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Abstract: The periodic flag manifold (in the Sato Grassmannian context) descrip-
tion of the modified Korteweg-de Vries hierarchy is used to analyse the transla-
tional and scaling self-similar solutions of this hierarchy. These solutions are
characterized by the string equations appearing in the double scaling limit of the
symmetric unitary matrix model with boundary terms. The moduli space is
a double covering of the moduli space in the Sato Grassmannian for the corres-
ponding self-similar solutions of the Korteweg-de Vries hierarchy, i.e. of stable 2D
quantum gravity. The potential modified Korteweg-de Vries hierarchy, which can
be described in terms of a line bundle over the periodic flag manifold, and its
self-similar solutions corresponds to the symmetric unitary matrix model. Now, the
moduli space is in one-to-one correspondence with a subset of codimension one of
the moduli space in the Sato Grassmannian corresponding to self-similar solutions
of the Korteweg-de Vries hierarchy.

1. Introduction

In the last few years matrix models have received much attention as a non-
perturbative formulation of string theory. These models can be described in the
double scaling limit in terms of solutions to certain integrable systems. For the
Hermitian matrix model (HMM) it was found [3] that in the double scaling limit
the specific heat of the theory is a solution to the Korteweg-de Vries (KdV)
hierarchy. This solution must satisfy also the string equation which is a self-
similarity condition under Galilean symmetry transformations. This result was
achieved by the use of orthogonal polynomials on the real line. The string equation
can be written in terms of two scalar differential operators P, Q as

[P, β] = id .
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The case of pure gravity leads to the Painleve I equation. This case corresponds to
the 2-multicritical point of the theory; when one considers the fc-multicritical points
one finds 2k —2 order non-linear ODE. Because of some anomalous behaviour of
the solutions to the string equation in [4], an alternative string equation that
contains the former one was proposed. This string equation is the self-similarity
condition under the local symmetries of the KdV hierarchy. This theory is called
2D stable quantum gravity.

Later it was shown in [15], with the use of orthogonal polynomials in the circle,
that for the symmetric unitary matrix model (UMM) in the double scaling limit the
specific heat satisfies the modified KdV hierarchy and a string equation. The
solutions to this string equation are scaling self-similar solutions to the modified
KdV hierarchy. In the case of the /c-multicritical point one has a 2k order ODE
which again can be recasted as

[L, Γ] = constant ,

where L, T are 2 x 2 matrices of differential operators of order 2k and 1, respec-
tively. In [11] some boundary terms, modelling the presence of quarks, were added
to the model; the corresponding string equation turns out to be the scaling self-
similar condition for the modified KdV hierarchy. This was connected with 2D
stable quantum gravity in [5] where the Miura map was extensively used.

The Sato Grassmannian description [17] of the solutions was used in [9] to
characterize the solution to the string equation connected with the moduli space of
complex curves [21,10]. In the papers [18] a description of the moduli space for
the Galilean self-similar solutions of the KdV hierarchy in the Sato Grassmannian
was given, and in [12] one can find a more analytical treatment in terms of Stokes
parameters. In [8] a complete description, in terms of the initial data for the
zero-curvature 1-form, of the moduli space of self-similar solutions under local
symmetries of the potential KdV hierarchy can be found. Finally in [2] one can
find a description of the moduli space for the UMM.

In this paper, following closely the methods of [8], we analyse the geometrical
description of the solutions to the double scaling limit of the UMM with boundary
terms and without them. It will turn out that the description is completely different
in each case. Our aim is to describe the moduli space of solutions as a subset of the
periodic flag manifold [19, 20] in the Sato context. We find that the UMM string
equation corresponds to the scaling self-similarity condition for the potential
modified KdV hierarchy. When border terms are added the self-similar condition is
for the modified KdV hierarchy. We characterize the moduli space in terms of the
initial data for the corresponding zero-curvature 1-forms giving in this way a coor-
dinate chart, that happens to be closely connected to certain algebraic varieties.
The flag manifold is fibered over the Grassmannian and the moduli space when
boundary terms are present is a double covering of the moduli space for 2D stable
gravity. When no boundary terms are present the moduli space for the UMM is
a subspace of codimension one of the former.

Our geometrical description in terms of homogeneous spaces and local sym-
metries complements that of [2] where an analysis, based on the fermionic
approach, of the moduli space of the string equation of the UMM with no
boundary terms is given.

In the second section we define the modified KdV and potential modified
KdV hierarchies and we give its zero-curvature formulation. We also analyse
there the local symmetries and the corresponding self-similar conditions, giving
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a zero-curvature type formulation of it. In Sect. 3 we introduce the factorization
problem and the description of these integrable hierarchies in certain homogeneous
spaces. This allows us to study the set of solutions to the string equations in terms
of these homogeneous spaces, essentially a periodic flag manifold. In Sect. 4 we
analyse the moduli space of string equations using Sato's periodic flag manifold
corresponding to the scaling self-similar solutions of the modified KdV hierarchy,
and a line bundle over this homogeneous space corresponding to the potential
modified KdV hierarchy. In the final section we analyse the relation between these
moduli spaces of string equations for the UMM and that of 2D stable quantum
gravity.

2. Modified KdV Hierarchy and String Equations

We begin this section with the definition of the integrable hierarchies known as the
modified KdV (mKdV) and the potential mKdV hierarchies. They are defined for
scalar functions v, w that depends on an infinite number of variables
t •= ( ί2«+ 1 } n ^ o j the l°cal coordinates for the time manifold y. In this convention
we adopted t^ to be the space coordinate, usually denoted by x, and t2n+ι with
n > 0 corresponds to time variables, for example £3 is usually denoted by t. For its
construction it is very convenient to use the so-called GeΓfand-Dikii potentials
Rn [w], [6], which are the coefficients for the expansion of the kernel of the resolvent
of the associated Schrόdinger equation with potential u.

Definition 2.1. The modified Korteweg-de Vries hierarchy for v is the following
collection of compatible equations:

ι π , n ^

where d2n+ι := d/dt2n+ι and

where the GeΓfand-Dikii potentials are evaluated on the Miura transformation of v,

u = d1v-v2. (2.1)

Notice that the potential u, given by the Miura map (2.1), satisfies the KdV
hierarchy

5 2 » + i W = 431RII+1[u], n ^ O .

The KdV equation 4<93w = d\u + 6ud1u follows from the first of its equations.
The first equation of the mKdV hierarchy is the mKdV equation 4d3v =

Definition 2.2. The potential modified Korteweg-de Vries hierarchy for the function
w is the following set of equations:

<32n + 1 w = Sn|>], rc^O,
where

Observe that if w is a solution to the potential mKdV hierarchy then v = d± w
is a solution to the mKdV hierarchy. The potential mKdV equation is

= d\w -
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These integrable hierarchies are equivalent to zero-curvature conditions, which
turn out to be an essential feature of its integrability condition. Novikov [14] gave
for the KdV equation a zero-curvature representation in terms of a differential
l-form χ(λ) that depends on a complex spectral parameter AeC. The KdV hier-
archy has a similar formulation. Let χ be the l-form on 2Γ defined by

χ(λ)'-= Σ L2n + ι(λ)dt2n + ι ,

where

L ,β.= ί -ΊdlPnW PnW

with

Pn(λ):=2 X λ"Rn-m[u]. (2.2)
m = 0

Then, the KdV hierarchy is equivalent to the zero-curvature condition,

where d is the exterior derivative d := Σn>0dt2n+ ιd2n+ι For the mKdV hierarchy
there is an equivalent statement.

Proposition 2.1. The l-form

ξ:= da a~l + Adαχ ,
where

/ifls zero-curvature if and only if v is a solution of the mKdV hierarchy. This l-form
can be represented as

and

pn(λ)

2v)(pn(λ)/2-Rn) (8, + 2v)pn(λ)/2 ' l - '

with p given in Eq. (2.2).

Proof. It follows from the equation

V2n +1*1 ~ Vl ^2n + 1 H~ L^l > ^2« + 1 J = 0

D

One can equally proof the following

Proposition 2.2. The potential mKdV hierarchy is equivalent to the zero-curvature
condition for the l-form
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where
/exp(w) 0 \

' V 0 expί-w)/
Also

η(λ)=

and

-(dl+2v)(pn(λ)/2-Rn)
-2»+U i .-2w^ ,n a ,a , 2ι;)(pnμ)/2-JRll)) (δx +2t;)(pn(A)/2-^n)

(2.4)

Let us now consider the symmetries defined by translations and scaling trans-
formations.

The infinite set of translational symmetries are the isospectral symmetries of
these hierarchies in the sense that they preserve the associated spectral problem, i.e.
the Schrόdinger equation for u. In fact the flows in the hierarchies are defined by
the generators d2n+i of translations.

Definition 2.3. Let
S(t):=t + β,

be the action of translations, where

are the shifts of the time variables.

We have a local action of the abelian group C00 over the time manifold & '. The
following is obvious.

Proposition 2.3. Ifv, w are solutions to the mKdV and potential mKdV hierarchies
respectively then so are $*ι;, $*w.

For the scaling symmetry we have

Definition 2.4. The scaling transformation is

where σ e (C.

We have an additive local action of C over ST. One can easily show that

Proposition 2.4. // v9 w are solutions of the mKdV an potential mKd V hierarchies
respectively then so are eσ/2ζ*v, £*w.

The related fundamental vector fields, infinitesimal generators of the action of
translation and scaling transformations are given by

02,1 + 1, «^0, £:= X (n + l/2)t2n + 1d2n + ι
n ^ O

respectively. They generate the linear space C{d2 π + 1,£}n^0 which is the Lie
algebra of local symmetries of the mKdV and potential mKdV hierarchies, the
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non-vanishing Lie brackets are

We have the very important notion

Definition 2.5. A self-similar solution under any of the mentioned symmetries is
a solution which remains invariant under the corresponding transformation.

Consider the following vector field belonging to this Lie algebra

X:=$ + σζ, (2.5)
with

defining a superposition of translational and scaling transformations. If υ is
a solution of the mKdV hierarchy then the function

exp(σ/2 +X)υ

is a solution as well. In what follows it will be convenient to use

Definition 2.6. Let us denote

Then we have,

Theorem 2.1. A solution v of the mKdV hierarchy is self-similar under the action of
the vector field X if and only if it satisfies the generalized string equation

3ι(δι+2t>) Σ θ2n+1Rn + σ® = 0. (2.6)
V n ^ O /

Proof. A solution v of the mKdV hierarchy is self-similar under X if

= Q. (2.7)

Recalling the mKdV hierarchy one can show that this equation is actually equiva-
lent to (2.6). D

The theorem above implies

(δι+2t?)

but
= Σ (Θ2n + 1 + σ(n + l/2)t2n + ι)B2m + 1Sn + σ(m + 1/2) Sm .

Using the commuting flow condition [<92« + ι > ^2m+ι] w = 0 one realizes that the
above equation can be written as

Because v is self-similar the right-hand side of this equation vanishes, hence c is
a constant.
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Corollary 2.1. The solution v of the mKdV hierarchy is self-similar under the action
of the vector field X if and only if

(d, + 2v) £ 92n + 1Rn + σ® = c + - (2.8)
\ » £ 0 / 4

for some complex number c.

For the potential mKdV hierarchy we have

Theorem 2.2. A solution w of the potential mKdV hierarchy is self-similar under the
action of the vector field X if and only ifv = d^w satisfies Eq. (2.8) with c = 0.

Proof. The self-similar condition is

(9 + σζ)w = 0

which, using the hierarchy equations, gives the desired result. D

Notice that when θ(λ) = a(N + l/2)λN the translation term in the string equa-
tion is removed if we transform the time coordinates as follows:
t2n + ι !-» t2n + ι + aδnN. This allows us to study the solutions away from the singu-
larities. Observe also that given a self-similar solution w of the potential mKdV
hierarchy then v = d±w is self-similar with c = 0. But given a self-similar solution
v of the mKdV hierarchy there is no self-similar w solution of the potential mKdV
hierarchy such that v = dι w, unless c = 0. The point is that the string equation for
the mKdV hierarchy only implies ££w(t) = w(t) + w0(σ).

The self-similar condition for the potential mKdV hierarchy is the string
equation that appears in [15] for the double scaling limit of the UMM. In this case
c = 0, but when the self-similar condition is required for the mKdV hierarchy there
is no need to confine c = 0; this is the case for the double scaling limit of the UMM
with an additional boundary term that models the presence of c flavours of quarks
[11,5].

The general self-similarity condition can be reformulated as a zero-curvature
type condition. This approach is closely connected with the isomonodronic tech-
nique employed in [12]. We define the outer derivative

where H = σ3 is the diagonal Pauli matrix - observe that δ is proportional to the
derivation defining the principal grading of the affine Lie algebra A(^} - and

M :=<£,*>, M:=(η,Xy. (2.10)

Here <( , ) is the standard pairing between 1 -forms and vector fields. Then one has,

Theorem 2.3.
1. The zero-curvature type condition

[d- f ,<S-M]=0 (2.11)

is equivalent to the generalized string equation (2.6).
2. The equation

[d-*7,<5-M] -0

is equivalent to Eq. (2.8) with c = 0.
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Proof. For the 1-form ξ this follows from the condition

that is equivalent to
δξ = Lxξ,

where Lx denotes the Lie derivative along the vector field X. But

and recalling the zero-curvature condition for ξ, we obtain the desired result. The
same argumentation holds for η. D

This theorem is the key for the analysis of the moduli space of the string
equation.

3. Homogeneous Spaces and the String Equations

In this section we use the periodic flag manifold Fl(2) description of the mKdV
flows, [20, 16], in order to characterize geometrically the string equations for the
self-similar solutions of the mKdV hierarchy. We also analyse the string equation
for the potential mKdV hierarchy, not in the periodic flag manifold but in a line
bundle over Fl(2). These manifolds appear when one considers certain factorization
problems in loop groups.

Recall that ξ defines a 1-form with values in the loop algebra Lsl(2, <C) of
smooth maps from the circle S1 := (λe(C: |λ| = 1} to the simple Lie algebra
si (2, (C), traceless 2 x 2 complex matrices. We define an infinite set of commuting
flows in the corresponding loop group LSL(2, (C),

(3.1)

where g is the initial condition and

S(U):=exp( Σ t2n\ «^o
(3.2)

\ «^o /
where

J(λ):=λF + E (3.3)

in terms of the standard Cartan-Weyl basis {£, H, F} for si (2, (C), i.e.

i
these notations will be used in the rest of the paper.

Now, we introduce some definitions; the notation is that of [16]. Denote by
L+SL(2, C) those loops which have a holomorphic extension to the interior of S1,
by L~SL(2, (C) those which extend analytically to the exterior of the circle, and by
Lϊ SL(2, C) c L~SL(2, C) the subset of those extensions which are normalized by
the identity at oo. Consider the subgroup B+SL(2, (C) of loops of L+SZ(2, (C) such
that its holomorphic extensions to the interior of S1 when evaluated at the origin
belongs to the standard Borel group of SX(2, C), that is the upper triangular 2 x 2
matrices with unity determinant. The group N+SL(2, (C) is defined analogously,
but now the Borel subgroup is replaced by the standard nilpotent group, i.e. upper
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triangular 2 x 2 matrices with 1 in the diagonal. The subgroup B~SL(2, C) is the set
of loops of L~SL(2, (C) such that its holomorphic extension to the exterior of S1

when evaluated at infinity belongs to the set of 2 x 2 lower triangular matrices with
unity determinant; when we ask to the elements of the diagonal to be equal to 1 we
have the subgroup N~SL(29 (C).

The factorization problem
ψ = ψll ψ+, (3.4)

where ψ-eN~SL(2,<C) and ψ+ eB+SL(2, (C), for ψ(t) is connected with the
mKdV hierarchy. The element ψ- can be parametrized by a function v, in such
a way that ψ _ is a solution to the factorization problem if and only if v is a solution
to the mKdV hierarchy. Therefore

λnJ(λ)dt2n+λ (3.5)
O /

is the zero-curvature 1-form for the mKdV equation [7]. Here id = P+ + P_ is the
resolution of the identity related to the splitting

L*l(29 C) = £ + sI(2, <C) ® ΛΓsl(2, C) .

Similarly, if we consider the factorization problem

with \jj.eB~~ SL(2, C) and ψ+ eN + SL(2, C), for ψ(t) we find the potential mKdV
hierarchy. Now, φ- can be parametrized by a function w, such that φ- is a solution
to the factorization problem if and only if w is a solution to the potential mKdV
hierarchy. Thus

η := dφ + ψ~+

 ί = P+ Ad $ _ ( X λ"J(λ) dt2n+l

V n ^ O

is the zero-curvature 1-form for the potential mKdV equation [7]. The resolution
id = P+ + P- is associated with the decomposition

Lsl(2, C) = ]V+sl(2, C) Θ B"sl(2, C) .

One can conclude from these considerations that the projection of the commut-
ing flows ψ(t) on the periodic flag manifold [16, 20]

LSL(2, C)/β + SL(2, C) ̂  Fl(2) ,

can be described in terms of the mKdV hierarchy.
We must remark that g determines a point in the periodic flag manifold up to

the gauge freedom g\-^g h, where heB + SL(2, C). A solution of the mKdV
hierarchy does not change when g(λ)\-+ Gxp(β(λ)J(λ)) g(λ) if exp(/?J)e
N~SL(2, C). We can say that the moduli space for the KdV hierarchy contains the
double coset space

Jί := Γ_\L5L(2, C)/β + SL(2, C) ,

where Γ_ is the abelian subgroup with Lie algebra C{ΛΛ/(Λ,)}n<0, [20].
The potential mKdV hierarchy describes the projection of these commuting

flows over



224 M. Manas and P. Guha

a line bundle over the periodic flag manifold Fl(2). Being the moduli space

Jt\= Γ_\LSL(2, <C)/JV+SL(2, C) .

Let us now try to find for which initial conditions g one gets self-similar
solutions, i.e. points in these homogeneous manifolds that are connected to self-
similar solutions of the mKdV hierarchy and to the potential mKdV hierarchy.

Recall that we have the derivation δ eDer B + si (2, <C), Der7V+sI(2, <C) defined in
(2.9) and the vectors M(t)e£+sl(2, (C), M(t)eΛTsI(2, (C) defined in (2.10). If we
denote by

θ(λ):= Σ°2n + ιλn, (3.6)

M ^ Othen it follows

Theorem 3.1.
1. If the initial condition g satisfies the equation

ΘJ , (3.7)

for some KeB+*\(2, C), where θ, J are given by (3.6), (3.3), then the corres-
ponding solution to the mKdV hierarchy satisfies the string equation (2.6), i.e.
£4. (2.8).

2. Ifg satisfies the Eq. (3.7) for some Ke Λf+sl(2, C) then the associated solution
w to the potential mKdV hierarchy is self-similar under the action of the vector
field X defined in (2.5) and so v = d1w is the solution to (2.8) with c = 0.

Proof. We prove the first statement. For ξ = dψ + 'Ψ + 1 we observe that Eq. (2.11)
holds if and only if

K9 (3.8)

for some K e #+sl(2, C). This, together with the factorization problem (3.4), implies
the relation

M = δψ- ψ- 4- Adψ-(δS S + AdS(δg g + AdgK)).

Now, M(t)eB + sl(2, (C), and Eq. (3.7) gives

M = P+Adψ-(δS S-1 + A d S ( Θ J ) ) .

But, as can be easily shown,

M = P+Mψ-(θ(λ) + σ £ (n+ l/2)t2n + 1λ
n)J(λ).

Taking into account Eq. (3.5) we recover (2.10) and therefore the string equation is
satisfied. The second statement can be proved as above but replacing B+SL(2, C)
by JV+SL(2,(C). D

4. Description of the Moduli Space of the String Equations

Now, we shall give a description of the points in the periodic flag manifold
corresponding to self-similar solutions of the mKdV hierarchy. The periodic flag
manifold Fl(2), [16, 20] is the set of pairs (V, W) of subspaces in the Hubert space
2tf = L2(Sί, C) such that they belong to the Segal-Wilson Grassmannian [19] and
satisfy the periodicity condition λ2W c= λV c= W. In the Segal-Wilson framework
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only the family of solutions related through the Miura map to the Adler-Moser
rational solutions of the KdV hierarchy [1] appears as self-similar solutions.
A much larger family lies in the Sato extension of the periodic flag manifold, where
2tf = C[[A~1, λ] and the subspaces belong to the Sato Grassmannian [17].
Therefore, we shall consider the Sato periodic flag manifold Fl(2). The statements of
the previous section which are rigorous in the Segal- Wilson case, can be extended
to the Sato frame if the formal groups N~ SL(2, <C), B~SL(2, <C) are considered only
when acting by its adjoint action or by gauge transformations in the formal Lie
algebra $1(2, C)[[A~1, λ]. In this context Eqs. (2.11), (3.8) and (3.7) still hold.

To connect the results of the previous section with this description we write

with Φιφ 2 — Φιφ2 = 15

 and introduce the notation

<P2

Define also the map [16, 19] Φ ι-> φ := ΓΦ, where (TΦ)(λ) := λφ^λ2) + φ2(λ2).
Notice that for each equivalence class in Ji an element g can be taken such that

In g e CF 0 si (2, C) [[λ~ x), and that any element in the coset g £+SL(2, C) gives
the same point in the periodic flag manifold.

Since S|t = 0 = id, (3.2), it follows from (3.4), (3.1) that ψ+ t = 0 = id and Eq. (3.8)
gives

But, from (2.10) we have

X = <f | t β 0 , ί>,

where we have taken into account that (2.5) implies

AΊ t = 0 = «.

From these considerations we conclude

Theorem 4.1. The points (V, W) in the Sato periodic flag manifold Fl(2) correspond-
ing to self-similar solutions of the mKd V hierarchy are given by

where φ and φ are the solutions of

W + + i t =
dλ 2 J ^o j \φ

having the asymptotic expansion

~ Λ _ Λ _ 00
φ

Here θ and /2« + ι are given by (3.6), (2.3) respectively.
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Observe that the subspaces F, W in the Sato Grassmannian are characterized by
the periodicity condition

λ2W a λVc: W,

and by

where

*t =τ*.£
2 aλ

see [2]. Similarly, one can prove that

Theorem 4.2. The points in the line bundle over the Sato's periodic flag manifold Fl(2)

LSL(2, C)/W + SL(2, C) ̂  B~SL(2, <C) ,

corresponding to self-similar solutions of the potential mKd V hierarchy are given by
the solutions φ, φ of

» n t=
dλ 2 ) n^0 J \φ

having the asymptotic expansion

'φ\ ( λ + φ2o + ΦuΊ" 1 + Φ2i^~ 2 + ' '
00

Here θ and ?2n+ι are given by (3.6), (2.4) respectively.

Given σ one can consider θ(λ) as a polynomial of degree TV, then the functions
Φ, φ defining the point in Fl(2) associated to a self-similar solution of the mKdV
hierarchy depends on the parameters

where we denote by /= δi/, /0 =/(t = 0). These constants are not independent, in
fact they fulfill the GeΓfand-Dikii relations [6],

n — 1 n— 1 n

^n+1,0 — 2 ^j ^m,0^n-m,0 ~ X ^m, 0-^n-m, 0 + ^WQ ^ ^m so-^n-m,0
m = 0 m = l m = 0

m = l

and the string equation gives the additional constraint

Avl + Bι?o + C = 0 ,

where
,4:= 2 # 2 n + l ^ n 0 ?
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Here we have used the Miura map (2.1) connecting u with v. Therefore, since these
are all the constraints that must be satisfied by the constants we conclude that our
solution is parametrized by a 2N + 1-dimensional algebraic variety Σθ c (£3M+1.
For each point in this variety we have a subspace in the Sato periodic flag manifold
Fl(2), this map gives an inclusion Σθ c; Fl(2). This 2N + 1-dimensional surface
intersects the Segal- Wilson periodic flag manifold Fl(

0

2) in a discrete set, that can be
labeled by N, in fact this intersection set corresponds to an Adler-Moser rational
solution to the KdV hierarchy.

Observe that
σ A B

c + - = Avo + - ,

and when c = 0 we have the additional constraint

σ B

This must be satisfied if we are looking for self-similar solutions to the potential
mKdV hierarchy. The functions φ, φ giving these self-similar solutions depends on
the above parameters and on vv0, but this parameter is irrelevant; if w is self-similar,
then so is any w + const. We can therefore fix the value of w0. This analysis implies
that the moduli space is 2ΛΓ dimensional.

The correct number of parameters can be found directly from the string
equation. Supposing that the solution is defined at the origin we find solutions to
the string equation when 0 = ί3 = t5 = . The number of parameters needed to
describe them is the dimension of the moduli. The solutions are obtained from
these initial data by applying the commuting flows on the integrable hierarchy.
Also it can be obtained by an analysis of Stokes' parameters associated to the string
equation, this is the approach of [12]. Nevertheless, in our description the dimen-
sion of the moduli is obtained as the number of parameters necessary to describe
the points of the homogeneous space associated with self-similar solutions. There-
fore they have a clear geometrical interpretation.

5. Connection with the Moduli Space for the KdV Hierarchy

The discussion in the previous section provides us with a detailed account of the
moduli space for the string equations of UMM with border terms and also when
these border terms are absent. In this section we shall connect this description with
that given in [8] for the moduli space of self-similar solutions to the potential KdV
hierarchy. The string equation in this case is associated with the so-called 2D stable
quantum gravity [4]. For the potential KdV hierarchy the Birkhoff factorization
problem is essential. In fact the Birkhoff factorization

where ψ- eLϊSL(2, C) and ψ+ εL+SL(2, C), forthe commuting flows ψ(t)9 can be
solved in terms of a function p that parametrizes ψ _ and satisfies the potential KdV
hierarchy,
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where u = —2d1pisa solution of the KdV hierarchy, see [19, 7, 8]. This means that
the projection of the commuting flows ^(t) in the Grassmannian manifold

Gr(2) £ LSL(2, C)/L+SL(2, C)

can be described in terms of the potential KdV hierarchy.
One can write

φ- = exp(aF) φ _ ,
where

exp(βjp) = lim φ~ .
λ->oo

Hence, φ+ = exp(aF) φ + and so [7]

or
a = v + p, u:= — 2d±p = d1v —v2 .

The initial condition for the mKdV hierarchy can be chosen such that

g = g exp(-a0F)EN-SL(2,<L) ,

where geLΪ SL(2, C) is the initial condition for the corresponding solution to the
potential KdV hierarchy. Thus, if φ, φ are associated with g, and give the point
(F, W) in Fl(2) corresponding to a solution v of the mKdV hierarchy, and φ, φ are
associated with $, and thereby define a subspace W \— <£{λ2nφ, λ2nφ}n^0 in Gr(2)

corresponding to a solution u = δ^v — v2, one has

Therefore, given a solution p to the potential KdV hierarchy there is a one-
dimensional space of solutions of the mKdV hierarchy that through the Miura map
goes to u = — 2δ1p. A possible parameter for this family is the initial value VQ. This
has a clear geometrical interpretation [20]. Observe that W = W, therefore we
have the projection

π: Fl(2) -* Gr(2)

(F, W) H» W .

The periodic flag manifold Fl(2) is fibered over the Grassmannian Gr(2), the fiber
being a copy of (DP1, [16]. The fiber π~1(W) can be recovered from Eq. (5.1). The
projection π can be interpreted as the Miura transformation [20]. Schematically
this can be encoded in the Wilson commutative diagram

Fl(2) -> solutions of the mKdV hierarchy

π I \, Miura map

Gr(2) -> solutions of KdV hierarchy .

For a given self-similar solution u of the KdV hierarchy we have a one
parameter family of solutions to the mKdV hierarchy. The solution u fixes the
GeΓfand-Dikii potentials. Thus if we look for a self-similar v in this family the
string equation selects two possible values v0t + . Hence, there are only two points
(associated to self-similar solutions v±)m the fiber corresponding to u. Let c+ be
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the value of c for υ± , then

and

where

A = B2 - 4AC

is the discriminant of the equation for υ0 . This A is essentially the parameter Γ of
the first reference of [5].

Suppose as before that θ is a polynomial of degree N, then as was proof in [8]
the moduli space for the self-similar to the KdV hierarchy is a 2N + 1 -dimensional
surface in Gr(2), and from the above discussion we conclude that the moduli space
for the self-similar solutions of the mKdV hierarchy is double covering of this
surface, see [2]. For the mKdV case we have the following commutative diagram:

^mKdv -* solutions of the mKdV hierarchy and string equation

Z2 I I Miura map

^Kdv -> solutions of the KdV hierarchy and string equation ,

where ^mKdv c Fl(2) and Jίκdv c Gr(2) denote the moduli spaces for the self-
similar solutions of the mKdV and KdV hierarchies, respectively.

For the potential mKdV hierarchy, the situation is rather different. The homo-
geneous space LSL(2, €)/N+SL(2, C) is a line bundle over Fl(2). This fibering is
a consequence of the following fact: given a solution w of the potential mKdV
hierarchy any w -f constant is a solution as well. Given the initial condition
geB~SL(2,<t), one has the factorization

where geN~SL(2, C) is the initial condition fixing the solution υ = d±w of the
mKdV hierarchy, and

lim g = exp(-(p0 4- ί;0)F) exp(- w0#) .
λ-+oo

Given a self-similar solution w, any solution in the corresponding fiber is also
self-similar. Thus, we can look to the corresponding point in the base manifold
Fl(2), that is to the v = <?ι w self-similar solution of the mKdV hierarchy. In this way
the periodic flag manifold contains the moduli space of self-similar solutions of the
potential mKdV hierarchy. But now we have the constraint c = 0. In fact, we have
a subset of codimension one in the 2N -f 1 -dimensional moduli space for the
self-similar solutions of the potential KdV hierarchy which is in a one-to-one
correspondence to the self-similar solutions of the potential mKdV hierarchy.
Hence, the moduli space is a 2ΛΓ-dimensional surface in Fl(2). Summing, when c = 0
not only the two-folding disappears but also not every self-similar solution of the
potential KdV hierarchy is connected to a self-similar solution to the potential
mKdV hierarchy.

In physical terms this means that stable 2D quantum gravity [5, 4] (self-similar
solutions of the potential KdV hierarchy) is covered twice by the double scaling
limit of the UMM with boundary terms [11], see [5]. But there is only a subset of
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stable 2D quantum gravity corresponding to the double scaling limit of the UMM
(no border terms) [15].

Suppose that we write 92n + 3 = Θ2n + ι , where we choose θ± = 0. Then a possible
solution to the string equation for self-similar solutions of the mKdV hierarchy is
a v that satisfies

The corresponding u is a solution to the string equation of the double scaling limit
of the HMM (translations and Galilean self-similarity in the potential KdV
hierarchy). This gives a connection between the HMM and the UMM with border
terms. Notice that c = — σ/4, and therefore the corresponding w is not self-similar.
So the mentioned connection only exists when the border terms are present. Thus
the HMM is not connected in this way with the UMM.

As an example we can analyse the case θ(λ) = — 1, σ = 1. In [8] it was found
that

and

I4λ
φ(λ)~ίJ^e-*λKv(-2λ)~ Σo(-^4;jr^v_n^/2)λ-n, A - o o ,

where

2

and Kv is the Macdonald's function [13]. We know that

The string equation for the potential KdV hierarchy implies

Po — ~ uo 9

and the string equation for the mKdV hierarchy gives

1

So, for a given u, generically we have two points (F+, W) in the periodic flag
manifold. Observe that when u0 = 1/16 there is only one point v0 = 1/4 that is
a branch point for the double covering. Now c = v0 . These solutions belong to the
Segal- Wilson periodic flag manifold if and only if

lO}, (5.2)

which implies
m m + 1

When (5.2) is satisfied we are dealing with the rational solutions of the mKdV
hierarchy, [1], υ+ = vm and υ- = —vm + ι, where vm is the solution of the mKdV
hierarchy that for t = (ί1? 0, 0, . . . } is of the form vm = m/(ίι —2). Both solutions
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are mapped through the Miura transformation into the rational solution of the
KdV hierarchy that for t = {tl9 0, 0, . . . } is of the form u = - m(m + 1)1 fa - 2)2

(and p = — m(m -f l)/2(tΐ — 2)). These are the well known rational solutions of the
KdV hierarchy that vanish at tl = oo, analysed by Adler and Moser [1]. For m = 0,
and u = 0 we have υ+ = 0 and ι;_ = - l/(tί - 2); for m = 1, and u = - 2/(f t - 2)2

one has v+ = I/fa -2) and t?_ - fa-2fa -2)*)/(fa -2)(fa ~2f + ί3)). Ob-
serve that u only depends on tl and that υ- depends also upon ί3.

For an arbitrary u0 we have two points in the Sato periodic flag manifold, so
there is a one-dimensional complex curve in this space giving scaling self-similar
solutions.

Observe that if (5.2) is satisfied then v = m + 1/2, and φ is the following
polynomial in A " 1 :

d m + 1

If we look for self-similar solutions of the potential mKdV hierarchy we need
c = 0, hence ι;0 = 0 and u0 = 0, which gives v = 0 and w = cte. In this case the
solution is unique and trivial.
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