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Abstract: It is shown that elliptic boundary conditions play the same role in
Callias' index theorem as spectral boundary conditions do in the Atiyah-Patodi-
Singer index theorem. This is used to generalize Callias' index theorem to arbitrary
complete spin-manifolds.

1. The Index Formula

Let X be a complete odd-dimensional smooth oriented spin-manifold, with
complex spinor bundle S. Let V be a smooth Hermitian vector bundle over X,
with a smooth unitary connection A and a smooth Hermitian endomorphism Φ.
Let $A denote the coupled Dirac operator acting on sections of S (x) V. Form the
operators

and
D* = $A- i\ ® Φ

acting on sections of S (x) V.
The index problem for such operators was first studied by C. Callias [C],

who proved an index theorem in the case X = R 2 M + 1, using traces of integral
kernels. Callias' index theorem can also be derived from Fedosov's index theorem
for elliptic operators on Euclidean space [ F ] , see also Sect. 19.3 in [H2], as
explained in [BS], see also [Al]. Callias' index theorem was generalized by
N. Anghel [A2] to Dirac operators coupled to the trivial Hermitian vector
bundle over manifolds with warped cylindrical ends, using the relative index
theory of [GL]. In this paper we generalize this index theorem to Dirac
operators on arbitrary complete oriented spin-manifolds coupled to arbitrary
Hermitian vector bundles.

Let λ(x) denote the smallest of the absolute values of the eigenvalues of Φ(x).
Let A denote the A-genus.
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Theorem 1. If there exists a compact region Xo in X, whose boundary is a smooth
hy per surface Yo = dX0, and a constant λ0 > 0, such that λ(x) ^ λ0for x e X — Xo,
and I V^Φ(x) | -> 0 as x ->• oo, then D and D* have finite dimensional L2 -kernels, and

dimZΛkerD - dimZΛkeri)* = - J A(Y0) A ch(F+) = J A(YΌ) A ch(K"),

where V+ denotes the span of the positive eigenvectors ofΦ9 and V~ denotes the span
of the negative eigenvectors of Φ.

Note that the right-hand side is equal to minus the index of the chiral Dirac
operator on Yo coupled to V+. Sign conventions are discussed at the beginning of
Sect. 2.

In Sect. 2 we prove a cutting and gluing lemma, Proposition 2.3. This lemma
states that if we cut the manifold X along a codimension one submanifold, and
impose the right boundary conditions, then the index does not change. In Sect. 3
we use this cutting and gluing lemma to prove Theorem 1.

The condition | VAΦ(x) | -* 0 can be weakened. Let π + : V-> Vdenote orthogonal
projection onto V+. It suffices that | VAπ

+ | < εnλ0 on the complement of a compact
subset, that could be larger than Xθ9 see Sect. 2. The constant εn depends on n only.

The index can also be interpreted as a Fredholm index, as explained in Sect. 2.
In particular, if Φ, the curvature of the connection A, and the scalar curvature of
X are bounded, then D is a Fredholm operator L2Λ(X, S ® V) -* L2(X, S ® V\
with index as above.

In [ R ] we use this index theorem to compute the index of the anti-selfduality
complex coupled to a singular Yang-Mills connection.

2. A Cutting and Gluing Lemma

Let X be a complete odd-dimensional smooth oriented spin-manifold, with com-
plex spinor bundle 5, and Clifford multiplication γ: Cliff(Γ*X) ® S -> S. In this
section, we allow X to have compact boundary, Y = dX. We also allow X to be
non-compact, as long as it is complete. We orient the boundary of X as follows: if
el9 . . . , e2n is an orthonormal frame on Y and v is the outward unit normal, then
v, eί9 . . . , e2n is an orthonormal frame on X.

We use the normalization ef = — 1. Let ωx = in + 1e1 . . . e2n+i> where
î> . J e2n+i is an orthonormal frame on X. Then ωx is a global section of

Clifί{T*X)9 ωx = 1 and ωx lies in the center of Cliff (T*X). We use the normaliz-
ation y(cox) = 1.

The boundary Y is also a spin-manifold, and its spinor bundle and Clifford
multiplication is the restriction of the spinor bundle S and Clifford multiplication
γ on X. Now, Y is even-dimensional, so its spinor bundle splits into a positive and
a negative spinor bundle,

S\Y = S+®S- .

Let ωY = ineγ . . . e2rn where ei9 . . . , e2n is an orthonormal frame on Y. Then ωY is
a global section of Cliff(T* Y)9 and ωj = 1. The positive and negative spinor
bundles are the + land — 1 eigenspaces of y(ωY). By our orientation conventions,
ωx\Y = ivωY, and

1 =γ(ωx\γ) = iγ(v)y(ωY) .
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Hence the positive and negative spinor bundles are the — i and + i eigenspaces
of y(v),

jy(v) S + = - f e +

[y(v)s- = is- .

Let D = $A + ίl ® Φ be an operator as in Theorem 1, except that we now allow
X to have a compact boundary Y. For simplicity, we write D = $ + iΦ. It is an
elliptic operator. It admits well known elliptic (coercive, Lopatinski type) boundary
conditions, see for instance [S]. One such boundary condition is s+ = 0, where
5 | y = s + + 5 _ is the decomposition of s according to the splitting
(S <g> V) \γ = (S+ ® V) ® (S- ® V). The adjoint boundary condition is s_ = 0.

To verify that the boundary condition 5+ = 0 is elliptic, freeze the coefficients of
the operators at a point on the boundary, to get the boundary value problem

j = 0 on ( - oo, 0 ] x R 2 n

[s+ =0 on {0}xR 2 π .

One has to check that there are no bounded non-zero solutions of the form

s(t, x) = s(t) exp(ίξ - x)

with ξ Φ 0. This leads to a system of ordinary differential equations,

\y(v)dts(t) + iγ(ξ)s(t) = 0 for t ^ 0

where v denotes the positive unit vector field on (— oo, 0]. Extend the splitting into
positive and negative spinors on {0} x R 2 " to [0, oo) x R2 / ί. By (2.1), the system can
then be written

fdts+(t) - γ(ξ)s-(t) = 0 for t ^ 0

\dts+(t) + γ(ξ)s-(t) = O for ί ^ 0

U(0) = 0.
It follows that

If 5+(0) = 0 and s+(t) is bounded, then s+(t) = O. By the first equation,
y(ξ)s-(t) = 0, so s-(t) = 0, and s(t) = 0. We conclude that 5+ = 0 is an elliptic
boundary condition for D. See for instance Sect. 10 in [ H I ] for more details on
elliptic boundary value problems.

One can also form twisted boundary conditions. Let

v\Y= v+ ®v~

be any splitting of V\Y, not necessarily related to Φ. Then we can decompose s as

5 = 5+ + s - on Y according to the splitting (S ® V)\Y = (S ® V+) 0 (S <g> V~).
We can also decompose s as 5 = s+ + s+ + s ί + s I according to the splitting

(S® V)\Y = (S+® V+)®(S+® V-
Then

Bs = st + sZ =0 on Y
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is an elliptic boundary condition for D. The adjoint boundary condition is

B*s = s+ + s ί = 0 on Y.

Sometimes we write Bγ or even BXt γ for B.
We need function spaces where ί>, and more generally, if dX = Y Φ 0, D © B, is

Fredholm. Let η be a smooth compactly supported cut-off function on X that is
equal to 1 near Y. Then we define L%Λ(X,S®V) as the completion of
C<?{X9 S®V) with respect to the norm

2(X) + II(1 - η)Ds | |L2 i X ) + || s | |L2O T .

It follows from standard elliptic theory that this norm is equivalent to the norm

\\Ds\\L2(X)+ | | f e | | L 2 . i / 2 ( y ) + \\s\\L2(X).

(It is unavoidable to introduce Sobolev spaces with fractional derivatives. Func-
tions in L 2 ' * have boundary values in L2 '1 / 2.)

It follows from the Bochner-Weitzenbόck formula,

R

that if Φ, the curvature F of the connection A, and the scalar curvature R of X are
bounded, then L2

D

Λ(X, S <g) V) = L2Λ{X, S ® F).

Lemma 2.1. There exists a constant εn > 0 wiί/z the following significance. If there
exists λ0 > 0 swc/i ί/zαί A(x) ^ λ0 and |V^π+(x)| ^ εMA0 for all xeX, and the
boundary operator B is given by splitting V = V+ © V~ into positive and negative
eigenspaces of Φ, then D © B defines an invertible operator

L2β\X, S®V)-^ L2(X, S (x) V) ® L2> 1 / 2 ( 7, (S+ ® V+) © (S_ ® K")) .

Proo/ Let s e L f y 1 ^ ) . Recall that ^ = Xi7(βt)M Hence, by integration by parts
and (2.1),

j $s 5 dvol = J 5 $s dvol + J γ(v)s 5 dvol

= j fc s dvol - j i(|5+ | 2 - \s-1
X Y

(The integration by parts can be justified by multiplying by a sequence cut-off
functions that exhaust X) Take the imaginary part of this identity, to get

Im j $s 5 dvol = - ^ J (|s+12 - |s_ | 2 ) rfvol .
X ^ Y

Hence

Im j Ds-sdvol = J Φs 5 dvol - - J ( |5+| 2 - |5_|2)dvol .
x x 2 Y

Substitute s+ for s, to get

λ0 J | s + | 2 dvol ^ J Φs+-s+ dvol ^ Im J Ds+-s+ dvol + | J \st\2 dvol .
X X X ^ Y
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Similarly,

λ0 j | s ~ | 2 d v o l ^ - j Φs~ s~ d v o l ^ - Im $ Ds~ s~ d\o\ + - j | s l | 2 dvol .

It follows that

λ0 J | s | 2 dvol ^ Im J (Ds + s + - Ds~ -s')d\ol + - f \Bs\2 dvo\

= Im J Ds ( s + - sΓ) dvol + ^ f \Bs\2 dvol

+ $(Ds+-s~ -Ds- s+)dvol .
x

Now,

SO

The same bound applies to Ds~ 5 + . Hence, if we choose εM = (4c,,)"1, then

λ0 J |5|2 dvol S 2 Im J Ds (s+ - s") dvol + J |JBs|2 dvol.
X X Y

By Cauchy's inequality,

IWIL2(*) ^ 4λ ί 2 | |Ds | | L 2 W + Iλo1 \\Bs\\L2(Y) .

Hence

This estimate shows that D ®B has trivial kernel and closed range.
By integration by parts, the orthogonal complement of the range of

D:L2ύι{X)nkerB^L2(X)is the ZΛkernel of D* ® B*. The same way as above,
one shows that the ZΛkernel of D * 0 5* is trivial. Hence D:Lϊ>Λ(X)n keτB
-+L2(X) has dense range. Hence D 0 BiLl'^X) -> L2(X) θ L 2 ' 1 / 2(7) has dense

range. Hence D φ B is invertible. D

We can use Lemma 2.1 to prove a more general Fredholm result. Let εn be as in
Lemma 2.1.

Lemma 2.2. If there exists a compact subset Xo ofX and a constant λ0 > 0, such that
λ(x) ^ λ0 and I V,4π + (x)| ^ εnλ0for all xe X — Xo, then the operator

D 0 B\LlΛ(X9 S®V)^ L2(X, S (x) V) θ L2> 1/2{Y, (S+ ® Γ+) φ (S- ® K"))

is Fredholm. The Fredholm index of D ζ&B is equal to the L2-index

dim ZΛkerp © B) - dim L2-ker(D* φ 5*) .

Here B can be given by any splitting V\dX = V+ © V~.
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Proof. After enlarging Xθ9 we may assume that it is bounded by a smooth
hypersurface, and that δX cz dX0. Let I w = X - Xo. Enlarge I , , slightly, so that
{Xo, X^} is a good cover of X.

The splitting K = F + © F ~ i s only defined on ΘX. We extend the splitting to
dX0 — dX in some arbitrary way. We extend the splitting to dX^ by letting V+

and V~ be the span of the positive and negative eigenspaces of Φ respectively.
By standard elliptic theory DXo®BdXo has a parametrix P o . By Lemma 2.1,

DXa © J5aXoo has an inverse P^. It is then standard to construct a parametrix P for
D ® B using P o , Poo, and a partition of unity subordinate to the cover {Xo, X^}.

It is clear that the L% ̂ kernel of D © B is equal to the ZΛkernel of D © B. The
cokernel of D®B can be identified with the cokernel of D: Lifl(X)nkGTB
->L2(X). Integration by parts shows that the orthogonal complement of the

image of this operator is the ZΛkernel of D* © £*. D

Now, let X be a manifold as above, that has been obtained by gluing two
complete spin-manifolds Xx and X2, with boundaries dXγ = Γ u Yx and dX2 = Ϋ
u Y2, along Y. (Here Ϋ denotes Y with the opposite orientation.) We write

X = Xxκjγ X2. Then dX = Γx u F 2 . We write Z)z for the operator D on X, and
DXi for its restriction to Xt.

Proposition 2.3.

index(Dx φ BXfYίuY2) = index(ί)X l © ̂ 1 > F u y i ) + index(Z)X2 © B ί 2 f f υ y 2 ) .

Here B can be given by any splitting V\YuYι(Jγ2 = V+ © V~ .

Prooj. For simplicity, we assume that Yx = Y2 = 0. This is only to simplify the
notation; the general case is handled the same way.

By Lemma 2.1, DXί © DXl © BXuY φ BXlj is a Fredholm operator

L2

D

Λ{XUS® V)®L2

D

Λ{X2,S(g) V)-*L2{XUS® V) © L 2 ( Z 2 , S (x) V)

®L2'1/2(Z(S+ ® F + ) φ ( 5 _ (x) V'))

Φ L 2 ' 1 / 2 ( f, (S+ ® F + ) φ (S_ ® K")) .

If we identify Y and F, then

Hence the boundary operators BXuY and BXlY can be subtracted to form one
operator

®V)^ L2> 1 / 2 ( Y, S ® V)

B = Bχuγ ~~ Bχ2,f
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More generally, we define

B{θ): LiΛ{Xl9S ® V) © LlΛ(Xl9 S ® V) -> L2' 1 / 2( 7, S ® K)

B<*> = B^.y - B*2,y + θ(BXuY ~ B%2tΫ) .

The proposition follows from the following three facts.

a. The operators DXί © Dχ2 © B(θ) form a continuous (in the norm topology)
family of Fredholm operators

L2

D

Λ(XUS (x) F) © L2

D

Λ(X29 S®V)

-» L2(Xi, S ® V) © L2(X2, S ® V) © L2' 1 / 2( 7, S ® V),

parametrized by 0 e R.

b. index(DXl © D*2 © B{0)) = index(DXl © BXuY) + index(DX2 © BX2j) .

c. index(Z)Xl © D^, © B(1)) = index(Dx).

Proof of 'b. Essentially, 5 ( 0 ) = B^, y φ B^y.
Proof of c. Let Sx © s2 e L j ' 1 ^ ) © L%ι(X2). Then B (1)(Sl © s2) = sλ\γ - s2\Ϋ.
The sections st and s2 can be glued to form a section seLjjι(X) if and only if

( 1 ) © s2) = 0. Hence we have a commutative diagram with exact rows,

0 > LΪHX) > LV{X1)®Ll\X2) - ^ L2^\Y) > 0

0 • L2{X) • L 2 (X 1 )©L 2 (X 2 )©L 2 ' 1 / 2 (7) >L 2 ' 1 / 2 (7) >Q.

The claim follows from this diagram.

Proof of a.. This is a boundary value problem where the boundary conditions mix
different boundary components. Such boundary value problems are known as
transmission problems. By identifying a neighborhood of 7 in X1 with a neighbor-
hood of 7 in X2

 o n e gets a elliptic boundary condition in the usual sense. Thus the
ellipticity (coerciveness, Lopatinski) condition is still meaningful, and ellipticity
implies the existence of local parametrices near the boundary. See for instance
[HI] p. 274.

Freeze the coefficients at a point on 7, to get the transmission problem

hi =0 on ( - oo,0] xR 2 w

= 0 on [0, oo) x R2 w

(sί)+-θ (s2)+ =0 on {0}xR2"

- 0 (si)- = 0 on {0}xR2n.

To verify ellipticity, one has to check that there are no bounded non-zero solutions
of the form

s2(t9 x) = s2{t) exp(iξ x) for t ̂  0
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with ξ φ 0. This leads to a system of ordinary differential equations,

rγ(v)dtSι(t) + iy(ξ)sί(t) = 0 for t S 0

ly(v)θts2(ί) + ir(<T)s2(ί) = 0 for t ^ O

js 1 (O) + -0s 2 (O) + =O

U ( 0 ) - - β s 1 ( 0 ) _ = 0 .

It is not hard to check that there are no bounded non-zero solutions with
ξ + 0.

Hence there exists a parametrix on a neighborhood of Y. Then one can argue as
in the proof of Lemma 2.2 to show that the operator is Fredholm. D

Remark 2.4. We have only considered the boundary operator B. However, Lemma
2.2 and Proposition 2.3 apply mutatis mutandis to 2?*, for 5* is simply B with V+

and V~ switched.

3. Proof of the Index Theorem

Proof of Theorem 1. By Lemma 2.2, the operator

D: Li HX,S®V)^ L2(X, S ® V)

is Fredholm. Let XQ0= X - Xo. Then dX^ = Ϋo. By Proposition 2.3,

index D = index Dx = index(DXo 0 BYo) + index(DXoo © BΫ0).

Now,

φ BYo) = index(^Zo 0 BYo),

for a lower order term Φ does not affect the index on a compact manifold Xo. Also,
\VAπ

+ I ̂  A~1|V4Φ| -• 0 on the ends of X. Hence we can deform the connection
A smoothly on a compact set, so that |V^π+1 ^ εnλ0 on X — Xo. Then, by
Lemma 2.1,

index(DX o o © BΫo) = 0 .
Hence

index D = index(^ 0 © BYo) . (3.1)

Thus the index problem on X with ZΛboundary conditions is equivalent to an
index problem on Xo with elliptic boundary conditions. In other words, elliptic
boundary conditions play the same role in Callias' index theorem as spectral
boundary conditions do in the Atiyah-Patodi-Singer index theorem [APS].

There are many ways to compute the index of DXo © BYo. One could use the
Atiyah-Bott index theorem [AB] for elliptic boundary value problems. One can
also argue as follows. By Lemma 2.2,

index(^ 0 © BYo) + index(^ 0 © Bf0) = 0 . (3.2)

On the other hand, it follows from the Agranovich-Dynin difference theorem,
[AD] Theorem 2, that

index(^ 0 © BYo) - index(^ 0 © B%) = index(^0) ί + index(^yo) , (3.3)
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where

denote the chiral Dirac operators on YQ coupled to V±.
This can also be seen as follows. We can assume that the metric on Xo is

a product metric on a collar [— δ, 0] x Yo of Yo. We can assume that the bundle
has a fixed product structure on [ - ^ , 0 ] x 7 0 , that the connection A is the
pullback of a connection on Γo, and that this connection is reducible with respect
to the splitting V= V+ ®V~. Form a smooth manifold Xo u 7 o ([0, 1] x Yo) by
gluing Fo = δX0 to {0} x f0. Note that

The bundle V and the connection A extend naturally to Xo u y o ([0, 1] x 70).

B* = o B = o

: [o, i] x Yo

We can continuously deform Xo to Xo uYo ([0,1] x Yo) along with the oper-
ators, so

index ( ^ © BYo) = index (^oUyo([θ,i]χ r0) Θ ^i}χy0)

By Proposition 2.3 and Remark 2.4,

index(^ X o U y o ( [ ( U ] x γo) © 5 { 1 } x ί o )

= index ( 0 ^ 0 B ? O ) + index($[0, i] x X o ® Bf0} x f o 0 £ { 1 } x y0) .

Hence,

index(j^0 Θ Bγ0) ~ index(^ 0 © Bf0) = index(^ [ 0, 1 ] xyoθBfo>xf 0 ©5{i}xr0)

We will now show that the kernel and cokernel of the operator on the right-hand
side is given by harmonic spinors on Yo. The splittings S = S+ ® S- and
V= V+ ® V~ on Yo extend naturally to [0, l ] x Γ 0 . Note that with this notation,
5+ is the negative spinor bundle on {0} x Yo and vice versa. Separate variables on
[0,1] x Yo. Let t be the [0, Incoordinate. Let v denote the unit vector field in the
ί-direction; it is the natural extension of the outward unit normal vector field v on
{ I } x 7 o Then $[oΛ]χγo = y{v)dt + $Yo. By (2.1), for 5 = s% © s+ © s i © s ί , we
have

h = ($Yos ί - ίdts X) © {$Yos I - idts +)

idts±)®(0Yos+ + idtsZ) . (3.4)

The boundary condition is tantamount t o s t = s l = 0 o n δ([0,1] x Yo). (On
{0} x Fo we have imposed a £*-condition, but S+ is the negative spin bundle on
{0} x Ϋo and vice versa.) Hence, if 5 + is a harmonic S+ ® V~ -spinor on Yθ9 then its
pull back to [0, 1] x Yo is in the kernel. The same holds for harmonic S- ® V+-
spinors on Yo. I claim that this gives the whole kernel.
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To see this, assume that s is in the kernel. Then $2s% = {$2s)X = 0 on

[ 0 , l ] x Γ 0 Since s% = 0 on δ[0,1] x Yθ9 we can integrate by parts to get

0 = ί l^[o, i ]χro s ΐ l 2 ί ί v o l = ί st-$2

0Λ]xYosX dvol
[0, i]χy0 [o,i] χy0

= J st-(-df + no)s+

+dvol= J (|3,sί|2 + | ^ o s ί |
[0,1] x y0 [0,1] χ r 0

Hence 5 , 5 ^ = 0 on [0, l ] x F 0 By the boundary condition, s ί = 0 on

<3([0, 1] x Yo). Hence s X = 0 on [0,1] x Yo. Similarly s I = 0 on [0,1] x Yo. It then

follows from (3.4) that $Yos = 0 and dts = 0, and the claim follows.

To summarize,

i] x y0 Θ B?o> x f0 θ ^ { i } x y0) = ker(^y o) 0 ker(^y o) ΐ .

Similarly,

Hence,

, i]χy0 ® ^[o,i]χχo,{θ}χy0 ® ^[o,i]χ*0,{i}χyo)

= dim ker(^ [ 0 , 1 } x y0 © B{*0} x f o θ ^ { i } x y0)

- dim ker($ [ 0,1 } x y o θ ̂ { 0 } x f0 Φ Bfa x f o )

= dim ker(^y0) + dim ker(^y0) ΐ - dim ker($y0) + - dim ker($y0)

and we have proven (3.3).

By the Atiyah-Singer index theorem,

)ί = \ A(Y0) A

(3.5)

) : = J(i(70) Λ φ(V~) .

Finally, the forms A( Yo) and ch( V) extend as closed forms across Xo. By Stokes'
theorem

S A(Y0) A (ch(F+) + ch(F"))= f A(Yo) Λch(F) = 0. (3.6)
y 0 Yo

The theorem now follows from (3.1)-(3.3), (3.5), and (3.6). D
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Note. Theorem 1 has been obtained independently by N. Anghel [A3].
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