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Abstract. The lattice definition of a two-dimensional topological field theory (TFT)
is given genetically, and the exact solution is obtained explicitly. In particular, the set
of all lattice topological field theories is shown to be in one-to-one correspondence
with the set of all associative algebras R, and the physical Hubert space is identified
with the center Z(R) of the associative algebra R. Perturbations of TFT's are also
considered in this approach, showing that the form of topological perturbations is
automatically determined, and that all TFT's are obtained from one TFT by such
perturbations. Several examples are presented, including twisted N — 2 minimal
topological matter and the case where R is a group ring.

1. Introduction

Any consistent quantum field theory is expected to be realized as a continuum limit
of a lattice model. Furthermore, the lattice definition is the only known method to
investigate the non-perturbative structure of quantum field theories.

In this paper, we show that 2D topological field theories (TFT's), especially
topological matter systems, can also be realized as lattice models, which will be
called lattice topological field theories (LTFT's). The advantage of this approach to
TFT over the conventional continuum field theoretic one [1] is in that this lattice
definition makes much easier the understanding of geometric and algebraic structure
of TFT. Moreover, since there should not be any dimensionful parameters in TFT or
in LTFT, we do not need to take a continuum limit in our lattice model. This fact
allows easy calculation of various quantities.

We first recall the basic axiom of TFT. Let g be a background metric on a
surface, on which matter field ^ m a t t e r lives. The partition function Z[gμu] is defined
by

Z[g] = I ^ X m a t t e r exp(-S[Xm a t t e r, g]), (1.1)
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with S[XmSLtter, g] the action. We also assume the existence of fermionic conserved
quantity QBRST which generates all the symmetry of the theory and satisfies the
nilpotency condition; ζ ? | R S T = 0. The theory is called a TFT if the energy-momentum
tensor Tμv is BRST-exact:

Recall here that the energy-momentum tensor is defined by

Tuu = - ^ = L (-In Z[g]). (1.3)

Therefore, the condition (1.2) implies that our partition function Z[g] is invariant
under local changes of background metric if we restrict ourselves to the "physical"
Hubert space ^fphys = {|phys) | <2BRSτlPhys) = °};

-«-~0. (1.4)
δg^ix)

and thus any BRST-invariant quantity calculated over this physical space is topolog-
ical.

How do we translate this property of TFT into lattice language? Intuitive
consideration tells us that each background metric gμv in continuous theory should
correspond to a triangulation T in our lattice framework. In fact, in 2D quantum
gravity, the summation over all quantum fluctuations of metric can be replaced by
the summation over all triangulations [2-6]:

T'. triangulation

Thus, we might wish to characterize our LTFF by the condition that the partition func-
tion of the lattice model is independent of triangulations. However, since the condition
(1.4) is local, we should further require our LTFT to have the following property:

Ansatz 1. The partition function of LTFF, which is first constructed with a given
triangulation, should be invariant under any local changes of the triangulation.

The present paper is organized as follows. In Sect. 2, we rewrite the above ansatz
for LTFT into more concrete form by introducing 2D version of Mateev move. The
general solutions to this ansatz are obtained explicitly in Sect. 3, where we find that
there is a one-to-one correspondence between the set of all TFT's and the set of all
associative algebras R. In Sect. 4, we then define physical operators and investigate
the structure of their correlation functions. There we see that each physical operator
in a given TFT has a one-to-one correspondence to an element of the center Z{R)
of the associative algebra R associated with the LTFT. We further show that these
operators actually satisfy all the properties known in conventional TFT. The results
of these two sections can be summarized schematically as follows:

(1.6)

In Sect. 5, as an example, we consider the LTFT that corresponds to a group ring
R = C[G] with G a group. The physical operators in this case have one-to-
one correspondence to the conjugacy classes of G, and their correlation functions
are calculated explicitly, showing the coincidnece with Witten's result obtained in

LTFT

t
R

v TFT

t
> Z(R)
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continuum approach [7]. In Sect. 6, we also study the perturbation of TFT's with
introducing the concept of the moduli of TFT's. We there show that the form of
perturbation is automatically determined in our lattice formulation upon requiring its
locality and topological property to be preserved under the perturbation. We further
show that every TFT can be obtained by perturbation from what will be called the
standard topological field theory (STFT). As a simple example, the twisted N = 2
minimal topological matters [8,9] are considered, and shown to live on the boundary
of the moduli space of TFT's. Section 7 is devoted to the discussion about how to
incorporate gravity into our lattice formulation.

This paper was inspired by the work by Turaev and Viro [10] who constructed a
series of three-dimensional topological invariants by using lattice approach (see also
[Π]).

2. Definition of LTFT

Let Σg be a closed oriented surface of genus g,T a triangulation of Σg. Then, the
partition function of the lattice model associated with Tg is defined as follows: First,
for an oriented triangle in Tg we make a coloring as preserving its orientation. That
is, we give a set of color indices running from 0 through A to three edges of the
triangle (see Fig. 1). We then assign a complex value C^k to a triangle with ordered
color indices i, j , k. We here assume that Cijk is symmetric under cyclic permutations
of the indices:

^ijk = Cjki = Ckji. (2.1)

Note, however, that Cίjk is not necerssarily totally symmetric. Next, we glue these
triangles by contracting their indices with glJ = gJl (see Fig. 2). We further assume
that glJ has its inverse gφ, gikg

kj = δ3, and raise or lower indices with these matrices.
Thus, we have a complex-valued function of Ci-k and glJ for each triangulation Tg,
and we will interpret it as the partition function of our lattice model, denoting it by
Z(Tg). For example, the partition function for the triangulation of Σo = S2 depicted
in Fig. 3 is expressed as

]Z=Z9 9 9 9 9 9 ^ijkCk'lmCm'ni'Cj'n'V ' ( 2 2 )

i j k = / \ ij,k e {0,1,

Fig. 1 J Fig. 2

Fig. 1. Colored triangle with a complex value Cιjk

Fig. 2. Gluing two triangles Cιjrn and Cnkl with a propagator grnn

Fig. 3. A triangulation To of sphere Σo = S2
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-ijk

J

Fig. 4 Fig. 5 Fig. 6

Fig. 4. Propagator gij and three-point vertex Cιjk in dual diagrams Cutting lines represent the
truncation of external lines
Fig. 5. Two-point vertex gtJ Crossed lines represent that two external lines are truncated
Fig. 6. Fusion transformation and bubble transformation in dual diagrams

Note that in dual diagrams, glJ, Cιjk, and gi3 are interpreted as propagator, 3-point
vertex and 2-point vertex, respectively (see Fig. 4 and Fig. 5).

Now we consider LTFF and, by following the argument given in the previous
section, we require that the partition function is invariant under local changes of
triangulation, which will set some conditions on CtJ-k and g%K There have been known
several systematic methods to deal with these local moves, which can also generate all
the triangulations with fixed topology. Among the best known are the so-called bond-
flip method and the Alexander-move method, but it is difficult to find solutions when
we require the invariance of our partition function Z(Tg) under these moves. In this
paper, we adopt instead the other one, 2D version of Matveev-move method, which
can be expressed only in dual diagrams and consists of a sequence of two fundamental
local moves; fusion transformation and bubble transformation, as shown in Fig. 6. ι

The reason why we adopt this is that we can easily find the general solutions when
we require the invariance of the partition function under these 2D Matveev moves.

We conclude this section by summarizing our ansatz for the partition function of
LTFT:

Ansatz 2. Let Z(Tg) be the partition function o/LTFT associated with a triangulation
Tg of genus-g closed surface. Then it should be invariant under any 2D Matveev moves
acting on the triangulation Tg.

3. General Solutions

In this section, we obtain general solutions of our ansatz, and show that our LTFT has
a one-to-one correspondence to a (generally noncommutative) associative algebra.

First, the invariance of the partition function Z under fusion transformations is
expressed in terms of g{j and Cijk as (see Fig. 7)

C^Cpk

ι = C^Ctp

ι. (3.1)

This equation allows us to introduce an associative algebra R with a basis {φ^
(i = 0,1,2,... ,̂ 4) and the structure constant Ctj

k; φ{φ^ — Ci:j

kφk. It is easy to
see that Eq. (3.1) ensures the associativity of our algebra R\{φiφ;j)φk = φ%(φjφk).

1 Although, as can be easily proven, 2D Matveev moves actually generate other kinds of local
moves such as bond-flips or Alexander moves, 2D Matveev move cannot be obtained from these
moves since 2D Matveev move can only be represented in dual diagrams
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Fig. 7 Fig. 8

Fig. 7. Diagramatic representation of the invariance under fusion transformation [Eq. (3.1)]
Fig. 8. Diagramatric representation of the invariance under bubble transformation [Eq. (3 2)]

Then the invariance of the partition function Z under bubble transformations is now
expressed as (see Fig. 8)

9ij = Cik

ιC/. (3.2)

A
We thus have obtained the map from LTFF to an associative algebra R = 0 Cφi

i=0

with the product φ{φ^ — Ci;j

kφk and the metric gτ- = Cik

ιC3l

k. We can further show
that this map is bijective. In fact, by introducing a metric by Eq. (3.2), we can define
3-point vertex Cijk = C^lglk and propagator (gιj) = (g^ ) " 1 , which both satisfy the
invariance conditions. Therefore, we have proven the following theorem:

Theorem 3. The set of all LΎFTs defined above has a one-to-one correspondence to
the set of semi-simple associative algebras R.

A few remarks are now in order:
(1) The condition that the metric g^ in (3.2) has its inverse is stated in the word semi-
simple above. In fact, the necessary and sufficient condition for the metric to have
its inverse turns out that the algebra is semi-simple. The sufficiency of the condition
follows simply from Wedderburn's theorem [12], applied to the algebra R over C,
which says that the algebra is isomorphic to a direct sum of matrix rings over C. On
the other hand, to prove the necessity of the condition we note that Maschke's theorem
[12] for finite group G extends naturally to our case of R. Maschke's theorem says that
if an arbitrary finite dimensional G-module V over C contains W as its submodule
then V decomposes into a direct sum as G-module; V — W θ W7, where W' is
complement to W. The proof is essentially based on taking average of the projection
map Pw: V —> W over G:

^ w w v (3-3)

The average (3.3) naturally extends to our case of R as

) > (3.4)

if the metric has its inverse. Taking V = R as left iί-module we can conclude that the
ring R is semi-simple. We, however, show in Sect. 6 that we can still define LTFT's
which do not necessarily correspond to semi-simple associative algebras by using
topological perturbations.
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(2) It is easy to show that Cijk is totally symmetric if and only if R is commutative.
In such a case, however, the partition function Z has a value which is independent
of topology, so that the model only has trivial structure.2

(3) If we introduce the regular representation (π, V) of algebra R by (τr(c/> ))fc

3- =

Cτj

k, then g{j and Cijk can be simply expressed as follows:

gi3 =txvπ(φiMφj), (3.5)

Cιjk=trvπ(φιMφJMφk). ( 3 6 )

This representation is useful in constructing LTFT directly from a given algebra (see
Sect. 5).
(4) If we set φ0 = 1 (unit element of R), then we have

<V = <V = % , (3-7)

since φQφi = 0 0O = ̂ .

4. Physical Observables and Their Correlation Functions

In the previous section, we found that our LTFT has a one-to-one correspondence
with an associative algebra R. In this section, we investigate the structure of physical
observables, and show that all information we need can be reduced to the center
Z(R) of the algebra R, and further show that our method actually reproduces the
well-known results of continuous TFT.

We first define operators ^ (i = 0,1,2,.. ., A) by interpreting the insertion of
(9τ into correlation functions as creating a loop boundary with color index i, and
we denote the correlation function of Θlχ,..., @in on genus-g closed surface by

Let us consider 2-point function of ^ and ̂  on sphere; ηi3 = ( ^ ^ ) 0 , and
investigate the property of physical operators. The simplest triangulation for η%J is
depicted in Fig. 9, and written as

Furthermore, due to its independence of triangulation, η%- can also be calculated from

another graph shown in Fig. 10, which yields an important identity; η{j = r\kr\k3, or

77/ = 7/, V (4-2)

Fig. 9. A triangulation of η^ Fig. 10. Another triangulation of ηi3

2 We, however, can construct nontrivial theories by perturbation from such a trivial LTFT that
corresponds to a commutative algebra (see Sect 6)
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Fig. 11 Fig. 12

Fig. 11. Graphical proof of ητ

3Cjk

ι = η%

jCkj

ι

Fig. 12. A triangulation of the three-point function Nijk

Thus, we know that the operator η = (ηJ) acting on R is idempotent; η2 = 77, and
so expect that 77 is a kind of projection map. In fact, we can prove the following
theorem:

Theorem 4. η = (ηj) is the surjective projector from R to its center Z(R) = {φ G

R\φφ = φφfor \/φ G R}.

To prove this, we first show that 77 is a map from R into its center Z(R). We only
have to show that φ{φk — ΦkΦi (Vz, k) with φi = η^φj, and this is easily seen from
the relation η^Cjk

ι = ViJCkj

l as depicted in Fig. 11. Moreover, we can also show
that

ηφ = φ for Vφ G Z(R), (4.3)

which asserts that this map η:R —• Z(R) is surjective. We thus proved that η = (ηj)
is the surjective projector from R to its center Z{R).

Proof of Eq. (4.3). For φ = ciφi G Z(R), we have a relation clCik

l = clCkl

l since
φφk = φkφ. Thus, we have

= cjφJ

= φ. [Q.E.D.] (4.4)

Next, we study 3-point function on sphere, Nijk = ( ^ ^ ^ ) 0 . The simplest
triangulation is shown in Fig. 12, and evaluated as

K3k = n/η/^'c,,^,. (4.5)

Note that the indices i, j , and k in Cιjk are subject to the projection of 77, and so we
know that Nijk is now totally symmetric even though C-k is not so.

Such a graphical consideration can be easily generalized to the case of other multi-
point functions and of higher genuses, and we see that every insertion of operator ^
is necessarily subject to the projection of 77. Thus, we obtain the following theorem:
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< O j >

= Ni j k

Fig. 13. One-point function (^) ι on torus

Theorem 5. The set of physical operators is in one-to-one correspondence with the
center Z(R) of the associative algebra R associated with the LTFT we consider. In
particular, the number of independent physical operators is equal to the dimension of
Z(R).

To get correlation functions, we only have to combine iV^'s by contracting their
indices with 77̂ ', as exemplified in Fig. 13. In the following, we relabel the indices of
basis {(/>•} (ί = 0 , 1 , . . . , A) of R in such a way that the first (K+1) indices represent
a basis of Z(R):

i=0

= Z(R) Θ ZC(R)

(4.6)
α = 0

Since η = (ηJ) (i, j = 0 , 1 , . . . , A) is the projector onto Z(R) and the relation (4.3)
holds, η has the following form under the above decomposition (4.6):

\ 0 0 '

0

ηaβ = gaβ Q

0 0

(4.7)

and the relation r]ikη
k^ = ηJ implies that (ηa@) is the inverse to (j]aβ) if we restrict

their defining region to Z{R)\

Note also that
NaβΊ -

(4.8)

(4.9)
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b

Fig. 14. (a) Cylinder ηa0 and (b) diaper N(xβΊ

Equations (4.7)-(4.9) simplify the calculation of correlation functions since we only
have to sum over indices a = 0 , 1 , . . . , K of Z(R) in glueing.3 In summary,

Theorem 6. All correlation functions are obtained by connecting cylinder ηa@ and
diaper NaβΊ (see Fig. 14).

In the rest of this section, we show that our LTFT actually satisfies all the known
properties in continuous TFT. Recall that due to our redefinition of indices (4.6),
physical operators &a (a = 0 , 1 , . . . , K) correspond to a basis φa of the center Z(R).

Let A{(9) be a function of physical operators (e.g. A{0) = &ai@a2 ^ n ) Then
we have the following theorem:

Theorem 7. Calculation of correlation functions with genus g can always be reduced
to that with genus 0 by using the handle operator H:

g (4.10)

with

H = wa{9a, wa=Naβ

β. (4.11)

Proof Correlation function with genus g is calculated

iwa* ...wa° (4.12)

as shown in Fig. 15. Thus, if we introduce H as in Eq. (4.11), then we have
η [Q.E.D.]

T5)ohπy

a V y <ψ—sy b = N«ββ

Fig. 15. Calculation of correlation functions with genus g is reduced to that with genus 0

3 Since physical states of a topological field theory are in one-to-one correpondence with elements of
a commutative algebra (the center of some associative algebra), it might seem that we can construct
lattice topological field theories only by using totally symmetric couplings NaβΊ, that represent
interactions between physical states. However, we also have to introduce nonphysical states in order
to insure local topological invariance (see remark (3) at the end of Sect 3) This fact reminds us of
the spurious states in continuum topological field theories that must be introduced to insure local
topological invariance, and are usually eliminated from physical Hubert space under the projection
of BRST charge
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Fig. 16. Strong factorization property

Furthermore, we can show

Theorem 8. Operators &a satisfy the following OPE:

^ = V ^ > ^aβ^ = Naβηlη^) (4.13)

as an identity in any correlation functions.

Proof. If we introduce the regular representation (£>, W) of commutative algebra Z(R)
as Q(Φa)

Ί

β = Naβ^ = Caβ

Ί, then ρ(φa) satisfies the product law: ρ(φa)ρ(φβ) =
Naβ

Ίρ(φΊ). On the other hand, as can be seen graphically, the expectation value
of A(&) with g = 1 (torus) is represented as a trace over this representation space
W: (A(&))g=ι — \xw A(ρ(φ)). We thus have the following relation:

- trw Q(Φa)Q(φβ)A(ρ(φ))ρ(Hy-1

- Na(P ixw ρ(φΊ)A(ρ(φ))ρ(H)9-{

[Q.E.D.] (4.14)

By using this OPE, we can further show that our model has a strong factorization
property4 (see Fig. 16):

since H = wa&a = ηaβ&a(9β.

5. Example: R = C[g]

In this section, we deal with the special case where R is a group ring:

(5.1)

with the product induced from the group multiplication; φxφy = φxy. Here we
assume that G = {#, y, z,..., g, h,...} is a finite group, for simplicity. Extension to
continuous group is straightforward, but yields more fruitful structure in the obtained
theory, as will be reported elsewhere.

In order to calculate 2- and 3-point vertices, it is useful to use the regular
representation (π, V) of R = C[g]:

ir(ψxTy = Cxy

z=δ(xy,z), (5.2)

For the reason why we call Eq. (4.14) strong factorization, see Sect. 7
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where

δ(x,y)ΞΞ \ (5.3)

(̂  0 (otherwise).

Thus, if we use Eqs. (3.5) and (3.6) together with the following formula:

trπ(φx)=\G\δ(x,l), (5.4)

we have

gxy = \G\δ(xy,l),

Cxyz = \G\δ(xyz,l).

By using these equations, we easily obtain

y y j ^ [ u y y
n[χ]

Here [x] denotes the conjugacy class of x\ [x] = {y G G \ y = gxg~ι, 3g G G}, and
h[x] is the number of the elements of [x]; h[x] = #([#]). In the following, we denote

[x~ι] by [x], and label conjugacy classes by Greek letters. Note that h& — ha.
Let us investigate the property of the projection operator η = (ηx

y)\

^ - S [ ξ ] . (5.7)
[χ]

By operating η on R, we obtain

yeG L̂J ye[x]

and thus know that Z(R = C[G]) is spanned by the obits of conjugacy classes:5

Z(R) = ̂ )CCa , Ca = - = > Λφx . (5.9)

We here normalize the basis {Ca} by the factor Λ/K^ for later convenience. In this
basis, ηaβ is represented by

^ | . (5.10)

A^^^7 is now easily read out from the following relation:

CaCβ = NapCΊ, (5.11)

and found to be

5 In the previous section, Ca was written as φa We, however, use different symbol here in order
to avoid confusion
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This expression in turn gives us 3-point function on sphere:

ΣΣC
These forms of ηaβ and NaβΊ, however, are not so useful for direct calculation,
and so in the following we rewrite them into more convenient form. Since ηaβ and
NOίβΊ both are functions of conjugacy classes, these must be expanded with respect
to irreducible characters. In fact, short algebraic calculation shows that

Here Xj is the character of an irreducible representation j , and its defining region
is extended to C[G] by linearity. Furthermore, dj stands for the dimension of the
representation j . Recall that dj — Xj{\).

It is further convenient to introduce the following symbol:

c'Zw) (5'15)

Then, the first, and the second orthogonality relation of irreducible characters are
expressed in the following form:

(Xj I Xk) = δί >

Note that

since (χj\&) = Xj(C&) = Xj(CaΫ = (a\χ3). Thus, we have the following
expression for ηaβ, NaβΊ, and Naβ

Ί\

3

= (β\a) = {ά\β),

sr{Xj\a){χj\β){χj\Ί) (5.18)
aβΊ Ϋ (x3\o)

aβ \G\^ (Xj\0)

Here we denote the conjugacy class of identity by 0; Co = 1, and so we have

^ 1 )
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We now can calculate all correlation functions explicitly. Following the prescription
given in the previous section, we first introduce the regular representation (£, W) of

Z(R)= φ C C t t ;
6

β = Nal?. (5.19)

We then get the following formula:

\Uaχ-- Uan)g- \Lyctχ -Uantl )\

= tiw ρ ( C Q l ) . . . ρ(Can)ρ(H)9-1 . (5.20)

Here, g(H) — waρ(Ca) is calculated as

( }

and, by substituting this equation into Eq. (5.20) and using Eq. (5.16), we finally
obtain

- 2 + n

^ ^ "• ; " n . (5.22)
3 3 9

This has the same form as Witten's result calculated by using continuous TFT [7].

6. Moduli of TFT's and Their Perturbation

In this section, we investigate the moduli space of TFT's. In particular, we show that
every TFT can be obtained by perturbation from the standard topological field theory
(STFT) to be defined below. The following discussions are inspired by [13].

6.1. Standard Basis and Standard Topological Field Theory. As has been shown in
preceding sections, a TFT with (K + 1) independent physical operators has been
realized by a commutative algebra R of dimension (K+ 1), which can be regarded as
the center of an associative algebra R in our lattice language; R = Z(R). In particular,
the physical operators (9a correspond to a basis φa of R. In the following, we further
investigate these correspondences in order to introduce the concept of the moduli of
TFT's.

We again consider the regular representation (ρ, W) of R; ρ(φa)
Ί'β = Naβ

Ί with

Q(Φa)Q(Φβ) — N^β1ρ{φΊ). Since R is commutative, the following relation holds:

> (6.1)

6 (K + 1) is the dimension of center, and equal to the number of conjugacy classes, which is also
equal to the number of irreducible representations, as is clear from the orthogonality relations of
irreducible characters (5.16)
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from which w e k n o w that the ρ(φaYs (a = 0 , 1 , . . . , i f ) are simultaneously

diagonalizable:

<α) 0

L o λK J

(6.2)

that is, Naβ
Ί — λ^δj. Moreover, since Naβ

Ί = Nβa

Ί', we can further make a
transformation of the basis in such a way that Naβ

Ί has the following form:

V KW (6-3)
Thus, the physical operators {<^} now have the following OPE [13]:

&a&β = λJaβ^a (6-4)

Let ^ T F T be the moduli space of TFT's, which is nothing but the set of all
commutative algebras. For the physical operators of almost all TFT's in ^ # T F T , all
the λ α ' s in Eq. (6.4) have nonvanishing values. Thus, by properly normalizing d?a,
we have the following OPE:

&a&0 = δa0&a. (6.5)

We will call {&a} with this OPE the standard basis of the TFT we consider. Since
this form of OPE completely determines the basis {φa} up to their permutation, and
any correlation functions are uniquely calculated from their one-point functions on
sphere;

va = (^a)0, (6-6)

we now know [13] that ^SτFT is parametrized by the number (K + 1) of physical
operators (the dimension of the algebra R) and their one-point functions {va}
(α = 0 , 1 , . . . , K). Note that for this standard basis, the handle operator H [Eq. (4.11)]
is expressed as

( 6 7 )

We, in particular, call the TFT where υa = 1 (a = 0 , 1 , . . . , K) the Kih standard
topological field theory (STFT).

Example. R — C[G]. We follow the notation in Sect. 5: G is a finite group, and a
(resp. j) labels conjugacy classes (resp. irreducible representations) of G. We can
always construct the standard basis in the LTFT correponding to R = C[G], group
ring of G. In fact, if we make a transformation of basis as

then {Oj} satisfies the following OPE:

Opk = δjk0j . (6.9)
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( n χ = 5 )
n +1

Fig. 17 Fig. 18

Fig. 17. There are five traingles around a vertex x, nx =5
Fig. 18. Invariance under fusion transformation

The one-point functions are easily calculated to be found

(6.10)

Recall here that d = 1 (Vj) for commutative groups. Thus, Kth STFT can be realized
by the LTFT that corresponds to a group ring R = C[G] of commutative group G
with order \G\ = ΛΓ + 1.

6 2. Perturbation 6>/TFT. In this and the next subsections, we show that every TFT
can be obtained from STFT by perturbation. In particular, we see that the TFT's
which have vanishing Xa for some a can also be expressed by this perturbation.

Suppose that we have chosen a TFT, and let us perturb it by adding δS to the
original action. Perturbed correlation functions to be denoted with prime are thus
calculated by inserting the operator exp(—δS) into the original correlation function:

(...)' = (...e-δS\ (6.11)

In the following, we show that the possible form of δS can be determined automat-
ically if we require its locality and topological property. We first fix a triangulation
Tg. Then locality condition leads to the following form of δS:

Λn W , (6.12)

where x parametrizes vertices in the triangulation, and nx stands for the number of
triangles around the vertex x (see Fig. 17). 7 Then, by the invariance of exp(—δS)
under the fusion and bubble transformations, fa(nx) is determined to have the form

fa(nx) = Aa(nx - 6) (Aa: constant), (6.13)

which implies that fa(nx) is proportional to the deficit angle around the vertex x.

Proof. First, the invariance under the fusion transformation (Fig. 18) yields the
following identity:

= fafrx ~ 1) + fafry + D + /«(** " D + / J ^ + D , (6.14)

7 In the language of continuum theory, this ansatz corresponds to requiring that 6S has the following
form:

Σ j d2x^fa(R)&a(x)

with R scalar curvature
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Fig. 19. Invariance under bubble transformation

from which fa(nx) is known to be a linear function of nx\ fa(nx) = Aanx + Ba.
Next, from the invariance under the bubble transformation, we have the relation (see
Fig. 19)

/ α W + /α(V = /«(% + 2) + fa(ny + 2) + /α(2), (6.15)

which gives Ba = -6Aa. [Q.E.D.]

Thus, by setting Aa = (l/12)μα, we have8

e~δS =expί- ±

If we insert this operator into genus-# correlation function (.. . ) g , we then obtain

(g)J2 μa

I a
since <^, which corresponds to an element of commutative algebra, is independent of
its location. We here also used the Gauss-Bonnet theorem: ^ (nx — 6) = -12(1 — g).

In particular, if { ^ J is the standard basis of the TFT we consider, then we have

e~δS = 1 + γ^(e(l-9)μa - l)3a (6.18)

in genus-g correlation functions.
Now we have the general form of the perturbation operator exp(-δS), it is easy

to see that every TFT can be obtained from STFT by perturbation. In fact, we have
the following formula for the standard basis of STFT [13]:

< = Wo

= eμ<*va. (6.19)

Thus, if we, in particular, start from STFT where υ α Ξ 1, we then have υ'a = e μ α ,
and so can obtain all values of υf

a by adjusting the parameters μa. On the other hand,
the form of OPE is preserved under perturbation. Therefore, we know that every TFT
which can have standard basis is obtained from STFT by perturbation. Moreover, as
will be shown in the following examples, TFT's which do not have the standard basis

This corresponds to

the form of which is the same with the one given in [13]
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are also obtained from STFT by perturbations in a suitable limit of the perturbation
parameters μa and with infinite renormalization of physical operators. In this sense,
such TFT's live on the boundary of ̂ fίTFT.

6.3. Examples. In the following, we consider some examples, and explain how to
obtain those TFT's by perturbations which do not necessarily have the standard basis.

Example!. TFT associated with A{£ WZW of level 1. Let ω be the primitive (K+ l) t h

root of unity, and {&a} the standard basis of Kth STFT. If we make a transformation
of the basis into the following form:

K
Λj=ΈωJa^ O' = 0 , l , . . . , ί O , (6.20)

then it is easy to see that the following OPE holds:

AάAk = A[j+k] (6.21)

with the one-point function

K

<^% = ] Γ ^ = ( # + 1 ) ^ O . (6.22)

Here [I] stands for / modulo (K + 1). Thus, we now know that the Kth STFT is

nothing but the TFT associated with A(£ WZW of level 1.

Example 2. Twisted N = 2 minimal topological matter of level K. This theory is
characterized by the following OPE and the vacuum expectation value of physical
operators σ3- (j = 0 , 1 , . . . , K) [8,9]:

σ3σk = θ{j + k<K)σj+k, (6.23)

<^>o = δjtκ ( 6 2 4 )

What is special in this case is that we cannot introduce the standard basis in the
commutative algebra corresponding to this theory, since Eq. (6.23) means that the
matrix ^(σ^) in the regular representation has some vanishing eigenvalues. However,
we can realize the theory as a limit of perturbed theory. In fact, if we define the
operators σp from the operators A3 in Example 1 as

K

and set the perturbation parameters μa as

e^=ε-κ-J--ω(*, (6.26)
A + 1

then we have the desired form of OPE and vacuum expectation values in the limit of
ε^O:

σfσf = θ{j + k< K)σf+k + O(ε), (6.27)

« } > o = δJtK . (6.28)

We thus know that the twisted N = 2 minimal topological matter is obtained at the
boundary of the moduli space yMΊ¥X.
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7. Discussion

In this paper, we give the lattice definition of topological matter system, find its explicit
solution and investigate physical consequences, with emphasis on the algebraic
structure of lattice topological field theory.

What still remains to be invetigated is how to incorporate gravity, especially
topological gravity, in our formalism. There seem to be the following two possibilities:
(1) "Topological gravity can also be treated within our framework without any
essential modification." In fact, gravity can also be regarded as a matter field if
we expand metric gμv around a background metric gμv\

9μv =9μv+δ9μv, (7.1)

under some proper gauge condition on δg v. For example, in the conformal gauge
gravitational quantum fluctuations are represented by the Liouville field, which is in
turn regarded as a conformal matter on a Riemann surface with fixed background
metric g [4]. However, to go ahead in this direction, we need more machinery than
we now have. In fact, we should set the dimension of Z(R) to infinity (K —» oo), since
there are infinitely many physical observables in topological gravity [5]. Moreover,
the Schwinger-Dyson equation of gravity [6] shows that its quantum theory only
has the weak factorization property. That is, factorization of a surface along trivial
cycles is necessarily accompanied by factorization along nontrivial cycles, while the
topological matter system has the strong factorization property in the sense that the
geometry can be factorized along any cycles independently. However, the limiting
procedure of K —• oo requires some regularization, which might reduce the strong
factorization property to the weak one.
(2) "Quantum fluctuations of gravity can only be described by summing over different
geometries." If this is the case, the results obtained in this paper will not work directly
for any quantum gravity. However, it will then be interesting to incorporate our lattice
model in the Kontsevich model [14], and to investigate whether the resulting model
is equivalent to the so-called generalized Kontsevich model given in [15] (see also
[16]).

Investigtions along these two lines would be interesting.
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Note added in proof. After submitting this paper, we were informed by Costas Bachas and Marios
Petropoulos that they had also proposed the classification of lattice topological field theories in terms
of associative algebras, and identified the physical operators of a given lattice model with the central
elements of the corresponding associative algebra [17]
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