4.2. Given any ε > 0, there is a positive constant η — τ?(ε), independent of
n, such that for every n G R+,

e , λ n ) > τ / . (4.1)

Proof. With μ as defined in (3.3), we note that if

μO + ε) < 1 + ! , (4-2)

then

and this implies (4.1). Thus, it suffices to assume that

μ ( l + ε ) > l + |. (4.3)

Next, if

i + 7 , (4.4)

then for r G l + - , l + ε , w e have [cf. (3.4)]

since μ' > 0. Thus from [4, Proposition 2.7], there exists an η2 > 0, depending only
on ε, such that

+ε)>η2. (4.5)
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Thus, we may assume that μ( 1 H— 1 < 1 H—, and hence from (4.3), there is as an

r 1 , l + - < r 1 < l + ε such that

μ(τΊ) = 1 + £-. (4.6)

Now we claim that there is a constant r > 0, depending only on ε such that

\w'(r)\ <τ if 1 + - < r < 1 + ε. (4.7)

To see this, recall from [3, Proposition 5.1], there is an L > 0, independent of n such
that

(Aw/2)(r)<L. (4.8)

Then if r G 1 + -,r , since μ(r) < μ(r{),

and thus (4.8) implies

w'(r)2 < L/7?3, if l + - < r < r ! . (4.10)

Suppose now that r{ < r < 1 + ε; on this interval we will show that

I
T ι s N

— ,^τ ) =r. (4.11)

Indeed, on the interval [r1? 1 + ε], μ(r) > μ(rj), so

^ (!-™2)2 ! , ε l ε

Φ(r) = μ(r) > 1 + - -? > - .
r 4 ι I _ 4

2

Thus from (2.2)
r2Awrtw' — —Φw'2 — w(l — w2)w',

4
so that if |κ/1 > -, since |tu(l - w2)\ < 1, we see that w'w" < 0; that is, if

rl < r < 1 + ε,
/ 9 , / , 4

w (r) is decreasing, if m/(r) > - . (4.12)
ε

To show (4.11), assume first that L/η3 > 16/ε2. Then w/2(r) < L/η3 on rv <
r < 1 + ε; indeed, if there was a first point r2, rλ < r2 < 1 + ε for which

w'2(r2) = L/η3, then — (u>/2(r2)) < 0, in view of (4.12). Thus no such r2 can exist.

If now L/τ/3 < 16/ε2, then υ/2^) < 16/ε2 so (4.12) implies that w'2(r) < 16/ε2 if
rl < r < 1 + ε. This shows that (4.11) holds.

Now define η4 by

_. _ ε/4
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We shall show that

A(r) > minθ73, η4) if r{ < r < 1 -f ε , (4.13)

and this will complete the proof of Lemma 4.2. The proof of (4.13) is similar to the
proof of (4.10); in fact, from (2.1), if rl < r < 1 + ε,

r A'(r) = - 2Aw'2 > - - 2Ar > 0 ,
r 1 -hε

if A(r) < η4. Thus, if η3 > r?4, then as A(r) > η3, A cannot get below η4 on
[r1? 1 + ε]. In fact if there were a first point r2 > r^ for which ^4(r2) = r/4, then
A'(r2) > 0, and this is impossible. On the other hand, if η4 > τy3, then A(r) > r/3 on
[r1? 1 -j-ε], because A'(r) > 0 if A(r) < η4 (draw a picture!) Hence (4.12) holds, and
this completes the proof of Lemma 4.2. D

Remark, Using the last lemma, together with (4.8), we see that wr(l -f ε)2 < L/η,
and this shows that for any r > 1, the set {(w(r, λn),u>'(r, λn), A(r, λn),r)} has a
subsequence which converges to a point in Γ.

Corollary 4.3. The PC orbit crashes at r — 1.

Proof. The last result shows that A(r) > 0 if r > 1. If A(l) > 0, then this would
imply, via the standard existence theorems for ordinary differential equations, that
the PC orbit continues to r = 1 — ε, for some ε > 0. Moreover, by "continuous
dependence,"

lim (w(r, λn), w'(r, Λn), A(r, λn)) - (n (r), w'(r), A(r}} ,
-̂  oo

for r > 1 -ε. On the other hand, since λ = lim λ^ , and the solutions form a continuous
~ n n

one-parameter family [4, p. 305], we have

lim (w(r, λn), w'(r, λn), A(r, λn)) - (w(r, λ), w;'(r, λ), A(r, λ)) , for r < 1 .
—

Thus the PC and λ orbits coincide for 1 — ε < r < 1 , and hence the λ-orbit does not
crash at r = 1. This contradicts Theorem 3.1. D

Note that this corollary proves part 1) in the statement of Theorem 4.1. We now
complete the

Proof of Theorem 4.1. We say that a point (w, w1 ', A, r) in Γ lies in Qi(i=\,2, 3, 4)
provided that (w,wf) lies in Q{.

Now since [cf. (4.1)],

Pk = (w(b, λnfc), <//(&, λnfc), A(6, λn j f e), 6) -̂  P G Γ , as k -> oo ,

we may assume, for definiteness, that P e Ql (the proofs for the other cases are
similar). Note that lim|#(6, λn )| = oo, for otherwise from Theorem 2.3, we would

have that the λ-orbit doesn't crash, since it would be a limit of orbits in Γ having
uniformly bounded rotation. Thus from Lemma 2.2, the backwards orbit through P
reaches a point Q on the hyperplane w = 0 without crashing. Now for each fc, we
can find rk < b such that w(rk,\nk) = 0 and w'(r,\nk) > 0 for rk < r < b.

The point Q is a limit of right-hand endpoints of orbit segments in Γ, and hence as
before lim|0(r fc,λ | = oo. Thus from Lemma 2.1, the backwards orbit through Q

reaches a point P' on the hyperplane w' — 0 without crashing. This process can be
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continued indefinitely because by alternately applying Lemmas 2.1 and 2.2, we always
find points on the hyperplane w = 0 or wf = 0, which are limits of endpoints of orbit
segments in Γ having unbounded rotation. This proves part 2) in the statement of
Theorem 4.1.

To show that part 3) holds, we define (cf. [3,4]), μ(r) = r(l - A(r)), and then as
μ' = 2Aw'2 + (1 - w2)2/r2, we have μ' > 0 and, since A(l) = 0, μ(l) = 1. Thus
μ(r) > 1 if r > 1. It follows that [cf. (2.3)]

φ(r) = μ(r) - (1 ~ W (r)) >!-(!- w2(r))2 , if r > l . (4.14)
r

Now suppose that
firn w(r) = 4d > 0 (4.15)

we will show that this leads to a contradiction. For this, we first note that, from
part 2), there are an infinite number of r > 1 such that w(r) = 3d. Then on the
interval d < w(r) < 3d, (4.14) gives

φ(r) > 1 - (1 - d2)2 = d2(2 - d2) = η > 0 . (4.16)

From this, it follows from [4, Proposition 2.6], that there is a constant c > 0 such that

\w'(r)\<c if d<w(r)<2d.

Hence on the interval d < w < 2d, we have that Δr, the change in r, satisfies Δr > -,

and this implies that for the PC orbit Δθ = 0(6) - 0(1) satisfies \ΔΘ\ < (6 - l)|d/c.
This contradicts part 2), and hence (4.15) is false; i.e., lim w(r) — 0. Similarly, we

r— » 1

can show that lim w(r) = 0, and thus lim w(r) = 0 .
r->l r^1

To show Φ(r) — » 0 as r\ l , we argue as follows. First, in [3, Proof of
Theorem 3.1], it was shown that if Φ(f) > 0 for some orbit, then that orbit cannot
crash as r ff. It was also shown in [3, Proposition 5. 1 1 ff.], that if Φ(f) < 0 and
the orbit crashes as r /* f, then nearby orbits must also crash. Hence if we have an
orbit that crashes as r / f which is a limit of non-crashing orbits, then Φ(f) = 0;
(the details are presented in the proof of Theorem 5.2, below). If now we make the
substitution r — » — r, Eqs. (2.1) and (2.2) are invariant, but Φ — > —Φ. Thus the PC
orbit which crashes as r\ f , after the transformation gives rise to an orbit which
crashes as — r / ~ f . By the above observation, —Φ(f ) = 0.

We now turn to statment 5). Thus, suppose the statement is false, then we can find
m > 0 such that

\w'(r)\<m if l < r < 6 . (4.17)

Choose r1? 1 < r1 < b such that w'^r^) ^ 0. Then by the Cauchy mean-value theorem,

-W ( Γ ) ~
A(rι)-A(l) ~ A'(r2)

for some r2, 1 < r2 < rγ. Now from (4.17), Eq. (2.5) and part 3), we see that
t/(l) = 0. Similarly, (4.17) together with (3.1) shows that A' (I) = 0. Thus using
(4.18), we have as before

v'(r2) - v'(l) v"(r3)

= =
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for some r3, 1 < r3 < r2. Since (2.5) implies

r(Aw'3y - Awβ r2(l - 3w2)w' - w(l - w2) (2r)

we see that for r near 1, v"(r) w — 2w'(r\ Similarly from (3.1), we have

A"(r) w 2/r2. We thus conclude from (4.19) that for rl near 1,

or \wf(r3)\ ~ 2|iί/(r1)|. Repeating this argument with r^ replaced by r3, and
continuing, shows that w'(r) is unbounded near r — 1. This contradicts (4.17); thus
w'(r) is unbounded near r = 1. The proof of theorem 4.1 is complete. D

We next consider the behavior of the PC orbit in the far field; i.e., for large r.

Theorem 4.4. The PC orbit satisfies the following:

r—>oo

(ii) lim r(l - A(r)) < oo.
1 >OO

(iii) Given any ε > 0, there is a k = k(ε) > 0 such that 0(r) - 0(1 + ε) > -k.

(Statement (i) says that the PC orbit is a connecting orbit, and statement (ii) implies
that the PC orbit has finite (ADM) mass; cf. [3, 4, 5].)

Proof. From [5, Lemma 3.3], the PC orbit cannot crash for r > 1. It cannot exit Γ
via w2 — 1, (for otherwise, the same would be true for nearby orbits; in particular for
the Λn-orbits if n is large), nor can it exit Γ via (w, w') = (0,0), (by [4, Remark 4]).
Thus the PC orbit stays in Γ for all r > 1 + ε. From Corollary 3.4, the PC orbit
cannot have infinite rotation for r > 1 + ε. The desired result now follows from [4,
Proposition 2.10]. D

We now study the berhavior of the metric coefficients A~l(r) and T~2(r) near
r = 1, for the PC orbit, [cf. (1.3)]. To this end, we recall from [3] that T satisfies

T 2w'2 Φ

"~7~ + Λ4 (4>21)

If we write (cf. [3-5]),

P'- Φ O'- —
^ ~ r2A ' Q ~ r '

then (4.2.1) becomes

-2^Γ=P / + Q / , (4.22)

and (cf. [5, Eq. (4.6)]),
AT2 = eke~2Q , (4.23)

where A: is a constant. In order to study the behavior of A' near r = 1, we need the
following lemma.

Lemma 4.5. If an orbit has infinite rotation near r, and crashes at f, then

lim (Aw12) (r) = 0 . (4.24)
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Corollary 4.6. For the PC orbit, (4.24) holds with f = 1.

Proof of Lemma 4.5. Let / = Aw'2', then / satisfies the equation

rf + (2rf + Φ)w'2 + 2w(l - w2X = 0 . (4.25)

Now suppose that
lim /(r) = σ > η = lim /(r) .
r->f r_»f

Then we can find an ε > 0, and a sequence rn — » f such that f(rn) > σ - ε,

f'(rn) > 0 and |u>'(rn)| — >• CXD ί since w' = w — - — 1. Now from Theorem 4.1,

Φ(rn) — > 0 so we can find c > 0 such that for n large,

2rn/(rn) + Φ ( r n ) > c > 0 .

Thus for large n, we get the contradiction

0 = r2 /Vj + (2rn/(rn) + Φ(rn) V(rn)
2 + 2^(rn) (1 - w2(rn) V(rn)

> r2 /'(rn) + <™'(rj2 + 2κ;(rn) (1 - w2(rn))w'(rj > 0 .

Hence lim /(r) = lim /(r), so that lim ^W2(r) exists. Now since the PC orbit has
r— >f r— >f _ ' r— >r

infinite rotation as r — >• f (by Theorem 4.1), it follows that Aw (gn) = 0 for infinitely
many ρn \ f thus (4.24) holds. D

Now with the aid of this lemma, we see from (2.1) that

lim A ;(r)-0, (4.25)
r \ l

because Φ -* 0 as r \ 1.
Finally, we consider the behavior of the metric coefficient T~2(r) near r = 1.

Using (4.22), if we fix f > 1 and take r > f, we have

(4.26)

Since Q-P = InA, and A(oo) = 1 (from Theorem 4.4), we see that Q(oo) = P(oc).
Thus from (4.25) we have

so if we choose T(f) = e^°°\ then we have T~2(co) = 1. With this choice of
T~2(f), (4.23) becomes (AT2)(r) = e2Q(oo)-2Q(r)? and SQ

T-2(r) = _

Now as Qf > 0, we see that lim Q(r) exists, (it may equal —CXD), so that (4.27) gives
r \ l

lim Γ~2(r) = 0. (4.28)
r \ l

We have thus proved the following result.

Proposition 4.6. The following properties hold for the metric-coefficients of the PC
orbit:
(i) lim A(r) = 0 = lim A'(r);

r \ l r \ l

(ii) lim T~2(r) = 0.
r V 1
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5. Properties of the λ-Orbit

In this section we shall derive some properties of the λ-orbit. Recall that in Sect.
3 we have shown that this orbit crashes at some f < 1. We are not able to decide
if Ω(X) = oo, or Ω(\) < oo. We thus consider the two possibilities separately, in
Theorems 5.1 and 5.2, and although the proofs are different, we obtain similar results.

Theorem 5.1. Assume Ω(X) < oo; then the following properties hold for the \-orbit:

lim Φ(r, λ) = 0 , (5.1)
r— >f

lim wr(r, λ)| = oo , (5.2)
r— >r

lim w(r, λ) = 0 , (5.3)
r— >f

f - 1 . (5.4)

Proof. We shall prove these statements in the above order ._ Since λ is fixed, for
notational convenience, we shall suppress the dependence on λ; this should cause no
confusion. Since Ω(X) < oo, it follows that w (r) is of one sign for r near f, and

(1 - w2)2

hence w(r) has a limit as r — » r. Since Φ(r) = μ(r) -- , [cf. (3.7)], where
r

μf > 0, and μ(r) is bounded, ([2]), it follows that lim Φ(r) exists. Now suppose

lim Φ(r) > 0. Then using (2.1), we see that A'(r) > 0 for r near f, r < f . Then for
r—*r

some intermediate point ξ, A(r) = A(r) -f A'(ξ) (f — r) > 0, and this is impossible,
thus Φ(f ) < 0.

Now assume that
Φ(f) = -2<5<0; (5.5)

we shall show_that this leads to a contradiction. Thus, if (5.5) holds, and the crash
occurs in Q2U(24, then from [3, Proposition 5.1 1], we obtain the desired contradiction.
Hence we may assume that the crash occurs in Qv U Q3. In this case we consider the

(1 - w2)2

function ιί;(r, w) = r -- , and notice that ψ(r, w) — —26. It follows that we
r

can find an ε > 0 such that ^(r, w) < —δ if |r - r| < ε and \w — w\ < ε. Now for
λ < λ, μ(r, λ) < r, and hence for sufficiently large n,

Φ(r, λn) = μ(r, λn) - ̂ '^^ < _^ , (5.6)

if r — f I < ε and w - w < ε. Now for definiteness, let's assume u>'(r, λn) < 0
on this range. Then if for some subsequence {λn }, [w'(r, \n )} is unbounded on
either f < r < f + ε o r ΰ > - ε < u > < ΰ > , then from [3, Lemma 5. 13], we obtain
a contradiction - viz, w'(r, Xn ) = — oo for some w on this interval. It follows

that we may assume that the set {iί/(r, λn)} is bounded on w — ε < w < w, and
f < r < f + ε. That is, on this range, |ΐ//(r, λn)| < M. Now choose r satisfying
0 < r < min(ε/2M, ε/2). Then for large n

w(r + r, λn) - w(f , λ) = (iϋ(f + r, λn) - w(f, λn)) + (iϋ(f , λn) - κ;(f , λ)) < ε .

Thus, for such n, using (5.6), we obtain

A(f -f r, λn) - A(f , λn) - ̂ (ξ, λn) < 2 r -
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But as A(f, λn) — > 0 as λn — » λ, we see that the last inequality implies that for large
n, A(f + T, λn) < 0, and this is a contradiction. It follows that (5.5) cannot hold, and
this proves (5.1).

To prove (5.2), we shall first show that

w'(r) is unbounded near f . (5.8)

Thus, assume that wf is bounded near f, and hence v(f) — 0. Then if the crash occurs
2w'2 —w(l — w2)eQ

in Q9 U G4, then if Q' = - , we may write (2.5) as (eQυ)' = - = - , so
r rz

e®υ is monotone, so v(f) = 0 cannot hold; thus the crash must occur in Ql U Q3; in
particular this rules out the possibility that w = 0. In this case

r / / Λ T r r - - ,cmlim w (r) = hm -— — = lim — — = lim - - - , (5.9)
r— >f r—*f Λ(r) r— >f A. (T) r— >f Φ

where in the last equality, we have used the fact that w' is bounded near f, to
conclude that both —2w/2υ/r -» 0, and 2w/2A — > 0 as r — » f . So in view of (5.1),
lim w'(r)\ = oc; thus (5.8) holds. Note that if w ^ 0, then (5.9) together with
r— »r

(5.1) shows that (5.2) holds. Thus we may assume that w — 0. If now (5.2) were
false, then we could find an N > 0 and a sequence rn/*f such that w'(rn) < TV,
w"(rn) = 0, w(rn) — > 0, and w' has a minimum at rn. Now an easy calculation
shows that Φ'(r) = 2(1 - w2)2/r2 + 2Awf2 + 4w(l - w2)w'/r, so that Φ'(rn) -* 2/f2

as n — > oo. Then we find that at rn,

r2Atι;w(rn) = -Φ'lϋ7 - (1 - 3w2)w' < 0 .

This shows that w' cannot have a minimum at rn; thus (5.2) holds.
We turn now to the proof of (5.3). We define w by

w = lim w(r) .
r /* r

Suppose that w > 0 (the same proof works if w < 0). Then the crash occurs in
Qλ U Q4. We claim first that the crash cannot occur in Q4. Indeed, since an infinite
number of the λn orbits reach the hyperplane w = 0, we may apply Proposition 5.1.4
in [3] to arrive at a contradiction. Thus we may assume that the crash occurs in Qλ

with w > 0.
Now choose ε > 0 so that w — 2ε > 0. Then for large n, w(f, λn) > w ~ ε. We

consider some cases. First, suppose that2

lim ^(^_ε(λn),λn) = -k2 < 0, (5.10)

we shall show that this is impossible.
Now as in the proof above of (5.1),

Φ(r,Xn)<-k2/2

if \r — f\ < <5, and \w — (w — ε)\ < ί, where δ < ε. Again as in the proof of (5.1), the
set {κ/(r, λn)} is bounded if these conditions are satisfied; i.e., there is an M > 0

rα(λ) is defined by κ;(rα(λ), λ) = a
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Fig. 3.
w=w-2ε

such that \w'(r, Xn)\ < M if r - r| < δ and
the λn, for notational convenience)

- (ιu - ε)| < δ. Thus (suppressing

'w-ε-ό ' w-2ε —

Hence, using (2.1),

^ε) = A'(ξ)(ε - δ)

2 (r -

so A(rqI}_ε(Xn)) > τ2. Moreover, \w/(rlύύ_ε(Xn))\ < M, so if the sequence
{^-ε(λn)> ίs bounded, then the points pn = (w - εX(r^_ε(λn)),,4(^_ε(λn))
have a convergent subsequence which converges to a point P G Γ. Since Ω(Xn) < oo,
it follows from Theorem 3.3, that the λ-orbit doesn't crash, and this contradicts The-
orem 3.1. If on the other hand r1I}_ε(Xn) — » oo, then we can find a subsequence, call
it {Xn} again, and points Qn = (w — ε, w'(2, λn), A(2, λn), 2) which again converge
to a point P <G Γ (see Lemma 4.2, and Lemma 3. 3 of [5]), so we again obtain a
contradiction; thus (5.10) cannot hold, and we have

lim <
n—> oo

Now suppose

(5.11)

(5.12)

we shall show that this too is impossible.

If (5.12) holds, then as above, Φ(r, λn) > y if |r - f < δ, and \w-(w- ε)| < δ,

where δ < ε. Then from [4, Propositions 2.5 and 2.7], we can find constants σ > 0
and r > 0 such that A(r^_ε(Xn)) > τ2 and \w'(r€}_ε(Xn)\ < σ, and the desired
contradiction is obtained just as before. Hence (5.12) cannot hold, so in view of
(5.11), we may assume that

limΦ(r t i i_e(λn)) = 0. (5.13)
n—> oo

To obtain the desired contradiction in this remaining case, we define rn and sn by

™(rn> λn) = τ/> - ε , w'(rn, λn) < 0,
w(sm Xn) = w-2ε, w'(sn, Xn)< 0,

where rn is the smallest r > r^_ε(λn), where wf(r^_ε(Xn), Xn) > 0, and sn too is
minimal in an analogous sense; see Fig. 3.
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We now consider two subcases:

a) limsn = 00; b) limsn — S < oo .

Suppose first that we are in case a), then consider the points Qn = (w — ε,
w(2,λn),A(2,λn),2), which as above, contain a subsequence which converges to
a point P G JΓ, and we obtain a contradiction as above. Thus we may assume that
we are in Caseb). Since S > sn > rn, if for some subsequence {Anfc}, the set

{w'(r, \n )} were unbounded on the interval [w — 2ε,w- ε], then as in the proof

of [4, Proposition 5.14], we obtain the contradiction w'(rw(\n), λn) = —oo for some
n and some w, w — 2ε < w < w — ε. Thus we may assume that the set {u/(r, λn)}
is bounded on [w — 2ε,w — ε]; i.e., \w'(r, λn)| < M if w — 2ε < w(r, λn) < w — ε.
Suppose first that for each n, we can find rn, w — 2ε < w(τn, λn) < w — ε, such that

—2w'2v w(l — w2) w(l — w2)

r r2 ~ 2r2

n n n

Then at rn, -v > w(l - w2)/4r^w'2, so that at τn,

Air λ •» ~W(1 ~ w2) > Γ
-τi\ / „ , Am I ̂  ^ ^

where c is chosen such that w(l — w2) > c on [w — 2ε, w — ε]. Thus the points

Pn =

have a subsequence^ which converges to a point P e Γ, and we get the contradiction,
as before, that the λ-orbit doesn't crash. It follows that we may assume that

—2w/2v w(l — w2) —w(l — w2)

r

for all λn, and for all r, rn < r < sn. Then

, ^ ^ / x Λ 7
*>(*n> Λn) - V(^n» λn) = J ^

w(l-w2)

Thus

k2

and hence -A(sn, λn) > — , and as before the sequence

Pn =

contains a subsequence which converges to a point P G Γ, and we get a contradiction
as above. The proof of (5.3) is complete. Since (5.1) and (5.3) imply that f — 1, we
see that this finishes the proof of Theorem 5.1. D
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We turn now to the case where Ω(X) = oo.

Theorem 5.2. Assume Ω(X) = 00; then the following properties hold for the λ-orbit:

lim w(r,A) = 0, (5.14)
r-^ r

lim Φ(r, λ) = 0 , (5.15)
r— *f

w'(r, A) is unbounded for r near f , (5.16)

f = l . (5.17)

Proof. As in the proof of the last theorem, we shall suppress the dependence on A.
We begin with (5.14). Thus, let {r^} be an increasing sequence such that r^ < f,

wr(r^) = 0, and w(r%) < 0. Suppose that

) = -27<0; (5.18)

we will show that this leads to a contradiction. Set

r

and let us regard φ as an abstract (continuous) function of 3 variables; then

φ(f, 0, 0) = f - -. (5.19)
r

Suppose first that

f - - = 3 ε > 0 . (5.20)
r

(1 - £2)2

Then V(r,0, 2?) = r - - - - > 2ε, if |z| < 26, |r - f < 25, 0 < A < 26, for

some <5 < 7. Hence by continuity,

Φ(r ,A n )>ε, if \w\ < 2δ , | r - f | < 2 < 5 , 0 < A < 26 . (5.21)

From [4, Proposition 2.6], w'(r_δ (λn), An) is uniformly bounded, and hence ιt/(r, λn)
T"

is uniformly bounded on r_5(An) < r < ^_2<5(An); say ^'(r, λn)| < M on this
interval. It follows that \w'(r)\ < M on this interval, so that

so after finitely many rotations r^ > 1, and thus there can be no crash, (crashing
orbits must crash for r < 1; see [5, Lemma 3.3]). It follows that (5.22) cannot hold;

thus f — - < 0. Now if f — - = 0, then ψ(r. 0, z) > 0 on -27 < z < -7, and thus
r r

we get the same contradiction as before. Therefore we must have

f — - = —3ε < 0, for some ε > 0.
r

Hence as above,

Φ(r,w,A)<-ε if \w\ < 26, |r - f | < 26 , 0 < A < 26 ,
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for some 6 < 7. Now wf(r) must be unbounded on — δ < w < 0; otherwise as in
(5.22), r_δ — r0 = η > 0, and we again would not have a crash for the λ-orbit.
Thus we may apply [3, Lemma 5. 13] to obtain the contradiction that some λn-orbit
crashes. It follows that (5.18) cannot hold; i.e. limu>(r^) = 0, and by a similar

argument limw(r^) = 0, where r% is defined by wf(r^) = 0, w(r^) > 0. This
implies that (5.14) holds.

We turn now to the proof of (5.15). First note that in view of (5.14), it follows
as in the proof of Theorem 5.1, that lim Φ(r) = Φ exists. Suppose that Φ > 0; then

r— >r

as above, Φ(r) > ε >_0 for r near f, and thus the λ-orbit cannot crash, see [4,
Proposition 2.6]. Thus Φ < 0. Suppose that

Φ = -2b<0, (5.23)

we shall show that this leads to a contradiction. Thus if (5.23) holds, then as above,
we can find δ > 0 such that for large n, say n > TV,

Φ(r, w(r, λn), A(r, λn)) < -L , (5.24)

if \w(r, λn)| < <5, |r-f| < δ, 0 < A(r, λn) < δ. Now as before, from [3, Lemma 5.13],
the functions w'(r, λn) are uniformly bounded on the above intervals. It follows that
w'(r) is bounded on the set w < <5, 0 < f — r < δ. Hence

r f / Λ r rlim w (r) — lim — — = lim
A(r) r->f A' (r)

-2w'2 w(l - w2)

= lim~Γ"" r* = 0 >

^-^^ ^ , 0 2aw
Φ/r2 --

r

i.e., w'(r) — > 0 as r — > f. Thus (u>(r), ̂ 7(r)) — > (0, 0) as r — » f. Hence given any
ε! > 0, we can find Nλ > N such that ifn>Nl9 then f 2 w ' ( f , Xn)

2 + w(r, λn)
2 < ε{.

Then using [5, Lemma 3. 6], given any T > 0, and ε > 0, if εl is sufficiently small,
r2κ/(r, λn)

2 + to(r, λn)
2 < ε if f < r < f + T, for all n > ΛΓj. In particular, choosing

T = δ, and taking ε so small that |ιu(r, λn)| < <5 on f < r < f + δ, we see that (5.23)
holds. Then from (2.1), if n > Nl9 we have, for some intermediate point ξ = ξn,

A(f + δ, λn) - A(f, λn) =

But for n large, A(r, λn) -̂  A(f, λ) = 0, and thus ^(f + δ, λn) < 0. This is a
contradiction. Hence (5.23) cannot hold and thus Φ = 0; this proves (5.15).

Observe that (5.14) and (5.15) imply (5.17). Thus to complete the proof of the
theorem, we need only prove (5.16).

Suppose that w' is bounded near f. Then for r < f , r near f, since υ(f) = 0 we
have from the Cauchy mean-value theorem,

v(r) _ v(r) - υ(f) _ vf(r)
~Mr) ~ A(r) - A(f) ~ A'(r) '

Now from (2.1), A'(f) — 0, and from (2.5), v'(r) — 0, so that again by the Cauchy
mean-value theorem,

A'(r) - A'(f) A"(f) '
r < f < r < r .
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Now as v' = —2w'3A/r — w(l — w2)/r2, we have

„ _ r(Aw'3)' - Aw'3 _ r2(l - 3w2)w' - w'(l - w2)(2r)
V - ~2 ^2 ^4 '

and for r near f, v"(r) « ̂  w'(r). Similarly from (3.1) we find

„ _ _ r(Aw'3)' - (Aw'2) _ -r2Φ' - 2rΦ

yjf (f Λ

so that for r near f, A"(r) « 2/r2. Hence for r near f, t(/(r) « —-—,

or -w'(r) w 2w'(r). Thus if w'(r) ^ 0, there exists an f, r < f < f with
iί/(f) ^ — 2w'(r). Hence by repeatedly applying this result, we get a sequence rn, with
r < r1 < r2 < . . . < rk < r such that w'(rn+l) & -2w'(rn)', i.e., w' is unbounded
near f. Since we can choose r near f such that w'(r) ^ 0, this contradiction completes
the proof of (5.17). The proof of Theorem 5.2 is complete. D

We shall now study the behavior of the metric coefficients A(r) and T(r) near
r = 1; cf. (4.20). To this end, we first need the following lemma which follows just
as in the proof of Lemma 4.4.

Lemma 5.3. For the λ-orbίt, lim (Aw'2) (r) exists.
r/M

Proposition 5.4. For the λ-orbit, lim (Aw'2) (r) = 0.
r/ 1 !

Proof. From Lemma 4.4, the result holds if Ω(λ) = oo. Thus suppose Ω(λ) < oo,
and assume the result is false; i.e.,

lim (Aw12) (r) = σ > 0. (5.25)

We shall show that this leads to a contradiction. To this end, for any orbit, we define
P(r) by

<7><VΛ

= 0, (5.26)- 2 τ >rzA(r)

and we recall Q is defined by (4.22); i.e.,

0(0) = 0.
r

We now again define /(r) = (Aw'2) (r), and we have

Lemma 5.5. For r near 1, (r < 1),

[Q'(r) + P'(r)]/(r) > | Q'(

Proof. We have, for r near 1,

[Q'(r) + P ' ( r ) ] f ( r ) = (— + -f- )θ4w/2)(r)

3 u /2(r)
_ /-r _

Λ, ^

2 r

r r
/2
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because Φ(r) — > 0 as r X 1 . Thus for r near 1 ,

^ / o '2 \

[Q'(r) + P'(r)]/(r) > - σ ( Jϋ- ) > £ Q'(r)4 V r / z

this proves the lemma. D

We can now complete the proof of Proposition 5.4. Thus, from (4.24), we can
write

Thus, for r near 1, say r{ < r < 1, we have from Lemma 5.5,

2 .

Thus, integrating from rλ to r,

r

\ (Q(r) - Q(rj) < f ( r , ) - /(r) - j 2w(l ~^ )W/ ds . (5.27)

n

Now from (5.2), Q(r) — > oo as r / 1, and as β(λ) < oo, and lim ^;| = oo,

r

2iϋ(l - w2)wf ,
- z - as

is a finite number of integrals of the form

k wr*+l

Σ f 2w(l - wz)
- - dw>

where rk+l > rk > . . . > rv. It follows that the right-hand side of (5.27) is finite as
r / 1, while the left-hand side tends to -hoc. This contradiction completes the proof
of Proposition 5.4. D

With the aid of Lemma 5.5, the next result follows exactly as in Proposition 4.6,
part (i).

Proposition 5.6. The following properties hold for the metric coefficients of the X-
orbit:

lim A(r, λ) = 0 = lim A'(r, λ) .
r /" 1 r /"I
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We now investigate the behavior of the metric coefficient T~2(r, λ), for r < 1.
For this we need the following lemma, (cf. [5]; we include a different proof here for
the sake of completeness).

Lemma 5.7. For any λ, T'(r, λ) < 0 if r > 0.

Proof. From (4.21),

-2r2A — = 2wf2rA + Φ,

so it suffices to show that 2w'2rA -f Φ > 0. Thus, set g — 2w'2rA -f Φ, and notice
that 0(r) > 0 if r is large. Furthermore,

, 2w/2 , 2(1 - w2)2

g - ~9+ w + ~ 2

Now if g(έ) < 0 for some ε > 0, let rl = sup{r < ε : g(r) — 0}. Then rl > 0 and
0 = g(rλ) = g(^ι) — 0(0) = r, gf(ξ) > 0. This is a contradiction, so g(r) > 0 if r > 0.

D

We now have

Lemma 5.8. For any r < 1,

lim T~2(r, λ fc) = 0. (5.28)

Prof. Since T~2(r, λ fc) > 0, in order to show (5.28) it suffices to show

Rm _T~2(r,Xk) = Q.

Thus, suppose there was a subsequence, call it {\k} again, for which limT~2(r, λ fc) >
b > 0 for some r < 1. Then in view of the previous lemma, we have lim T~2(l,λ f c) >
b > 0. From Proposition4.6, the PC orbit satisfies lim T~l(r) = 0, so that

lim T~2(l, λ fc) = 0. This contradiction establishes the result. G

6. Concluding Remarks

We can use the PC orbit to construct a new "black hole" solution to the EYM
equations. Thus if (A(r),u>(r),u>'(r)) denotes the PC orbit, we define

( w(r, λ), r > 1

0, r=l

w(r), r > 1

then wQ(r) is a continuous function (cf. Theorems 4.1, 5.1, and 5.2). Moreover, if

A(r, λ), r < 1

={ 0, r = l

A(r), r > 1,
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then AQ is continuous, and in fact, so is AQ\ note that AQ(!) = 0 (cf. Theorems 3.1, 4.1,
Proposition 5.6, and Eq. (4.25)). Now if we want T~2(r, λ) to depend continuously
on the values of T~2(r, Xk), for r < 1, then we may define T0~

2(r) by

and Γ0

 2 is continuous. The functions T0

 2(r) and A0

 l ( r ) can be used to define the
metric for this black hole solution. Observe that wf

Q(r) is unbounded near r = 1
(Theorems 4.1, 5.1, and 5.2), and that as r\ l , this orbit has infinite rotation (cf.
Theorem 4.1, Part 2). Thus this black hole solution is very different from the black
hole solutions whose existence was proved in [5]; the stability of these latter solutions
was investigated numerically in [2, 6-10].

We next note that the existence of a PC orbit gives us a proof that the λn-
(connecting) orbits have uniformly bounded rotation in r > 1. More precisely, we
have the following theorem.

Theorem 6.1. Given any ε > 0, there is a constant c = c(έ) > 0 such that for all
r > 1 +ε,

Proof. Letr 2 >r 1 > 1+ε, and let Δθn = 0(r2, Xn)-θ(r^ λn). We claim that \Δθn\
is uniformly bounded. For suppose not; as before we can find a subsequence, call it
{λn} again, such that λn — > λ and the corresponding points_Pn = (w(l + ε,λn),
w (I + ε, λn), A(l + ε, λn), 1+ε) converge to a good point P G Γ. Now consider
the PC orbit through P. From Theorem 4.4, Partiii), the PC orbit satisfies \ΔΘ\ < N
for some iV. It follows from [4, Proposition 3. 4], that for large n, \Δθn\ < N + 1;
this contradiction completes the proof of the theorem. Π

It is interesting to see that the black hole solution, constructed as above, from
the PC orbit, can be used to give information on the particle-like λn -orbits, as in
Theorem 6.1. Conversely, the particle-like λn -orbits are used to construct the PC
orbit which then yields the black hole solution.

We end this section with a list of some open problems, together with some
conjectures.
1. is it true that if λ > λ, then the λ-orbit crashes? We conjecture the answer is yes.
Note that in [3, Theorem 4.1], we have shown that if λ > 2, then the λ-orbit crashes;
see also [2].
2. We do not know if the λ-orbit has infinite rotation as r /* 1. Again we conjecture
that the answer is affirmative.
3. Is there always a unique /c-connecting orbit? We believe that the answer is yes.
4. Is the more than one PC orbit? Note that in our construction of the PC orbit, (in
Sect. 4), the "starting point" P G Γ (where r — 1 4- ε) was the limit of a subsequence
of points Pn e Γ. Thus there is the possibility of having an uncountable number of
PC orbits.
5. Is the PC orbit linearly stable? Is it nonlinearly stable? Since it is almbst impossible
to find the PC orbit numerically, the answer to these questions must be determined
analytically.



Einstein-Yang/Mills Equations and a New Black Hole Solution 389

References

1. Bartnik, R., McKinnon, J.: Particle-like solutions of the Einstein-Yang-Mills equations. Phys.
Rev. Lett. 61, 141-144 (1988)

2. Kϋnzle, H.P., Masood-ul-Alam, A.K.M.: Spherically symmetric static SU(2) Einstein-Yang-
Mills fields. J. Math. Phys. 31, 928-935 (1990)

3. Smoller, J., Wasserman, A., Yau, S.-T., McLeod, B.: Smooth static solutions of the Eisen-
stein/Yang-Mills equations. Commun. Math. Phys. 143, 115-147 (1991)

4. Smoller, J., Wasserman, A.: Existence of infinitely-many smooth, static, global solutions of the
Einstein/Yang-Mills equations. Commun. Math. Phys. 151, 303-325 (1993)

5. Smoller, J., Wasserman, A., Yau, S.-T.: Existence of black hole solutions for the Einstein/Yang-
Mills equations. Commun. Math. Phys. 154, 377-401 (1993)

6. Bizon, P.: Colored black holes. Phys. Rev. Lett. 64, 2844-2847 (1990)
7. Straumann, N., Zhou, Z.: Instability of colored black hole solutions. Phys. Lett. B 243, 33-35

(1990)
8. Wald, R.M.: On the instability of the n = 1 Einstein-Yang-Mills black holes, and mathematically

related systems. J. Math. Phys. 33, 248-255 (1992)
9. Volkov, M.S., GaΓtsov, D.V.: Black holes in Einstein-Yang-Mills theory. Sov. J. Nucl. Phys.

51, 747-753 (1990)
10. Gal'tsov, D.V., Volkov, M.S.: Instability of Einstein-Yang-Mills black holes. Phys. Lett. A 162,

144_148 (1992)

Communicated by S.-T. Yau






