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Abstract. We construct N = 2 supersymmetric quantum Hamiltonians with mero-
morphic superpotentials on compact Riemann surfaces and investigate the topological
properties of these Hamiltonians. L2-cohomology groups for supercharge (a deformed
8 operator) are considered and the Witten index for the supersymmetric Hamiltonian
with meromorphic superpotential is calculated in terms of Euler characteristic of the
Riemann surface and the degree of a divisor of poles for the differential of the super-
potential.

1. Introduction

The conception of supersymmetry was introduced as a theoretical construction in
the quantum theory of fundamental interactions [1]. Now this conception has useful
applications in quantum mechanics [2] and mathematical physics [3] as a basis for the
investigations of topological properties of the Hamiltonians and elliptic complexes.
Supersymmetric scattering theory [4] gives a general approach to generalizations of
index theorems on elliptic operators with continuous spectrum and to the investigation
of topological properties of scattering matrices.

It is especially important to investigate the supersymmetric Hamiltonian H with
nontrivial Witten index ΔW(H) [or supersymmetric scattering index n(H,H0)]. The
classical Hodge-de Rham theory states that the Witten index for the Laplace operator
on forms on the compact Riemannian manifold with smooth metric is equal to
the Euler characteristic of the manifold. Another example of the supersymmetric
Hamiltonian with nontrivial Witten index arises in the holomorphic N = 2 Wess-
Zumino model in supersymmetric quantum mechanics which was introduced in [5,6]
and developed in [7-9]. It was discovered in [5] for the supersymmetric Hamiltonian
on a (noncompact) complex plane with polynomial superpotential / the Witten index
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is connected with degree of polynomial (ΔW(H) = deg(/) - 1). On the Riemann
sphere the polynomial corresponds to the meromorphic function with a pole at infinity.
These exmples show the importance of the topology of manifolds and singularities
of superpotentials for the value of Witten indexes. That is why it is interesting to
investigate the supersymmetric Hamiltonian with general meromorphic superpotential
on the compact Riemann surface of arbitrary genus. The problem is considered in this
paper.

In the paper [8] the case of general meromorphic superpotentials / on the complex
plane with euclidean metric was treated. The paper contains a mathematically rigorous
approach to the definitions of self-adjoint extensions of supercharges. It was shown
that for a general meromorphic superpotential there are two different self-adjoint
extensions of the supercharges which are non-Fredholm operators. In the particular
case of f(z) = λz~p(p G JV, Λ £ C\{0}) these two supercharges coincide and the
Witten index is equal to I—p. The mathematical problems in the case of meromorphic
superpotentials on the complex plane with euclidean metric are due to the finite volume
of compact neighbourhoods of poles of the superpotential. This point crucially differs
this case from the case of the polynomial superpotential which increases at euclidean
infinity. In our approach we propose to consider the metrics on Riemann surfaces
which are euclidean at infinity at the poles of superpotential. (The supersymmetric
scattering theory for the supersymmetric Hamiltonian on the Riemannian spaces with
an euclidean at infinity metric and zero superpotential was constructed in [4].) In
such a metric in our case we will have the compactness of the resolvent of the
supersymmetric Hamiltonian and Fredholmness of supercharges.

On the other hand in [10] the attention was attracted to the investigations of
L2-cohomologies of the complex which arises in N = 2 Wess-Zumino quantum
mechanics. Motivated by their work in [9] cohomology groups for the perturbed
Dolbeault operator were considered and their connection with cohomologies of Koszul
complex was discovered. N — 2 supersymmetric quantum mechanics on Cn with the
holomorphic superpotential was considered in [9]. It was shown that zero-modes of
the supersymmetric Hamiltonian lie in the subspace of differential forms of middle
degree and the number of zero-modes is equal to the number of zeros of the differential
of the holomorphic superpotential.

In [9] the connections between smooth cohomologies of the operator dj = 5 + /,
/-holomorphic one-form, and local rings of singularities for the general case of
Stein spaces were investigated. To understand the direct connection between the L2-
cohomologies of the supercharge and the structure of singularities of the superpotential
in the general case it is important to investigate N — 2 supersymmetric quantum
mechanics with arbitrary meromorphic superpotential on a general compact Riemann
surface.

In this paper we construct an N — 2 supersymmetric Hamiltonian with meromor-
phic superpotential on arbitrary genus Riemann surface as on the Riemannian space
which is euclidean at infinity in pole points of the superpotential. We prove the ana-
log of the Hodge Theorem for our complex and calculate the Witten index for this
supersymmetric Hamiltonian.

The paper is organized as follows. In Sect. 2 we construct supersymmetric
quantum mechanics with meromorphic superpotential on Riemann surfaces which we
consider as a euclidean at infinity manifolds. In Sect. 3 we describe the corresponding
L2-cohomology and we prove the analog of the Hodge Theorem. In Sect. 4 we
calculate the Witten index for the supersymmetric Hamiltonian with meromorphic
superpotential and in Sect. 5 we formulate a conclusion about the necessity of the
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requirement of euclidean at infinity metric and we reformulate the result for the Witten
index in terms of the Euler characteristic of compact Riemann surfaces and the divisor
of poles for the differential of superpotential.

2. N = 2 Supersymmetric Quantum Mechanics
with Meromorphic Superpotentials on Riemann Surfaces

The algebra of N = 2 supersymmetric quantum mechanics

H = Q+Q~ +Q~Q+, (Q + ) 2 = 0, ( Q - ) 2 - 0 , (Q+f = Q~ (1)

has an algebraically equivalent form for self-adjoint supercharges: Qx = Q+ + Q~
and Q2 = i(Q+ - Q~),

H = Q\ = Q | , {Q{,Q2} = QXQ2 + QiQx = 0,

For unbounded operators in Hubert space H we suppose that these relations take
place on dense Q ± -invariant domain D, where the Hamiltonian H is essentially
self-adjoint.

If we are interested in the Witten index we need to fix, in addition to (1) or (2),
unitary self-adjoint involution τ (r* = r~ι = τ) on H such that

{τ,Q+} = {τ,Q-} = 0 or {τ,Qι} = {τ,Q2} = 0. (3)

The Witten index for supersymmetric Hamiltonian H relative to involution r is defined
as [2]

ΔW(H, r) = dim P+H(0) - dim P_H(0),

where P± -spectral projection on the eigenspace of r with eigenvalue ±1 and H(0) is
the eigensubspace of H corresponding to zero eigenvalue.

To construct the TV = 2 supersymmetric Hamiltonian with meromorphic superpo-
tential with poles in z{,..., zn on the arbitrary genus compact Riemann surface M o

we need to introduce on the manifold M = M 0 \{z l 5 . . . ,zn} a Riemannian metric
g which is euclidean at infinity in the points zv...,zn. This means that there are
open neighborhoods OR. of zi and diffeomorphic maps φi of OR \{^} to open sets
CBR = {u e C: \u\ > Rτ} on complex plane such that on each OR. the metric is
the pullback by φτ of the euclidean metric on CBR . Besides this everywhere below
the metric g will be assumed to be a Kahler one. It is possible to construct such a
metric starting from the arbitrary Kahler metric on the compact Riemann surface M o

by means of sticking together this metric on M\ VJi OR with the euclidean ones in
the vicinities OR of zv

For the meromorphic superpotential f(z) on Mo with the poles in points
{zι, ' ,zn} ^ Mo we define supercharge QJ on smooth differential forms with

2

compact support ΛC(M) = 0 A*(M), M = M0\{z{,..., zn} as the deformed Dol-
k=0

beault operator
Qt = dv = d + V, (4)

where 5 = — dzA and V = -4^- dzΛ.
oz σz
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The adjoint supercharge Q~ and symmetrical supercharge Qc are defined as

Qc = (Qtf U(M), Qc = Qt + Qc (5)

The hermitian conjugation (h.c.) is considered here relative to the scalar product on
ΛC(M), defined by the metric g on M:

(ω,φ)= ω Λ * ψ = (ω\φ),

M M

where * is the Hodge star operator. The operators Q+, Q~ and Hc = Q^Q~ +Q~Q+
give the realization of the algebra of TV = 2 supersymmetric quantum mechanics on
ΛC(M).

Let us start with the following lemma:

Lemma 2.1. The supercharge Q+ is closable operator in Hilbert space H = Λ2(M) =
ΛC(M) of square integrable forms on M and

Qt Qt=o. (6)

Proof. If xn e ΛC(M), xn —> 0, and Q^xn —> y then for arbitrary ω G ΛC(M),

(y,ω) = lim (Q+xn,ω) = (xn, (Qtfω) = 0,
n—> oo

i.e. y = 0 due to the density of ΛC(M) in Λ2(M).

To prove (6) we represent arbitrary x e D(Q+2) = {x e D(Q+):Q+x e D(Q+)}

by xn e ΛC(M), such that xn —> x and Q+xn —• Q+x.

Due to Q+(Q+)xn = ( Q j ) 2 ^ n = ° a n d closeness of Q+ we have Q+x G D(Q+)

and Q+(Q+x) = 0. D

Let us define supercharges Q + , Q~ ,Q,

Q+^Qt, Q-= (Qff = (Q+f , Q Ξ Q + + Q-

Supercharges Q + , Q~ are closed operators with dense domains of definition ±

ΛC(M) c DiQ^, and (Q*) 2 = 0,

Lemma 2.2. ζ) c «n<i Hc = Q\ are essentially self-adjoint operators and

Proof First of all due to a Glimm-Jaffe-Nelson type theorem on essentially self-
adjointness of symmetric operators [16], if Q\ is an essentially self-adjoint operator,
then Qc is also an essentially self-adjoint one. That is why it is sufficient to prove the
essentially self-adjointness of the Hamiltonian Hc = Q\ on ΛC(M). In the paper [11]
the general methods for the proof of self-adjointness of the square of general Dirac
operators on complete Riemannian manifolds were developed. Due to our choice
of metric g on M = M 0\{z 1,... ,zn}9 which is euclidean at infinity in each zτ,
i = 1,. , n, our manifold (M, g) is complete. That is why we can apply general
methods from [11] to our case.

Now we have to show that self-adjoint operator Qc coincides with the operator Q.
To see this let us construct by means of the operator Q the sesquilinear form α( , •)
on the domain D[a] = D(Q+) Π D(Q~) defined as

a(x, y) = (Qx, Qy), x,y e D[a].
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Then we have due to Lemma 2.1 that a(x, y) = (Q+x, Q+y) + (Q~x, Q~y) and that
sesquilinear form α( , •) is a non-negative closed semi-bounded form. The standard
representation theorem for closed, semi-bounded sesquilinear forms [16] immediately
gives us that there exists a unique non-negative self-adjoint operator H such that
D(H1/2) = D[a] and

(Hι/2x, Hι/2y) = a(x, y) for x,y e D(Hι/2).

The operator H coincides with H because H\Λc(M) = Hc and H = Hc. So the

form α( , •) corresponds to the operator H = Q2 and we can consider the operator

= Qc. Then

° a n d (Q =
where U is an isometric operator. Using the equality Q\Λc(M) = Qc we obtain U = I

and Q~c = Q. D

Remark. As we saw from the proof of Lemma 2.2 the essentially self-adjointness of
the Hamiltonian Hc = Q2

C on ΛC(M) is closely related to our choice of Riemannian
metric g, which is euclidean at infinities in the poles {zγ,..., zn} of the meromoφhic
supeφotential f(z). We will have different results if we consider the self-adjoint
extensions of Qc and Hc = Q\ defined on ΛC(M), M = M 0\{z 1,.. . ,zn} in the
case of compact Riemann surface Mo with smooth metric g0. The careful analysis
for the case of the Riemann sphere with ordinary euclidean metric and meromoφhic
supeφotential was developed in [8] and gave the description of two different types
of self-adjoint extensions of Qc and sufficient conditions for their coincidence. (We
are grateful to the referee for the information about the paper [8].)

3. L2-Cohomology of Deformed Dolbeault Operator
and Zero-Modes of N = 2 Supersymmetric Hamiltonian

In this section we construct the analog of the Hodge theorem for the differential
complex, generated by the closed deformed Dolbeault operator Q+ = (<9 + V) in the

2

space Λ2(M) = 0 Λ^iM), M = M0\{z1,..., zn}, where Mo is a compact Riemann
fc=0

surface. Noncompact Riemann surface M is a 1-dimension complex Stein space [12]
and for the unperturbed Dolbeault operator d on the space of smooth forms,

2 2

Λ(M) - 0 Λ\M) = 0 0 Λ
/c=0 k=0 p-{-q=k,p,q>0

the smooth cohomology groups are [12]:

where ΩP(M) is the space of holomoφhic p-forms on M.
For perturbed Dolbeault operator Q+ — (5 + V) on the space of all smooth forms

Λ(M) the cohomology groups for the complex

A\M) ^ A\M) -̂ X A2{M),

H\M) = Ker(<5 + V)\Ak(M)/R(d + V)\Λk-HM), k = 0,1,2
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are isomorphic to the cohomology groups of the Koszul complex

K*(M) = KeτV\ΩP{M)/R(V\ΩP-HM)), P = 0 ,1,

and
0 p = 0
φR{ p = I '

where R{ = Oz/[df]z,Oz denotes the ring of germs of holomorphic functions in

the vicinity of z and [df]z is the ideal in Oz, generated by the —— [9].
oz

We introduce L2-cohomology groups for the supercharge Q+ = (d-\-V) in Hubert
2

space of square integrable forms Λ2(M) = 0 Λ%(M)9

k=0

Hξ>v(M) = Ker(5 + V)\Λ>1(M)IRφ + V)\^-\M)

and investigate the connections of these groups with the spaces of zero-modes of our
N = 2 supersymmetric Hamiltonian (perturbed Laplace operator)

H = Δ(V) = ((5 + V) Φ + Vf + Φ + Vfφ + V)).

We start with two propositions relative to the operator Δ(V):

Lemma 3.1. 1. Operator Δ(V) has a form

H - Δ(V) = H0 + b*bd(^ df\ + *>*bd(l- dfj =

1 2
where Ho — - A + — |<9/|2, A — 2{<9, 0*} is the usual Laplace operator on

Riemannian manifold M with Kάhler metric g, a = gzz, 6* = c/zΛ, 6* =
5 5 * S* * 5zz

5, b are adjoint operators for 5*, 6*. The operators S*, 6*, 5, 6 o&e y the following
algebra:

2. For α/2̂  ε > 0 ί/î r̂  exists constant C > 0 swc/z that for any ω G D(H0),

\(Kω, ω)\ < ε(Hoω, ω) + C(α;, α;).

Proof The first part of this proposition can be proved by direct calculations. To prove
the second part of the proposition it is necessary to take into account that under our
conditions the operators 5*, 6*, 5, b are bounded and for any ε > 0 there exists the
constant Cε > 0 such that

\d2f\<ε\df\2 + Cε (7)

for all z on M. D

Lemma 3.2. Operator Λ(V) has a compact resolvent.
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Proof First of all we prove that the operator Ho has a compact resolvent. After this
we can use Lemma 3.1 and standard perturbation theory of Kato [14] to prove the
statement of this lemma.

The proof of the compactness of the resolvent of Ho can be fulfilled in close
analogy with the corresponding statement for the usual Schrδdinger operator with
increasing potential [16]. According to minimax principle it is enough to prove that
minimax principle numbers:

Mn(#o)= S UP i n f (Ψ,Hoψ) (8)
φu ,φn_x ψeD{H0);\\ψ\\ = l

tend to infinity (μn(H0) —>• oo) if n —• oo. For any B > 0 there exists the set
2

of positive numbers {Rx,...,Rn} such that - \df\2 > B if z e ^ O ^ . Such a

set exists because the function / has poles in the points {z l 5 . . . , zn} into the open
neighborhoods OR . Let us consider the potential W such that

ΓO (x,y)GUιORι

\-B (x,y)eM\UtORι'

Then - \df\2 > B + W and μn(H0) > B + μn{\Δ + W). Due to W is the

potential with compact support 37V such that μn{\ A + W) > - 1 for n > N. Hence
μn > B - 1 for n > N and μn(H0) -^ oo if n —> oo because the parameter 5 is
arbitrary one. So the operator i/0 has a compact resolvent. •

Let us introduce the spaces of zero-modes of the perturbed Laplace operator:

¥ίk(Δ(V)) = {ω e D(Δ(V)) Π A\: Δ(V)ω = 0} ,

then it is possible to formulate the analog of the Hodge Theorem [13]:

Theorem 3.3. 1. dim 1^(4(10) < oo.
2. There is a self-adjoint compact operator G on A2(M) such that

Λ2(M) = KerCd(ΐO) θ Q+(Q~GΛ2(M)) θ Qr G(Q+Λ2(M)).

Proof The inequality άimHk(Δ(V)) < oo follows from the compactness of the
resolvent of Δ(V) by the standard way.

It is easy to see that the operator G defined as

G = ((Δ(V)Γι\(Ket(Δ(V))μ)o(I-P),

where P is an orthogonal projection on Ker(Δ(V)), is a self-adjoint positive compact
operator in Hubert space A2(M). There is the decomposition

A2{M) = Keτ(Δ(V)) θ R(Δ(V)).

Using Lemma 2.2 we have

The last equalities show us that R(Q+)±R(Q~) and that

R(Δ(V)) = R(Δ(V)) = R{Q~Q+) θ R{Q+Q~).
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Then we can infer that

A2(M) = Ker(4(I0) Θ R(Q~Q+) ΘR(Q+Q~),

and for all ω G Λ2(M)

ω = pω + Q+Q~Gω + Q~Q+Gω . (9)

Following the proof of this fact for the usual Laplace operator [13] it is not difficult
to show that for any operator T such that

TΔ(V) = Λ(V)T and T: D(Δ(V)) -> D0(V))

the following equality takes place:

TG = GT.

From this fact and the decomposition (9) we immediately have for all ω e Λ2(M),

ω = Pω + Q~GQ+ω + Q+Q~Gω .

This equality finishes the proof of the theorem. D

4. Calculation of the Witten Index for Supersymmetric Hamiltonians
with Meromorphic Superpotentials on Riemann Surfaces

For the calculation of the Witten index we shall use the approach developed in [15]
for the proof of Morse inequalities for smooth functions on Riemannian manifolds.
In this sense our result can be interpreted as the analog of the Morse equality for
meromorphic functions.

On the basis of Sect. 2 we conclude that

where τ\A±{M) = ±1 and

0 A\ H_Π2_(AA* 0

, 4 * O J ' W ~ V 0 A*A

with A: D(A) —> Λ2 (M) - densely defined closed operator on the domain D(A) c
A£(M), where D(A) = D(Q) Π A£(M). From the definition of the Witten index
relative to the involution r = (—l)N, N is the operator of the order of differential
forms

ΔW(H) = dim(Keriί ΓΊ Λ£(M)) - dim(Keriί Π £

we see that
ΔW(H) = dimKer A* - dimKer A = - ind(A).

Lemma 4.1. If we introduce ί e [ l , +oc) as a deformation parameter in the definitions
of supercharges by means of the substitution tV instead ofV in (4), then indί^) is
independent from t.

Proof. This fact is a cosequence of the continuity of the map:

VT t e [1, T]t -> Q(t) = 5 + tdfb* + h.c. e DIR(τl2(M)),

where DIR(τl2(M)) is the space of the operators on A2(M) which are
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1. odd with respect to the grading τ;
2. self-adjoint;
3. have a compact resolvent

with the following metric:

d(Qι,Q2)=\\(Qι+iΓ1 -(Qz + iΓ^l for QVQ2 e DIR(Λ2(M)).

This continuity can be proved with a method patterned after [6] using the resol-
vent identity and the boundedness of (Q(t) + i)~ι(dfb* + h.c.) (Q(tr) + ί)~\ On the
other hand ind(̂ L) is a continuous function of A e DIR(yl2(M)) in the described
topology [6]. D

Let us return to the supersymmetric Hamiltonian. According to Lemma 3.1 the
operator H(t) has the form:

H{t) = H0(t) + tK.

In our case K is an unbounded operator in Λ2(M). This is the main point of the
technical difference from the Witten case [15], where K was a bounded operator.

1 2
Lemma 3.1 gives a strong domination of HJt) = - A + t 2 — Id/12 in comparison

2 a
with K. Using this domination we can generalize the Witten approach.

1 2 2
In the operator Ho = - A + t2 - \df\2 the positive potential t2 - \df\2 tends to

2 α a
infinity: t\df\ —> oo for t —>• oo in all points except the critical points of superpotential
f(z). Due to the domination of H0(t) it is natural to expect the tendency of the
concentration of eigenfunctions of H(t) around the critical points of f(z). The next
Lemma 4.2 formalizes this consideration:

Lemma 4.2. Let N be the closed subset in M without critical points of the superpo-
tential f(z), then there exists C > 0, depending from N and positive real parameter
A such that for every eigenfunction Φ of H(t) with eigenvalue λ < A,

TV

Proof In the notations of Lemma 3.1 we have

(H0(t)Φ, Φ) - λ ί((Φ \ Φ) - t(KΦ IΦ)).

M

Using the following inequalities: λ < A and

t\(KΦ, Φ)\ < ε(H0(t)Φ, Φ) + Cx \\Φ\\2

Λl(M), 1 > ε > 0, Cx > 0,

and reducing the domain of the integration on the left-hand side from M to N one
obtains the inequality:

1 " £ f ί — \df\2(Φ I Φ)) < (A + Cx) \\Φ\\2 . (10)~~2~ / \~a I x II*ΊU2(M)
N

According to the definition of TV there exists a real positive number ω such that

-\df\2>ω (11)
a
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on N. Then from (10) and (11) we obtain the required inequality:

( 1 — ε
N

taking into account that Cx in (12) linear depends on t. D

Theorem 4.3. Witten index for super symmetric Hamiltonian H = Δ(V) equals to
the number of critical points of superpotential f(z) (accounting in according to the
degrees of their degeneracy) with sign minus.

Proof. Due to the stability of the Witten index of Δ(tV) relative to the deformation
of the positive parameter t it is possible to consider Δw(Δ(tV)) for t —• oo. In this
case all eigenfunctions of the operator Δ(tV) concentrate in the neighborhoods of
critical points of f(z): z\, i = 1,..., m, and it is possible to calculate the number of
zero-modes. On the first stage we suppose that f'(z) has only nondegenerated zeros
and the metric g is euclidean in the neighborhoods of these zeros. We overcome these
conditions at the end of our proof.

First of all we shall prove that Δ(tV) has at least m eigenvalues which increase
slower than t for t —> oo with the eigenfunctions in Λ^iM). Then we show that
all eigenvalues of Δ(tV) with eigenfunctions in Λj(M) and in A^{M) (except m
previously considered eigenvalues) increase proportional to t for t —» oo. Due to
supersymmetry of Δ(tV) this means in fact that the first m eigenvalues are zero
eigenvalues of Δ(tV) with the eigenfunctions in A^ and other non-zero ones.

In order to prove that there exist m eigenvalues slowly dependent from t we use
the minimax principle. According to this principle we need to construct m mutually
orthogonal vectors ωλ,... ,ωne D(Δ(tV)) Π A^(M) such that

(Δ(tV)ωi,ωi) < £(£)(cc; ,u; ),

where B(t) — o(t). We try to define these functions ωi as localized ones in the
neighborhoods Γτ of the critical points z° of the superpotential f(z), where

df(z) = I z + z\(z), c^O.z^z-z0,.

Let us introduce smooth functions φεi(z, z) with compact supports in euclidean
neighbourhoods of z\. To construct these functions we use positive C°° -function
on (—oo, oo) with the following property

a; € [ - 1 , 1 ] '

and positive number

ε < min < ε, \ max \z? — z°A L
I L ij J )

where ε is the minimal radius of local euclidean neighborhoods of z®, and we define

φε ^(i, I) = φ(ε~ι2y/2Rc(z — z®))φ(ε~ι2V2Im(z — z®)).

Using these notations we introduce {ω^^ as

Λ / 1 . I I /v I 9 v / 7 ^ ?

ωi — φε^(z,z)exp ί — - ί |cj \z\ )ί dz c
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According to the definition of ωi they have disjoint supports and hence they are
mutually orthogonal for i φ j .

In order to investigate the behaviour of (Δ(tV)ωi,ωi) for t —• oc we need to take
into account that ωi concentrate in the euclidean neighbourhoods of z\ and extract
the terms of maximum order in ί. They have the forms

oo2f f
— oo

oo

j Jt
J

— oo

Due to the inequalities

and

we have

We also have the term
oo

max \bi(z)\ ί ί <

— OO

OO

Γ f
\W\ / /

J J
— oo

max
l-e,ε]x[-ε,ε]

t-ε,ε]x[-ε,ε]

const

2i

2%

< const7 Vi(ωi,ωi).

J I e,,) Ξ h

<fxφ2

εiie-tM | s | 2

and the inequality for this term

j3(t) < const / f

On the basis of these inequalities we obtain

{Λ(tV)ωi,ωi) < const Viiω^ω^.

In order to prove that all eigenvalues of A(tV) with eigenfunctions in A^{M) and
in A^{M) (except m previously considered eigenvalues) increase proportional to ί
for ί —• oo we use once more the minimax principle. We start with the proof of the
following inequality:

(Δ(tV)ω,ω) >

for some 7 > 0 and Mω e ylJ(M)ΠD(JD(tV)). After this we prove the corresponding
fact for Λ~(M).
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Let us consider

(Δ(tV)ω,ω) = ί (((<3 + d*)ω \ (8 + 9*)ω) + ((Δ(tV) - \ Δ)ω |ω»

M

= J Q(ω,ω), ωeD(Δ(tV)).

M

It is possible to divide M on U ^ and Vo = M\ Ui Γi9 where { Γ J ^ 1 are euclidean
neighbourhoods of {z®} considered on the previous step. Hence

(Δ(tV)ω, ω) = J Q(ω, ; ' ω ) '

Using Lemma 3.1 and the analog of (7) for tf instead of / it is easy to obtain the
following chain of the estimates for the first term:

( Q(ω,ω) > f(l-ε)t2/^ \df\2ω\ω\ - C£t ί(ω\ω)

v0v0

> ((1 - ε)εt2 - Cεt) f(ω\ω), (13)

where

. 2

~~ VQ a

C + 7
Due to our note at the beginning of the proof we can consider t > —^—— everywhere

(1 — ε)ε
below. In this case we have the required fact that / Q(ω,ω)>ηtj(ω\ω).

Vo _ Vo

Now let us consider / Q(ω, ω), ω e A^(M) Π D(Δ(tV)). It is possible to use the

representation of the function df on Γ,:

From the last equality we can infer that there exists ε > 0 such that

Then

[Q(ω,ω)= jQ(ω,ω)+ ί Q(ω,ω),
j j J

Γ% B\ Γi\B*

and these terms can be estimated as

[ Q(ω,ω)>t2 min (~\df\2) ί (ω\ω),

r
j

B\ B\
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Now it is necessary to use Lemma A.I proved in Appendix A:

Lemma A.I. There exists 7(ε, β) > 0 and t0 such that for t > t0,

Bε

for any f e WJ(Bε).

According to this lemma there exists ηi such that

J Q(ω,ω)>Ίit J(ω\ω), (14)

for all ω G Λ£(M) Π D(Δ(tV)). Collecting together (13) and (14) we obtain:

ί(Δ(tV)ω\ω) >ηt ί{ω\{\ω)

M M

for some 7 > 0. Hence all eigenvalues of Δ(tV)\Λ+^M) increase proportional to t for

t —> 00.

Now we have to obtain the corresponding fact for Λ2(M). For all Vα; G A
ω = pdz + qdz it is easy to put down J Q(α;, ω)\

Q(ω,ω) = 2J{\dp\2 + \dq\2 + t^z^h^Wlql2 + |p|2)

J 2i '

where we use the following notations:

ci ci * * d

The two last terms can be rewritten:

(15)

jι = tpqh2(z) + tqph2(z) = tδ(pq + qp) + 2tRe(βq(h2(z) - δ)).

Here we introduce real positive parameter δ, which can be defined below.
It is not difficult to obtain the estimate for j x \

h > tδ(pq + qp) - t(\p\2 + \q\2) \h2(z) - δ\.

The term in (15), which is proportional to t2 can be rewritten as:

= (t2\z\2δ2 + t2\h(z\ - δ\2 + 2t2δRz{hλ(z) - δ)){\p\2 + \q\2),

and with the condition for the parameter δ:

\hλ(z)-δ\ >4δ

can be estimated:
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If we take into account that there exists t0 > 1, such that the following inequality
takes place:

U2δ2 > t m a x \h2(z)\ for t>t0,

we can infer that

,ω) = lj{\dp\2 + \dq\2 + t2\z\2δ\\p\2 + \q\2) + tδ(pq + qp)} ~

for described t. Now it is necessary to use Lemma A.2 proved in Appendix A.

Lemma A.2. For the operator H with Neumann boundary conditions where

β * \ L =-dd + β2t2\z\2, (16)

there exist 7(ε,/?),t0 such that for t > tQ the minimax principle numbers can be
estimated:

Ί(ε,β)t, n>2.

So / Q(ω,ω) > j2t f(ω,ω) for some η2 > 0 and for ω which are peφendicular
M

to the first m eigenfunction of Δ(tV).
This equality completes this stage of the proof. Now we can infer that there are

only slowly increased eigenfunctions in Λ2(M) [due to supersymmetry arguments,
they are zero-modes of Λ(tV)] and other eigenfunctions correspond to the eigenvalues
which increase as t for t —> oo.

To complete the proof of this theorem we have to overcome the conditions which
we assumed at the beginning of the proof. Following [4] it is possible to show that
smooth deformations of the metric in the vicinities of the superpotential critical points
lead to equivalence of the norms on Λ2(M). Due to this fact all our estimates take
place and for the deformed scalar product and yield same result for the Witten index.
To prove that our result does not depend on superpotential critical point degeneracy
we have to repeat the proof of the corresponding fact in [6] without any changes in
formulas. D

Corollary 4.4 (Vanishing theorem). The kernel of Q is a subspace of A2(M), i.e.,

KerG4*) = 0.

Corollary 4.5. From the note about the metric deformation at the end of the proof we
can infer that in our considerations it is possible to use an asymptotically euclidean
at infinity metric instead of an euclidean at infinity one.

5. Concluding Remarks

In this section we would like to underline two details which we did not discuss enough
in the main part of this paper.

The first remark concerns the necessity of including the euclidean at infinity metric.
Indeed, due to the identities as

π oz
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the algebra for supercharges contains ^-function terms which have supports at the
poles of the superpotential. So, if we want to keep the algebra of supersymmetric
quantum mechanics, such terms should be zero in the sense of L2-theory. The
euclidean at infinity metric gives us this possibility.

In the final remark we would like to note that the expression for the Witten index
can be rewritten in a different form. To see this let us consider D - the divisor of the
meromorphic differential df. It is well-known [17] that

where we use the notation g for the genus of Riemann surface and χ(M0) is Euler
characteristic of compact Riemann surface Mo. Then the number of zeros of the form
df can be expressed as a sum of the Euler characteristic of the Riemann surface
with sign minus and the number of poles of the differential of the meromorphic
superpotential and

where D is a divisor of poles of the differential of the meromorphic superpotential.
In this form our result is a pure generalization of the results, which were obtained

in [5] for the case of g = 0. This fact demonstrates once more the observation that
the Witten index can be generated by either singularities or topological nontrivial
situations.

Appendix A

In this appendix we are going to give a supersymmetrical proof of Lemma A.I and
Lemma A.2, and by the way, to describe the supersymmetric Hamiltonian on the
segment [—ε,ε].

We consider the supercharge Q with superpotential χ such that χ e Cι([—ε,ε]),
χ(-ε) φ 0 and χ(ε) φ 0:

2 \e xιdxe
x 0

where the symbol \D means that the operator exidxe~x\D is provided by the boundary
conditions: ψ(—ε) = ψ(ε) = 0.

Corresponding supersymmetric Hamiltonian has the form:

where H{ = -\e-χdxe
2χdxe~x\D and Ho = -\exdxe~2χdxe

x with boundary
conditions: dxe

xψ\±ε = 0.

For the harmonic oscillator superpotential χ = βtx2 for some β,t > 0, the
supersymmetric component Hamiltonians have the form:

2βtx)φ\±ε = 0.
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It is easy to see that H{ is a positive self-adjoint operator and Ho is a nonnegative
self-adjoint one. Indeed, σ(H0) - spectrum of Ho - contains zero eigenvalue with
eigenfunction

ψ0 = const e~ί3tx ,

and σ{Hx) = σ(H0)\{E = 0} due to the supersymmetry.
Now let us return to Lemma a.l:

Lemma A.I. There exists 7(ε, β) > 0 and t0 > 0 such that for t > t 0,

2 ^ J- J^ ° βlo dzdz
2i

for\/feWJ(Bε).

Proof First of all we note that it is enough to prove this inequality for the square

c Γ ε ε 1 \ ε ε 1 .
S = \~ "7Γ ~Ά X " ~M' ~F> ' b 6 C a U S e

L v2 v2J L v2 v2J

dz

! τ /

t2β2\z\2\tf

9 d^θί5

Λdzdz

Bε\S

and if we will prove this lemma for S instead of Bε for some 75 (ε, /?), then Lemma

A.I will be proved for 7(ε, /?) = 7^(ε ε

and ί0 = — ~ - ^ — . So it is enough to givethe proof of the 1-dimension analog of Lemma A.I: There exists 7(ε,/?) > 0 such
that

ε ε

j | \2dx
ε

a(f,f) = J j l |ax
> Ί(ε,β)tJ\f\2

In order to obtain this inequality let us extract from the l.h.s. the sesquilinear form
αo( , •) corresponding to the operator Ho:

\f\2}dx

ε

\βtj\f\2dx±2βtx\f\
2

±ε

I/I2 dx + 2βtε(\f(-ε)\2 - (19)
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From the above consideration the spectrum of the operator Ho is nonnegative and
%(f,f) > 0 for / G W2([—ε,ε]). The sesquilinear form α(/, /) corresponds to the
operator

H = -\d2

x + t2β2x2 with conditions: dxψ\±ε = 0.

This form achieves the lower value on the eigenfunction ψ0 of H which is even or
odd function. On this function the last term in (19) vanishes and

α(/, /) > αQ/VV'o) > ft

2
These inequalities prove Lemma A.I for 7(ε, β) = β and t0 = —- j . D

Lemma A.2. For the operator H with Neumann boundary conditions on Bε where

there exist 7(e, /?), t0 such that for t > tQ, the minimax principle numbers can be
estimated:

μn(H)>Ί(ε,β)t, n>2.

Proof. It is clear that using arguments similar to Lemma A.I we return to the

consideration of S = \ — = , —= x — = , —p= .

Minimax principle numbers μn(H) > μ2(H) and achieve the values on the
eigenfunctions of the operator H. We have to consider the equations:

(L - μn(H))f = βtg , (L - μn(H))g = βtf

with Neumann boundary conditions for /,g G W2{s), and after the iteration

(L-μn(H))2f = β2t2f.

Using Lemma A.I we have

μi(L) > βt + 2μ i(ϋ/0) and

So we cannot be sure that μ{(H) > ηt for some 7 > 0, but we can definitely say that

μ2(H)>βt.

2
This note finishes the proof of Lemma A.2 for 7(ε, β) — β and tQ = —z. D
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