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Abstract. We consider the Zakharov equation in space dimension two

iut = —Λu + nu ,

n + Δ\u\ 2
~2 ttco

In the first part of the paper, we consider blow-up solutions of this equation. We
prove various concentration properties of these solutions: existence, characterization
of concentration mass, non existence of minimal concentration mass.

In the second part, we prove instability of periodic solutions.

I. Introduction

We consider as in Part I [7] the Zakharov system in space dimension two,

iut = —Δu + nu, (1.1)

-~ nff = Δn + Δ\u\2 , (1.2)
co

u(0) = ΦQ , n(0) = n0 , nt(0) = nl ,

where Δ is the Laplace operator on R2, u: [0, T) x R2 -» C, n: [0, T) x R2 -> R and
00,77,0,71! are the initial data. c0 > 0 is a fixed number.

Let us recall the main results of part I.
It is known that the local-in-time Cauchy problem of (Ic ) is solvable in various

function spaces. Existence of strong solutions of (I ) for regular initial data has been
investigated by several authors (see Parti [7]). You can show that, for initial data

* This work was partially done while the second author was visiting Rutgers University and Courant
Institute
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(φ^n^nλ) in H2 = H2 x Hl x L2, there is a unique solution (w,n,n t) in H2 on
[0,T2)and
_ T2 = +00 or

as ί -> Γ2.
The question to know if this space is optimal for local existence is open. For

example the case of the energy space Hl = Hl x L2 x H~l, (or even Hl —
Hl x L2 x H~l) for the Cauchy problem is unknown, where H~l is the space
of functions u such that 3υ : R2 — > R2 such that

n = —V v and υ £ L2

and

Htf-i = ML*-
The main result of Part I was to show existence of blow-up solutions of equation

(ICQ) in H2 and Hl of a special form which we call self-similar

(1.3)

where P, TV are radial functions and θ e 51, α; > 0, T > 0 are fixed parameters.
(w, n) is a solution of (Ic ) is equivalent to saying that (P, TV) satisfies the following

equation:

ΔP-P = NP, (1.5)

λ2(r27Vrr + 6rNr + 67V) - 2UV = zA|P|2 , (1.6)

where

c0ω

and r - |a:|, Wr - ̂ , 4T^ = ϊVrr + 1 T^r.

We show in parti that there exist solutions (Pλ,7Vλ) of the system (Πλ) for
0 < λ < λ* such that
- (P λ,ΛΓ λ)^(Q,-Q 2)asλ-»0.
- Wλ is unbounded in R^ x H\ x L2, where ^ is the connected component of the
set

{λ, Pλ, 7Vλ), (PΛ, 7Vλ) solution of (Πλ)}

containing (0, Q, -Q2) G R+ x Hl

r x L2 (L2 = L2 Π {u(x) = u(\x\)}) and Q is the
unique radial solution of

\Q\2Q, Q > 0 ,

- Pλ > 0.
Solutions of the corresponding Zakharov equation (u, n) defined by (1.3)-(1.4) are

such that
- for t < T, (u, n, nt) G Hl Π H2

-- lim \(u, n, nt)|^ = Hrn |(w, n, nt)|H2 = -foe.



Concentration Properties of Blow-Up Solutions 351

In particular we have the existence of blow-up solutions of (I ).
In this paper, we are interested in two types of results.

A) Qualitative properties of blow-up solutions of (I ). That is, if we consider a
solution of the equation (ICQ) (u(t), n(t)) which blows up at t = T, what can be said
about the structure of the formation of the singularities?
B) Instability by blow-up of periodic solutions of (I ) of the form (u(t),n(t)) =

ei(ωt+θ)V(x - x0), -V2(x - £0)), where XQ e M2, ω > 0, θ e Sl are parameters and
V is a solution of the equation

(VJ ωV = ΔV+\V\2V in R2 .

LA Qualitative Properties of Blow-Up Solutions of Zakharow Equation. Let us
consider (φ^n^n^ G Hk (k > 1) such that the solution (u(t),n(t)) of (ICQ) blows

up in finite time T > 0 in H, where Hk = Hk x Hk~l x Hk~2, that is

\(u(t), n(ί), nt(t))\Hk -> +00 as * -> Γ .

We are interested in this section in the behavior of (w(t), n(t)) at the blow-up time in
various spaces and in particular in L2 for physical reasons.

In the case of the special blow-up solution (^λ, nλ) of (1.3)-(1.4) associated with
(Pλ, Nx), we remark that
- T = Tj = T2 = . . . = Tk = . . ., where Tk is the blow-up time in Hk.
- K(t,z)|2 -> |Pλ|

2

L2^=0 and \n&x)\ -+ \Nλ\L,δx=Q as T -> Γ.
The question is to know if this concentration phenomenon of the self similar

solutions is a general behavior for blow-up solutions or not. That is, given any initial
data (0Q, n0, rij), are the parameters mu > 0, mn > 0 and a function t — > x(Q £ R2

such that
t x 2 m

liminf \u(t,x)\Lι(B(x(t)R» > mn ,t — >• ./

where u\L2^x R^ [resp. Ll(B(x, K))] represents the L2 norm [resp. Ll norm] of the
restriction of u to the ball of center x and radius Rl

This phenomenon is known for the nonlinear Schrδdinger equation (formal limit
of (ICQ) as c0 -> +00):

iut = —Δu — \u\2u , (1.7)

Let us consider a solution of (1 )̂ which blows up at time T > 0 in Hl. Various
properties are known:
1) Mass concentration at the blow-up time (Merle, Tsusumi [18] and Weinstein [29]).
- In the case where φQ(x) = φ$(\x\) we have

t » > \Q\2

L2 .

- In the general case there is a function x(t) such that

VR , lim inf |«(t, x)\2

L2(B(x(t),R)) > \Q\2

L2 ,

where Q is the unique radial solution of (V+).



352 L. Glangetas, F. Merle

2) Lower bound for blow-up solutions. As a corollary of property 1) (see also
Weinstein [28]), we have if \φQ\L2 < \Q\L2> me solution u(t) is globally defined
in time.
3) Characterization of minimal blow-up solutions and optimality of lower bound
(Merle [14, 15]).

If u(t) blows up in finite finite time T > 0 and \φQ Lι = \Q\L2, then there are
θ e 51, £0> xλ G R2, ω > 0 such that

u(tx)-
 ω

u(t, x) - } , —
\-L τ / \ λ τ

Our goal in this section is to prove similar results for Zakharov equation (Ic ) with
0 < CQ < + 00.

The first result is about the relation between the different blow-up times of a
solution in various spaces where a Cauchy theory can be done. We have the following
proposition.

Proposition 1 (Hl Control on Higher Derivatives). If (</>o>no>nι) ^ -^kfor ^ — 2»
then there is a unique solution (u(t\n(tj) o f ( l ) in Hk on [0,Tfc) and ifTk < +00,

\(u(t),n(t),nt(t))\Hk -++ooast^ Tk.
Moreover, (u(t),n(t),υ(t)) is bounded in Hl on compact sets of [0,7^) and if

Tk < +00, \(u(t),n(t),nt(t))\Hl -^ +00 as t -> Tk.

Remark. The uniqueness of the weak solutions is still an open problem.
Assuming that (0o>no»nι) ^ '̂ anc^ ^at we can aPP^y different Cauchy

theories in 7Jl5 . . . , Hk, let Ti be the blow-up time of (u(t), n(ί), nt(t)) in H^ From
Proposition 1, it then follows that T{ = T2 = . . . = Tfc.Thus, we can restrict ourselves
without loss of generality, to the study of blow-up solutions of (I ) in Hl. That is,
we consider (u, n, nt), solution of (I ) such that for T > +00

\(u(t), n(ί), nt(t))\Hl ^ +00 as t -> T .

In fact, for the Zakharov equation as t -» Γ, we have a phenomenon of mass
concentration of u and n.

Theorem 1 (L2 -concentration of Blow-Up Solutions). Let (u, n) be a blow-up solution
of equation (I ) in H{, That is

\u\Hl as

TTien, i/z^r^ w α constant πιn > 0 depending on the initial data such that the following
properties are true:

I) Ifn^H-1.

i) Radial case.

VR > 0 , limωf |«(ί, x)|L2(β(0)β)) > \Q\L2

and
limtaf |n(ί,α:)|tι(B(oιΛ)) > mn .t — ̂  _ί

ii) Nonradial case.



Concentration Properties of Blow-Up Solutions 353

There is a function t —> x(t) such that MR > 0

t—>T ' t—>T '

2 ) I f n l £ H~l and n{ φ H~l. There is a sequence tk —> T as k —> +00 such that:
i) Radial case.

° ' ^^1^ )̂11,2(̂ (0 )̂) > \Q\L*

and

ii) Nonradial case.
There is xk such that \/R > 0,

,R)) > \Q\IΪ

Remark. We are not able to find a non-zero lower bound of mn independent of the
initial data. We remark that in the case of the self-similar solution (tίλ,nλ) defined
by (1.3H1.4):
- mn is not necessarily equal to mu.
- mn — > \Q\2

L2 as λ — » 0 and ran — > +00 as λ — » +00.

However, it can be shown using variational arguments that if \φQ\2

L2 < M0 and
(u(t), n(t)) blows up in finite time, then πιn > K(MQ) > 0, where K(MQ) — > 0 (resp.
AΓ(M0) -> |Qi^2) as M0 -̂  -f-oo (resp. M0 -* |Q|^2) We do not know if these
results are optimal or not.

Remarks, i) The proof of part i) of the Theorem 1 follows directly from techniques
of [17, 18].
ii) We point out that in the case where n{ φ H~l, we do not have the conservation
in time of the energy ĵ 7, which does not allow us to prove the result for the full
sequence. However, we suspect strongly that the result is true for t — > Γ.

This property of the L2-concentration of u(t, x) at the blow-up time raises an
important question namely, which amount of mass can be concentrated at a blow-up
point.

More precisely, the following question can be asked:
Characterize the set {m} with the property (̂ ), where

There is a initial data (0o» r io»nι) suc^
- the solution (u(t),n(t)) of (Ic ) blows up in finite time T > 0,

- \u(t, x)\2 —^ mδx==Q where t —> T with m = \u(t,x)\2

L2 = |00|^2

In fact, using the explicit blow-up solutions constructed in Part I and the concen-
tration results, we are able to give a complete answer to this problem.

Theorem 2. m has the property (JS) if and only ifm > \Q\2

L2

Remark. In particular, there is no quantification of the concentration of mass. Indeed,
the set we obtain in Theorem 2 is (|Q|^2> +°°) which has no isolated points.

We want to point out the same problem for the limit equation as c0 —> +00: (1 )̂
(nonlinear Schrodinger equation with critical exponent). This problem is open and the
structure of the set of mass concentration is unknown. In particular, we don't know
whether there is or not a quantification of the concentration of mass.
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Remark. The result is independent of the Cauchy space in the sense that for a given
m > 0, we exhibit a solution in Hk for all k > 1. In addition, the result we obtain in
Theorem 2 is independent of the parameter c0 because of the scaling property of the
equation. Indeed, if (u(t, #), n(t, x)) is a solution of (ICQ) on [0, T), then Vμ > 0,

(uμ(t, x), πμ(ί, x)) = (μu(μ2t, μx), μ2n(μ2t, μx))

is a solution of (ICoμ2) defined on [0, T/μ2). It is then easy to check that if

\u(t, x)\2 -^ rnuδx=0 and |n(ί, x)| -̂  rnnδx=Q as ί -> T,

then

uμ(ί, x)|2 — mA=o and |πμ(ί, x)| — mnδx=0 as ί -> T/μ2 ,

Theorem 2 will be a consequence of the following propositions.

Proposition 2. (Global Existence for \φQ\L2 < \Q\L2). Assume \ΦQ L2 < \Q\L2. Then
the solution (u(t), n(t)) is globally defined in time.

Remark. In the case where nl £ H~l (which is not assumed in this proposition), the
result has been proved by C. Sulem, P.L. Sulem [25] and H. Added, S. Added [1],

Proposition 3 (Non-Existence of Minimal Blowing-Up Solutions and Global Exis-
tence for \φQ\ι2 = \Q\Li) Assume |00L

2 = IQIz, 2- Then the solution (u(t),n(t)) is
globally defined in time.

Remark. As before, we do not assume that nλ € H~l.

Remark. The result is completely different from the one in the case of Schrόdinger
equation. Indeed, for the nonlinear Schrodinger equation, there are minimal blow-up
solutions in I/2, that is blowing-up solutions which have minimal mass in L2 norm
among the set of blow-up solutions ([14]).

Remark. Let us point out an important corollary of this proposition. Let φ0 be such
that the solution of (1 )̂ (nonlinear Schrodinger equation), u(t) blows up in finite time
and \φQ\L2 = \Q\L2. For all c0 > 0 and n0,n1 ? the solution (u(t),n(t)) is globally
defined in time and does not blow up in finite time.

Let us consider now the explicit solution constructed in Part I,

(L9)

<uo>

where T > 0 and (Pλ,7Vλ) satisfies (Πλ) and Wl be the connected component of
(λ, Pλ, 7Vλ) in R+ x H]. x L2 of solutions of (IIλ) containing (0, Q, -Q2).

We claim that Vra > |Q|^2» there is a λ = λm such that (%m, n\Ύn) is a blow-up
solution which has the following property:

WλmθM)!2 -" mδx=Q aS i -+ T With m = U\m(^X)\2

L2 = \ΦQ 2

L2 -

Proposition 4. 1) There is a sequence (λn, Pn, Nn) of Wλ such that \Pn Lι — > \Q\L2

as n — > H-cx).
- There is a sequence (λn, Pn, 7Vn) of Wλ such that \Pn L2 — » +00 as n — > +cχo.
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2) Vra > \Q\2

L2, there is λm such that (uXm, nλm) defined by (1.9)-(1.10) is a blow-up
solution o f ( l ) which has the following properties:

d
- for all t € [0,T), ttλm(ί),nλm(*)> Jΰ nλmW € Hk, Vk > 1,

\ Ol /

- uλm(t, x)|2 —^ mδx^Q as t —> T w/Y/z |wλm(0)|^2 = ?τi

It is then easy to see that Theorem 2 follows from Propositions 2, 3, 4. Indeed,
from Proposition 4, if m > |Q|^2» tnen m satisfies property (̂ ) and if m < \Q\2

L2

then m does not satisfy property (Jf).

/ B Strong Instability of Periodic Solutions of(l ). We recall from Part I, that equation
(Ic ) has periodic solutions of the form

where V satisfies the elliptic equation (Vω) in R2. The set of solutions of (Vω) for
ω > 0 has a minimal element in L2, Q the unique solution of (V+).

More precisely,
- If V φ 0 satisfy (VJ for some ω > 0 then \V\L2 > \Q\L2.
- If V φ 0 is a solution of (Vω) for some α; > 0 such that \V\L2 = \Q\Lι, then there
are θ G 51, x0 G R2 such that

The question we are interested in this section is to know whether these periodic
solutions are orbitally stable or not in spaces where the Cauchy Problem of (Ic ) can
be solved locally in time:
- Hl = Hl x L2 x H~l for weak solutions,
- H2 = H2 x Hl x L2 for strong solutions,
- Hk = Hk x Hk~l x Hk~2 for k > 2 for solutions with additional regularity.

That is Vz > 1, Vε > 0, 36 > 0 such that

|(0o, n0, nj) - (V(x), -\V(x)\2, 0)|H. < δ .

Then Vί G M2,

min

We first show that any minimal periodic solution V is orbitally unstable in Hl and
^ (Vz > 1). That is, if V is such that there are Θ0 G Sl, ω0 > 0, x0 G M2,

then V is unstable.
We then give a similar instability result for a general periodic solution of equation

(Ic ) (eιωtV(x)J — |F(x)|2,0) under some nondegeneracy conditions on V.
More precisely, we want to prove that for a given periodic solution of the form

and i > 1, there is ^ such that Vε > 0, 3(φ0ε,n0ε,nlε) and te such that

| V(a;)|2, 0)\H. < ε
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and

mm (uε(tε),nε(tε), ̂  (ίe) J - (etθV(x - x0), -\V(x - x0)\2,(
\ /

where (uε,nε) is the solution of (I ) with initial data (</>0ε,n0ε,nlε).
In fact, we show a stronger result (strong instability or instability by blow-up):

There is a sequence of initial data such that

(Φθk>nok>nik) -> (V(x), -\V(x)\\0) in H, for i > 1 ,

such that (uk,nk) blows up in finite time Tk < +00 in Hi for i > 1 (in other words,
δi can be taken arbitrary in the definition of instability).

Such results are well known in the case of the nonlinear Schrodinger equation
(loo). Indeed if F is a solution of (Vω) then Pohozaev identity yields that &(V) = 0
where

= ^ J I VV(x)\2dx -l-J \V(x)\4dx .

Now considering φ0ε = (1 + ε)l/, we have φ0ε —> V in if1 and

) < 0 ,

Therefore, the solution of (1 )̂ with initial data φQεuε(t) blows up in finite time
(see [8] and [23]). We can also mention a similar result obtained by Berestycki and
Cazenave [3] for nonlinear Schrodinger equation for the ground state solution

iut = -Λu-\u\p~lu in RN

The argument will be quite different (argument such as in [3] does not apply) and
uses strongly self-similar solutions of (Ic ) constructed in Part I and their asymptotics.

Theorem 3 (Strong Instability of Minimal Periodic Solutions). Let (u(t), n(t)) a non-
zero minimal periodic solution of (ICQ), that is there are Θ0 G Sl , ω0 > 0, XQ G M2

such that

i) There is a sequence (</>0ε,n0ε,n lε) — >• (V, — |V|2,0) in Hk V/c > 1 as ε — » 0 such
that (uε(t),nε(t)) blows up infinite time Tε in H{, where (uε,nε) is the solution of
(ICo) with initial data (Φ0ε,n0ε, nlε).

ii) (V(x), -|l/(x)|2,0) is orbitally unstable in Hit Vi > 1.

Remark. Part ii) is a direct consequence of parti). In addition, if (uε,nε) blows up
in Hλ in finite time, then it blows up in Hk, Vfc > 1.

For a general periodic solution, we have the following result.

Theorem 4 (Strong Instability of Periodic Solutions). Let V a radial solution of

vequation (V^) and (elωtV(x), — |V(x)|2,0) the associated periodic solution of(lc ).
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Assume in addition that V is a nondegenerated critical point of the functional

1 r 2 /•
- 4 / \V(x)\*dx + y / |F(x)|2dx

M2 R2 M2

m jF/Ji = {v G fί1 swc/z that v(x) = υ(\x\)} in the following sense: the operator

is a continuous one to one application from H2 Π H^ to L2, where

L2

r = {v G L2 such thai v(x) = v(\x\)} .

Then the conclusions of Theorem 3 hold.

Remark. We strongly suspect that the result is still true without the nondegeneracy
condition (we in fact conjecture that the set of degenerate solutions of (Vω) is empty).

Remark. In Part I, we have shown that Q is a nondegenerate critical point of %ω in
H2 Π H}.. Therefore, Theorem 3 can be seen as a consequence of Theorem 4.

A. Qualitative Properties of Blowing-Up Solutions of Zakharov Equation (ICQ)

Let us consider in this section a solution of equation (I ) (u,n,nt) which blows up in

finite time T < -f oo in Hk for k > 1. Existence of such a solution has been proved in
Part I [7]. We show in this section various properties of (u, n, nt) at the blow-up time
T. We first give some general properties of solutions of equation (I ). For blow-up
solutions in Hl, we then show some concentration properties at the blow-up time in
Sect. A.I. In Sect. A.2, A.3 we show some properties of the concentration mass. We
conclude Sect. A showing that a solution which blows up in Hk for k > 2 blows up

Let (u, n, nt) solution of equation (I ) in Hk for k > 1. Let first give a different
formulation of equation (I ).

If nt G if"1, there is a (υ0, u>0) G L2 x L2 such that

Πj = -V -VQ+WQ. (A.I)

We remark in addition that
- if rij G Hk~l for k > 2, we can choose (VQ,WQ) G Hk~2 x Hk~2,

- if nλ G H~l, we can choose u>0 = 0.
We can check that (ICQ) can be written in the form

iut = Δu + n^,

1
-^vt + Vn = — V\u|2

with the initial data ιt(0) = 00, n(0) = n0, v(G) = f0.
We can remark (u,n,nt) is a solution of (ICQ) in 7Jfc if and only if (w, n, υ) is a

solution of (rco) in Hf

k = Hk x Hk~l x ff*-1.
We have the following properties for a regular solution
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Lemma A.I. i) Vt e [0,T), u(t)\L2 = \ΦQ\L2.

ϋ) Vte[0,T),

where

u\2\

), v(t)) and

, n, v) = (A.2)

Remark. For weak solutions of (Ic ), we can show inequalities, and we can check that
all proofs in this section can be carried out. For simplicity, we will assume that the
solution is regular enough to prove properties i) and ii). We can check directly from
the local uniqueness in time of the solution in H2 that if (tδ(0), n(0), nt(0)) £ H2, the
solution satisfies these identities.

Remark In the case u>0 = 0 (nt(0) = r^ £ H~l), we remark that ̂ (Q is a conserved
quantity in time, otherwise it is not.

Proof. Proofs of i) and ii) follow from direct calculations.

A.I L2-Concentration of Blow-Up Solutions. We consider in this section a solution
(u(t),n(t)) of (ICQ) such that

u(t)\H\ + |n(ί)|L2 + nt(t)\H-ι -^ +00 as t -> T,

or equivalently

\u(t)\H\ + |n(ί)|L2 + \v(t)\L2 -> + oo as t -> T.

We want to show concentrations properties of (u, n) in suitable spaces. This result
is obtained using methods similar to those in Merle Tsutsumi [18], Merle [17] and
Weinstein [28].

Proof of Theorem 1. It follows from energy arguments. Let us recall the energy
identity:

Lemma A.2. ([28])

Vu E if .12
'L2

(A.3)

where Q is the unique solution of(V+).

Define for (n,n) £ Hl x L2,

and

R2

= ί|V^2 + i /H2+ f

R2 R2 M2

f((n+\u2)2. (A.4)

We consider several cases.
We first consider the case where (u,ri) radial functions and nγ £ .ή""1. We can

remark (u,n,v) are radial functions for all t £ [0, T) if (^>θJnθ'nι) belongs to H2

and is a radial function (uniqueness of the Cauchy in suitable space Hk, k > 2).
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We then consider the general case.

Case 1. ri j £ H~l and (u,ri) radial.
In this case, the functions are radial and Vί G [0, T), 3@(ΐ) = (̂0). We argue by

contradiction following [17]. Assume there are <50 > 0 and .R0 > 0 and a sequence
tk —> T as k —> + oo such that

(A.5)

or
Γ / Γ \Ί

l i m i n f f / \n(tk,x)\ dx \ -> 0
/c-»+oo i y I

\|O;|<Λ / J

Stepl. Scaling arguments. We consider

(A.6)

where λ fc = | 2. By direct calculations, we have

•-^/k*fc.
R2

x)\4dx -

and

From the fact that

λ|

where

%(u(tk)) <
we have

and

In particular, (A.8) yields

< -^(0) -^0 as fc -^+00.

lim sup (?(uk) < 0 and lim sup 3@λ(uk, n fc) < 0.
/c—>+oo /e-^ +oo

Therefore,

/

Γ /*
|w f c |

4 > 21iminf /
&—>-f oo J

R2 LR2

>2

(A.7)

(A.8)

(A.9)
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and

limsup ί ί(nk + K|2)2 - ί \
/c-»+oc J J

limsup / \nk\ < 2limsup / |^fc| < c. (A. 10)
k^+ooJ k-^+ooJ

R2 R2

Moreover, property (A.5)-(A.6) and the fact that \k — > + o o a s f c — > + o o imply

limsup / \uk\
2 < \Q\2

L2 - S0 or limsup / \nk\ = 0. (A.ll)
k—>+ oo J k—++ oo J

\x\<R \x\<R

Step 2. Compactness procedure. Let us obtain a contradiction by compactness pro-
cedures. Using classical compactness procedures from (A.7), (A. 10), we can assume
that there is a (U, N) G Hl x L2 such that uk —^ U in if1, nk —^ TV in I/2. Since uk

is a radial function, a compactness lemma (see Strauss [24] yields uk —>• U in L4.
We then have from (A.9)

ί \U\4>2 and t / ^ 0 . (A. 12)

Let k going to + cχo in (A.ll), we have

J '\U\2 < \Q\2

L2 or T V ^ O . (A.13)

R2

Indeed, V^ > 0,

| t/ | 2 <liminf
k-^+oo

ι2

\x\<R \x\<R

or

/ \N\ < liminf ί |nA
J k-^+oo J

\x\<R \x\<R

-0.

Letting R —> + oo, we obtain (A. 13).
Furthermore, since τ/| —>• U2 (uk —>• ί7 and L4) and nk —^ N in L2, we have

I nk\uk\2-* N\u\2 as fc ̂ +00. (A.14)
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We deduce from (A.8), (A. 14) that

k^+oo k^+oo

or equivalently

\ fn2

k + f ' nk\uk\
2 <0

2 J J

l- f(N+\U\2)2<0.

R2

-If / | /7 | 2 <|g |^ 2 -<S 0 ,wehave
R2

= ί \VU\2 - - I \U\4 < 0 and

R2 R2

which is a contradiction (Lemma A. 2).
_ If AT = 0 then ^(U, N) = / | W|2 < 0 and 17 ̂  0, which is a contradiction.

R2

Therefore, there exists a constant ran > 0 such that \/R > 0,

l iminfί / \u(t,x)\2 dx J > \Q\2

L2 and l iminfί / \n(t,x)\dx\ >mn.

\\x\<R J \\x\<R J

General case. We now do not assume that β%(t) is a conserved quantity nor the
functions (w(ί),n(t),υ(t)) are radial.

Let us give a crucial estimate.

Proposition A.3. There is πιn = ran(|</>0|L2) > 0 such that the following property is
true: Let uk £ Hl, υk G L2, nk G L2 a sequence such that

Let assume in addition that there are R0 > 0 and <50 > 0 such that

sup
y

\y-χ\<R0

/
J

(sup ί
\ y J
\ \χ-y\<l

or
/ r

\nk(x)\ dx < mn(

-y\<Ro

There are then constants cv > 0, c2 > 0 such that

\Vuk\
2+

Remark. We can replace the condition It^l^ — l^o I2 ^v w/c i2 — l^oli2 '
Before proving this crucial estimates, let us conclude the proof of Theorem 1.

Case raj e H~l.
In this case we have Vt, 3&(t) = 3%(u(t\ n(t), υ(t)) =
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Let rnn(\φQ\L2) defined by Proposition A.3. Assume there is a sequence tk —> T
as k —» +00, -R0 > 0, <50 > 0 such that

(
n

sup / \u(tk,x)\2dx\ <\Q\2

L2-
y J )

\χ-y\<Ro /

ί ίlim inf f sup / \n(tk, x)\ dx
/C-» + 00 I y J

We then apply Proposition A.3 with (u(tk\n(tk),υ(tk)) and we obtain

IVu(t k )\ 2 + \n(tk)\2 + \v(tk)\2 <c and tk -> Γ,

which is a contradiction. Thus, there is xk,yk,Rk —» 0 such that

lim inf
k

u(tk,x)\2dx\ >\Q\2

L2

-xk\<Rk

and
/ f \liminf ( / \n(tk,x)\ dx \

k^+oo \ J I

I \\X-yk\<R /\\x-yk\<R

which concludes the proof.

Case nl φ H~l.
Assume that there is no sequence tk —> T such that VR > 0,

or

\ y
V \χ-y\<R

i f \
lim inf [ s u p / \n(tk,x)\ dx ]
/C->+00 1 y J J

Then there are #0 > 0, <50 > 0 such that Vt e [0, Γ),

(sup ί \u(t,x)\2dx\ <\Q\2

L2

\ y J
\ \x-y\<R() /

-δ

or
i f \
I sup / n(t, x)| G?X I <m (
I y 7 /
\ \χ-y\<Ro /

We apply Proposition A.3 and we obtain \/t e [0, T),

t)\2 + n(t)\2 + 7;(Q|2 < c0/ |

(A.16)

(A.17)

/

\
\u(tk,x)\2dx \ > \Q\2

τ2 (A. 18)
/

(A.20)

(A.21)

(A.22)
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In addition, from Lemmas A.I, A.2, Vt G [0,T),

t t

0

t

(s)ds < cί 1 + f [ f \w0\ (n(s) + \u(s)\2) } ds\
1 7 1 7 / /
\ 0 \R2 / /

(
Γ \

1 + / \wQ\2

L2 + \n(s) + |w(5)|2|^2 ds ]
«/ /
0 /

< cΛ + ί(\n(s)\2

L2 + \Vu{8)\2

L2)ds\

V o /
t

< c j 1+ ί M(s)ds\ (A.23)

V o /

where
M(t) =

From (A.22)-(A.23) we have

Vt G [0,T), M(t) < cl 1 +

^ o

this implies from Gronwall lemma that Vt G [0, T), M(t) < c or equivalently

Vt G [0, T), |(w(t), n(t), πtOO)|H < c,

which is a contradiction.
We remark that in the radial case, obvious symmetry reasons and the conservation

of the L2 norm implies that we choose xk = 0 in Theorem 1.
This concludes the proof of Theorem 1.

Proof of Proposition A3. It is based on similar ideas of Lieb [12] and Weinstein
[28] for the nonlinear Schrodinger equation. The proof we present here is based on
a lemma which was presented by Merle in a seminar as an alternative proof of the
result of Weinstein in [28].

We first remark that it is sufficient to prove that there are constants cλ, c2 such that

V f c , -q+c \Vuk\
2+ nk\

2 <

where ^(w, n) is defined by (A.4).

Step L Scaling arguments.
We argue by contradiction. Assume that the conclusion does not hold for a

subsequence (uk,nk). Then

R2 R2
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hm sup
^ Λ _
< 0 as k -> + oo .

Indeed,
- if λfc < c, then |̂  | < c and the conclusion is obvious,

- if l ( nfe'n f c j - * c > O a s & - ^ + o o , then for fc large,

R2

c2 = - 1 . Consider

which is a contradiction ί since Proposition A. 3 will be satisfied with cλ = 0 and

[^(rc) - \-luk(x\-1) and

We have by direct calculations

\Uk\
2 = f \Φ0\

2 and (A.24)

We remark that

limsup ( 1 + f Nk\Ut
k—>+ oo \ J

(A.25)

Since < c by Sobolev estimates, we can assume that

[Nk\

R2

~ as

In addition, we have from the assumptions of the proposition,

VR> (
r \

sup / \Uk\
2 } < \Q\2

Γ2 -
y J /

\χ-y\<R /

or

[ lim inf [ sup

fc^+00 ^ y

\Nk 0 as

(A.26)

(A.27)

(A.28)

Step 2. A non-vanishing property of (ί/^, Nk).
Let us give a crucial lemma which rules out the case of a vanishing sequence

(Un,NJinL2xLl.
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Lemma A.4. (Merle) Assume there is a sequence (t/n, Nn) G Hl x L2 such that

R2

as k —* + ook — * + oo.
Then there are a constant c4 = c4(cl^ c2, c3) > 0 and a sequence xk such that

\Nk\>c4.

\x-xk\<lI "" "" K I ̂

Remark. For Schrodinger equation, we apply this lemma with Nk = —\Uk\
2.

Proof. We use here some ideas of Lieb in [12]. Clearly, there exists some xk such
that for large k,

ί-Nk\Uk\
2 >a( ί (\VUk

 2 + \Uk\
2 + \ |7V,|2 Π, (A.29)

Ok Ck '

where Ck is the square of center xk and a = ——-—-. Indeed, by contradiction we
2(q + c2)

obtain from (A.29),

[~Nk\Uk\
2 < at ί (\VUk\

2 + \Uk\
2 4- \ \Nk\

2] J.
J \ J \ / /
R2

 XR2 X

As fc —> + oo, we deduce c3 < α(c! + c2) < -̂  which is a contradiction.

We claim now that there exists c > 0 such that

ί-Nk\Uk

2>c and ί\Uk\
4>c. (A.30)

Indeed, by Sobolev identity on Ck there is s0 > 0 independent of k such that

. 1 /->

Ck Ck

Equation (A.29) gives then

Nk\Uk\
2 < \Nk\L2(Ck)\Uk

ok

Thus |E7fc|L4(Cfc) > λ/85^ and / -Nk\Uk\
2 > c> 0.

C'fc
Assume by contradiction for a subsequence Nk,

ί\ as A:->+oc. (A.31)

ok
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We can assume that

Nk(χk + )^N inL2 and uk(χk + )-*u in /r 1 .
Then Uk(xk + •) -> U in Lfoc and |E7 fc |

2 -> \U\2 in L2

OC. From (A.31), Nk(xk + -) -- 0
in L2(C0) and

Nk\Uk\
2 = j Nk(xk + x}\Uk(xk+x}\2-*V as &

CO
A contradiction follows from (A. 30) and the lemma is proved.

Step 3. Conclusion of the proof.
Let us now conclude the proof of the proposition.

Case A.

V . R > 0 ,
/ Γ

liminf [ s u p / \Nk\
"*~ °° \ y J

0. (A.32)

\χ-y\<R

We apply Lemma A.4 and we obtain a contraiction with (A.32) with R — 1.

Case B.

V # > 0 , Ί i m i n f f s u p f \Uk\
2\ < \Q\2

L2 - 60. (A.33)
fc^+OO \ y J I

\ \x-y\<R /

We apply the same procedure then in [28] to obtain a contradiction. In this case, we
have from (A.25) and from the fact that

, Nk) = $(Uk) + \jw
lim sup &(Uk) < lim sup ̂  (Uk ,Nk)<0.
k— >•+ CXD /c— •>+ oo

We now can conclude the proof. Indeed, we apply Lemma A.4 (and proof of
Lemma A. 4), and we obtain dichotomy

where for a sequence xj.,

^(4 + z)-VΊ inH1 and \Ul

k L4(lx_Xkl<l) > c> 0.

Therefore, by Sobolev estimates, there is a δ, > 0 (depending only of |</>0lL
2)

that

On one hand, from (A.33),

VR > 0 , jhninf \Ul

k(xk + )\L2(Bfύ < \Q\2

L, - 60 .

By usual techniques of concentration compactness method (see Lions [13]), we have
by a suitable choice of Uk,

\Ul

k\
2

L2 + \Ul

kR\2

L2 -+ |00|
2

L2 and δ, < Um \Ul

k\
2

L, < \Q\2

L, - 6, .
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On the other hand,

^(Ψd + lim sup ̂ (Ul

kR) < lim sup %(Ul

k) + lim sup %(Ul

kR) < lim sup &(Uk) < 0 .
fc— >•+ oo fc— >+oo k—*+oo k— >+ oo

Therefore, from Lemma A.2, since δ{ < \^\\2

L2 < \Q\2

L2 ~ ^o»

< 0.
/c— >+oo

Thus, extracting a subsequence, we have

-^ and lim sup ̂ (O < -^)< 0.
/C-»+00

We iterate the same procedure and define

u2

kR

Let us define p such that —pδl + \Φ0\
2

L2 < \Q\2

L2 Applying the same procedure at

most p times, we find for a i < p and k large a function U\R such that

3W£Λ) < ̂  Wι)< 0 and |f/έβ|2L2 < |Q|2L2 ,

which is a contradiction with Lemma A.2. This concludes the proof of Proposition A. 3.

A .2 Non-Existence of Minimal Blowing -Up Solutions in L2. Let (00, n0, rij) G ίίj and
(t/,n,n t) the associated solution of (ICQ). From Theorem 1 and the conservation in

time of the \u(t)\L2, we derive easily that if

there is no blow-up in time in Hl of (u, n, nt) and the solution is globally defined in
time (see also Sect. A.4).

The Question is to know if there are solutions which blow-up in Hv such that

100 L2 = \Q\Ll '

We see in the next section that for all m > \Q\L2 there is (0om>nθm>nim) such tnat

- \ΦQm\Ll =m>
- (um, nm) blows up in time [where (um, nm) is the solution of (Ic ) with initial data

(00m' nθm' nim] Then the question is to know if there are minimal blow-up solutions
of the Zakharov equation and to characterize them (if they exist). In fact, we claim
that there are no blow-up minimal solutions in L2.

Proof of Proposition 3 . Let us prove that if |</>0lL
2 = IQL2' tnen me s°luti°n does

now blow-up in Hl (Sect. A.4 will imply the result). Let us argue by contradiction:
assume there is T > 0 such that

I Vu(t)\L2 + |n(t)|L2 + \nt(t)\H-ι -* + oc as t -> T ,

or equivalently

I Vτx(ί)|L2 + |n(ί)|L2 + \v(t)\L2 -* + oo as t -» T . (A.34)
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Step 1. We claim there is a c > 0 such that

Vt G [0, Γ), &(u(ty) < c, / \υ(t, x)\Ί

f
I (n(x,t) + \u(t,x)\ Γdx < c.

J

< c ,

(A.35)

R2

- If nλ G F-1, then ^f(0) = ̂ f(ί), where

- ̂ (0) + ^
R2

/

Since from Lemma A.2,

/

" V
we have from (A.36), Vt G [0, T),

U(t)\r2 > 0,

(A.36)

(A.37)

R2

v(t)\2 < ̂ f(0) , ^ ί(

R2

- If n t ^ -fi""1, let us show that Vt G [0, T), ̂ (ί) < c and then conclude as before.
We have from Lemma A.I, Vt G [0,T),

dt -I
Thus by Cauchy-Schwarz,

dt

and

' . /
"° J

R2

t

f f 9 9
c + / / (n(s) + \u(s)γ ) ds . (A.38)

J J
0 R2

In particular, from (A.36HA.37),

t

Vt G [0, T), j(n(t) -f |^(t)|2)2 < c + / /(n(5) + |w(«s)|2)2^

0 R2

and the Gronwall lemma yields

VtG[0,T), f

R2

Using again (A.38), Vt G [0, Γ), 3&(t) < c.
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Thus as before there is a c> 0 such that Vί G [0, T),

2 2 < c .&(u(t)) < c , / |v(ί, x)|2 dx < c , / (n(ί, x) + \u(t, x)|2)

M2 R2

Step 2. Let us show that there is a c > 0 such that Vί G [0,T), ||w(ί)|2|#-ι < c.We
have Vί G [0, T), nt = V v + u>0, where u>0 G I/2,

o
t

Vί G [0, T) , |n(ί)|H-ι < c + / |nt(

v(s)\H-ι + \WQ\H_Jds

- f(\v(s)\tf+ w0\L2)ds<c (A.39)

0

ί

from Step 1.
Since \u(t)\2 = (n(t) + ii(ί)|2) - n(ί), we have from (A.35) and (A.39),

vt G [O,T), l |wωi 2 lH-ι
u(t)\2\L2 <c.

Step 3. Let us obtain a contradiction with the concentration property of u proved in
Theorem 2.

We have Vί G [0,Γ), %(u(t)) < c, w(ί)|L2 = |Q|L2. We claim that

>+oo as ί-^T.

Indeed, assume there is a c > 0 such that / |V^(t)|2 < c, then f \u(t)\4 < c, and
I2 R2

from (A.35), f(\Vu(t)\2 + n2(ί) + v2(t)) < c, which is a contradiction with (A.34).
M2

Thus from Proposition A. 3, there is a x(t) such that

in the distribution sense.
Let ft(ί, x) = |w(ί, x(t) + x)|2. We then have

\h(t, x)\H-ι < c and h(t, x) -^ \Q\2

L2δx=Q as t -> T

in the distribution sense. Therefore considering weak limit of ft(ί),

IQI^^o e F-1

which is a contradiction since there is a bounded sequence of continuous functions
zk in Hl such that zk(Q) —> + CXD. Therefore there is no blow-up solutions of minimal
mass and Proposition 3 is proved.

A3 Proof of Proposition 4 and Theorem 2. Let us prove now Proposition 4.
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Proof of Proposition 4. 1) Let us consider ^ be the connected component of
(λ, Pλ, Nχ) in R+ x H^. x L2

r of solutions of equation (Πλ) containing (0, Q, -Q2).
From Sect. 3 of Part I, we know

(Pλ,7Vλ)^(Q,-Q2) in HlxL2 as λ ^ O ,

and in particular Pλ L2 —>• \Q\^2 as λ —» 0. Moreover from Sect. 5 of Parti, we
know that Wλ is unbounded in R+ x Hl x L2. This yields to the following alternative:
There is a sequence (λn, Pn, Nn) G W\ such that
- Case 1: There is a 0 < λ** < + oo, λn -» λ**, and |Pn|Hι + |NJL2 -> +00.
- Case 2: λn -> + oo.

We recall from Part I (Sects. 2 and 5), that we have the following identities.

Lemma A.5. Let (Pλ, 7Vλ) ^ 0 α solution of the equation (Πλ) iv/ίA λ > 0.
//<3V^

i) / I VPλ(x)|2 do; + / Pj*(z) dx = / -Nx(x)P%(x) dx9

ii)

i i i ϊ Γ P2(τ^ήr "> ( (Ί2(τ}rlτ111/ I J- \ \JL> I UjJu ^ I \oS \JU) vLJu./ J Λ ^ ' J ^ ^ v /

R2 R2

We claim that

Lemma A.6. We have

lPnlL2-*+°° as

Proof. Assume by contradiction that for a subsequence also denoted (λn,Pn,7Vn),
we have

fpί<c. (AM)

We claim from Pohozaev and energy identities (Lemma A.5) that

R2 R2 R2

Indeed, we have from Lemma A.5 ii)

(A.42)

In addition, from Lemma A.5 i) and Gagliardo-Nirenberg inequality,

\\/ι / Γ \\/ι / r \ 1/2

/
|VP

K2 R2

( /* \ / / Γ \ / r \
P2Λ f / | V P J 2 ) < c ( / | v p n ή

J I \ J I I J I
R2 / \R2 / \R2 /

R2 \R2 / \R2 / \R2 /

1/2
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and

/ VPJ2 <c. (A.43)

R2

From (A.40), (A.42), and (A.43) we have

\VPn\ + j PU + j (A.44)

R2 R2 R2

Let us consider the two cases.
- Case 1: (0 < λ** < +00). We have directly a contradiction since

|VP2| + ίpn as

R2 R2 R2

- Case 2: Using Lemma 2.2 of Part I, from (A.44) we have that l-Pj^oo < c.
Moreover from Lemma A.5, Vε > 0,

/|VP2 | + |P2< I -NnP
2 + I -NnP

2

R2 R2 \x\<ε \x\>ε

< c / i N j + ί f NΛ"Ίf pΛ
I V / V /

1/2 r / r \ ! / 2

<cεl I Nϊ\ + - f / \x\2N2\

1/2
f . / I n n n \

< cε +

Since λn —>• + CXD, we have Vε > 0, lim sup / P2 < cε and

as n —> + ex).

This is a contradiction with Lemma A.5 iii). This concludes the proof of the lemma
and Part 1) of Proposition 4.
2) We consider (wλ,nλ) defined in (1.9)-(1.10) for (λ,Pλ,7Vλ) G gf , where
gj* = gj\{(0, 0, -Q2)}. We have from Part I, (or we can check directly)

u x , n x , ) € H k , (A.45)
(7t /

\ux(t,x)\2-\Px\
2

L26x=0 as ί^T and K(0|L2 = |Pλ|L2 . (A.46)

Let us consider / = {|Pλ L2, where (X,PX,NX) e ff5}. We want to show that
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Since W* is connected set in E+ x H 1 x L2 (see Sect. 4 Part I) and the application
(λ, P, TV) G R+ x Hl x L2 — > |P|^2 is continuous, we have that / is a connected set
of R, thus an interval.

From the facts that
- V(λ, Pλ, 7Vλ) G gf , / Pj[ > / Q2 (Lemma A.5),

R2 R2

- there is a sequence (λn,Pn, Nn) G ̂ * such that \Pn\L2 -» |Q|L2,
- there is a sequence (λn, Pn, 7Vn) G ̂ * such that |Pn|L2 — » + oc, we have that

and Part 2) follows from the properties of (ιtλ, nλ) (A.45)-(A.46). This concludes the
proof of Proposition 4 and Theorem 2 follows from Proposition 2, 3, 4.

A 4 f f j Control on Higher Derivatives. We assume in this section that different
Cauchy theory can be done (Hk,k > 2) and we show that the blow-up times in
Hk for all k are the same. More precisely, if a solution blows up in Hk (for k > 2),
it blows up in Hγ:

Urn |(w(t), n(t), nt(ί))|Hl - lim \(u(t), n(ί), vt(t))|#/ = + oo .

Proof of Proposition 1. The existence and uniqueness and the alternative in Hk for
k > 2 has been proved by Ozawa and Tsutsumi [20]. The Hl control of Hk norms
follows from the two next lemmas.

Lemma A.7. Let (u(t),n(t),nt(t)) a solution of(lc ) on [0,t0] such that

Vt G [0, ί0] , |w(ί), n(ί), nt(Q)|^ < c

and
((tt(0), n(0), nt(0)) G Hk for fc > 2 .

There is a constant c> 0 such that Vt G [0, ί0], |(w(ί), n(Q, nt(ί))|Hfc < c.

Lemma A.8. L ί̂ (u, n, nt) α solution of(lc ) m if2

is a δl > 0 <2«d c2 depending on cλ such that

Vί G [0, δj , |(w(ί), n(t), n.α))!^ < c2 .

Proof of Lemma A. 7. The lemma follows from the following property: Assume there
is t0 > 0 and c > 0 such that

V* G [0, ί0] , |(u(*), n(ί), n t(0)|^_ < c and (τ/(0), n(0), n,(0)) G Hk . (A.47)

Then there is a constant c such that Vt G [0, t0], \(u(t), n(ί), n^t))!^ < c.
The cases fc = 2, 3 follow directly from [1]. The cases k > 4 use similar techniques

than in [1].
a) Uniform bounds in Hl imply uniform bounds in H2 (k = 2). From the same
argument as H. Added and S. Added in [1], we show that if

Vt G [0, ί0] , \(u(t), n(ί), nt(t))\Hl < c and (tχ(0), n(0), nt(0)|H2 < c

then
W G [0, ί0] , |(u(ί), n(ί), nt(ί))|H < c .
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We recall that H. Added and S. Added use some energy estimates of C. Sulem
and P. Sulem [25] and the following lemma:

Lemma A.9. (Brezis and Gallouet [5]). For u G H2 we have
i) HLoo < c(l + u\H\ y/log(l + |

b) Uniform bounds in H2 imply uniform bounds in H3 (k = 3) (see [11]). Let us
consider now the case k = 2p and k = 2p + 1 where p > 2.
c) Uniform bounds in H2p_l imply uniform bounds in H2p (k = 2p). Let us first

assume that k — 2p. We have by a recurrence and direct calculations that ( with the
dk \ V

notation u(k} = — j Vί G [0,ί0],
/

\Δpu(t)\L2 < a\u(p\t)\L2 + b and \u(p\t)\L2 < a\Δpu(t)\L2 + b. (A.48)

We then remark that

P-2

τu = ΔU(P) + nu(p) (A.49)

Thus

R2

p-2

yields with (A.50)

e[0,ί0], ^-\u(

p-2

Σ /-

< c u(p\t)\2

L2 ,

and we conclude from GronwalΓs lemma that Vί e [0,t0],
particular from (A.48),

Vίe[0,ί0],

To conclude, we have from (1.2) that

W G [0, t0] , i (^2p-2n)ίt - Δ(Δ2p~2n) = Δ2p\u\2 .

Therefore

t\
2 + |V(/V2p-2n)|2) < 2

o

and in
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From Galiardo-Nirenberg and the Gronwall lemma,

jt j(\Δ2p-2nt

 2 πh \V(Δ2p-2n)\2) < c\Δ2p-2nt\L2 ,

R2

,ί0], j(\Δ2p~2nt\
2 + |VC42^2n)|2) < c and |(u(*)X*), c.

d) Uniform bounds in H2p imply uniform bounds in H2p+ι (k = 2p+ 1). From (A.49),
/ Qk

we have ( with the notation Ί>(/C) = τr-r

nn

fe-2

= Re ' f nmu(v-l)ύ(P+l) + ̂ ck f
J f) J

R2

or

\R2

ju _ 2

+ p -

ju _ 2

ίn^u(p-l)ΰ(p) + ̂ ck ί
J rv J

-Re

\R2

k-2 Γ

+?c*/<
R2

Using direct estimates as in [1], we can easily conclude that

W E [0,έ0], / \Vu(p\t)\2 <c.

R2

Thus using the equation,

Vt E [0,ί0], |w(ί)|H2p+l < C.

From the fact that

1 V(Δ2p~lntt) - V(Δ2pn) = V(Δ2p u\2),
co

_ 2 p - l ^ Λ | 2 _ L I \ A&P><n\2 <f / Y7^Λ2(P-1)^ Λ/\2p+l

^

-̂  /llV^2^1^)^ ίat J CQ J

R2

1/2
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we obtain Vί G [0,ί0], \n(ΐ)\H2p + \nt^\H2P~l — c' which concludes the proof for
k = 2p + 1 and Lemma A.7 follows.

Proof of Lemma A.8. It follows directly from the techniques used by Merle in [16].
Assume cλ > max(l, \φQ ^2) and |(w(0),n(0), v(Q))\H/ < q. Let ί0 such that

V* G [0, ), v(f))\2

H, < cf and

where c' = cec^ and a = max ί 100, 2 J . From Lemma A.7, (IA, n) is defined on
V \Q\i2 /

[0, ί0] and let us show that ί0 > ^ > 0 where 5j depends only on q, which will
concludes the proof of Lemma A. 8.
Step 1. Estimates on u(t)\L4.

Let S(t) the Schrodinger group. We have

Lemma A.10. For φ e Hl,we have
i) \S(t)φ\L2 = \φ\L2,

ii) \VS(t)φ\L2 = \Vφ\L29

iii)

From (1.1) and Lemma A. 10, we have Vί G [0,t0],

t

u(t) = S(t) - i I S(t - s)n(s)u(s) ds

o

and Vt G [0,ί0],

t

\u(t)\L* < \S(t)φQ L4 + / \S(t - s)n(s)u(s)\L4 ds

1/2

1/2

-

-
/2 ds

|!/2 1 0

(A.52)
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Step 2. Conclusion.
For t G [0, ί0], we have

= ^f(0)+ / / w0(n(s) + \u(s)\2)ds
J J
0 R2

t

- I c(|n(s)|L2 + u(s)\2

LΛ)ds

o
t

- / c(c{a
1/2 + c^ads

From (A.52)-(A.53), for t G [0,ί0],

L. Glangetas, F. Merle

(A.53)

Therefore, tQ > δl, where ^ > 0 depends only on q [δ^ such that ^ c2

c(δlC\ + ^/4c^)] . Thus, Vί G [0, ̂ ],

|(w(ί),n(ί),v(ί))|^, <c 2 ,

which concludes the proof of the lemma and Proposition 4.

B. Strong Instabilities of Periodic Solutions of (ICQ)

We consider in this section the periodic solutions of (I ) of the form

where V is a radial solution of the elliptic equation (V ). We want to prove the

strong instability (instability by blow-up) of this periodic solution in Hk for k > 1.
We consider two cases:

- The case of minimal periodic solutions (in L2 sense) that is there are #0 G 51,
ω0 > 0, xQ G M2 such that

- The case of multiple solutions where an extra nondegeneracy condition is needed.
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B.I. Case of Minimal Periodic Solutions. This section is devoted to the proof of
Theorem 3.

Let us assume that V is a minimal solution of (Vω ), that is there are #0 £ 51,

ωQ > 0, x0 £ R2 such that

Part ii) of Theorem 3 follows directly from Part i). Therefore, we restrict ourselves
to the proof of Part i). We want to show that there is a sequence

(00ε,n0ε,n lε)^(F,-|y|2,0) in Hk, Vfc > 1 as ε -> 0

such that (uε(t), nε(t)) blows up in finite time Tε in //"15 where (uε,nε) is the solution
of (ICQ) with initial data (</>0ε, n0ε, nle). To prove this instability result, we use in fact
the explicit blow-up solutions constructed in Part I; for a fixed ε > 0,

where ωε — — and the parameters θε,Tε will be carefully chosen and (Pε,7Vε)c0ε
satisfies the following equation

(B.3)

ε2(r2Nrr + 6rNr + 67V) - AN = Δ\P\2 . (B.4)

Indeed, if we can show that as ε —» 0

in Hk, Mk > 1, where

$'».&},
1 f ω .

nlε(x) = -\^\ \X\N'Λ^\+=$ NΛ^\\. (B.7)
^ε \ ^ ε / L \ ^ε / ^ε \ ^ε / J

Then the uniqueness in time of solutions of equation (I ) implies that (uε,nε)
defined by (B.1)-(B.2) is the solution with initial data (</>0ε,n0ε,nlε). The result
follows from the fact (-uε,nε) blows up in finite time Tε.

The proof of this result is done in several steps.
- Step 1: Reduction to the case V(x) = Q(x).
- Step 2: Choice of the parameters θε,ωε,Tε.

Several steps and then needed to the proof of the convergence of (00ε,n0ε,nlε)
to (Q(x), -Q2O),0) in Hk, Vk > 1 as ε -> 0.
- Step 3: Uniform convergence on bounded sets of R2 as ε —> 0.
- Step 4: Uniform estimates at infinity in E2 as ε —> 0.
- Step 5: Conclusion of the proof of Theorem 3.
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Step L Reduction to the case V(x) = Q(x). We claim that showing the result for
V(x) = Q(x) is enough from the scaling properties of the equation. Indeed, assume
for all Cj > 0 there is a sequence (0Qε' nθε' nίε) ^ Hk,Vk>l9 depending on q such
that
- (0o>o> )̂ -+ (0, -Q2,0) in Hk, for k>l.
- (uεcι(t),nεcι(t)) blows up in finite time Tε in Hl where (uεcι(f),nεcι(t)) is the

solution of (ICQ) with initial data (</>oε>nθε>nίε)

Let consider a given V(x) = elθQω0' Q(ω\' (x — x0)). We fix cλ = cQωQ and let

nlε(x) = ω%

We have by direct calculations that

in Hk, Vfc > 1 and

uε(t,x) =

(ϊ } — ( t 1I2( — \\

( dn λ
is solution of equation (I ) with initial data ( wε(0), nε(0), -^- (0) 1 = (00ε, n0ε, n l ε)V ot J

T
which blows up in Hλ at —- < + oc.

We now consider the case V(x) = Q(x).

Step 2. Choice of the parameters θε,ωε,Tε in formula (B.5)-(B.7).

We consider solutions (u^, n^) of (L ) of the form (B.1)-(B.2) with ω- = — and0 c0ε
(Pε, 7Vε) solution of (Πε) such that (Pε, 7Vε) -> (Q, -Q2) in Hl x L1 as ε -> 0. We
have to choose Tε, ̂ ε such that the initial data of (uε, nε):

converges in ̂  as ε — > 0 to the initial data (Q, — Q2, 0) of the periodic solution. Let

Tε=ω=— and θε = ̂  = — .
ε ε c0ε

 ε Γε c0ε
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We have

φ (χ) — ωε £ ~4~ C°εp (χ) ^ (B.8)

n0ε(z) = 7Vε(z), (B.9)

nlε(χ) = c0ε(|x|7Vε(x) + 27Vε(x)), (B.10)

and the associated solution of (Ic )

^̂  i , (B.ll)
-c0εtj

(B.12)

We know from Part I that (Pε,Nε) converges in Hl x L2 to (Q, -Q2) as ε —> 0.
Therefore, (</>0ε, n0ε, n l ε) converges to (Q, — Q2,0) in distribution sense. From the fact
that (Pε, Nε) satisfies equation (Πε) we are able to prove a more accurate convergence
of (0o ε, n0 ε, nλ ε). Indeed we show in the following steps that

This allows us to conclude the proof of Theorem 3.

Step 3. Uniform convergence (Pε, Nε) to (Q, — Q2) on compact set of R2.
Let us prove some uniform estimates in ε on (Pε,7Vε) in Hk(BA), where

BA = {x G M2, |x| < A}. We then conclude by compactness arguments that (Pε, Nε)
converges to (Q, -Q2) in Hk(BA) for all A > 0, k > 1.

Proposition B.I. i) For A > 0 and k > 1, ί/z^r^ w α cfc ^ ύf/ιJ εA such that for
0 < ε < εΛ,

ii) VA>Oandk>l,we have that (Pε, 7Vε) -> (Q, -Q2) m Hk(BA\

Proof, i) Let us fix A > 0 and prove the result by recurrence on k. We know from
Part I (see Theorem 4.2 and Corollary 4.3):
- There exist ε0 > 0 and a constant c such that for 0 < ε < ε0 the solution of (Πε)
constructed in Part I is such that

- (Pε, 7Vε) -> (Q, -Q2) in Hl x L2 as ε -> 0.

Define εA = min ί ε0, — ) . From (B.I 4) and Lemma 4.8 in Part I, we have that
\ 2A/

(B.13) is true for k = 1,

c and

By recurrence, assuming (B. 13) for k > 1, let us prove the property for k + 1. We
estimate |Pε|#fc+i(#A) using the elliptic regularity theory. We have

APε = Pε(7Vε + 1) in BA,

Pε = Pε(A) on dBA .
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We then deduce
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< c(\Pε\Hk-ι(BA)\N£\Hk-l(BA) + \Pe

since (B.15).
We now estimate \Nε\Hk-\(BA) fr°m me integral formula (2.4) given in Part I:

1)3/2

Thus the Leibnitz formula gives Vr e [0, A],

da .

<

fc) l/e

J

fc-l
1

- ε2Γ2)3/2

We remark that for j > 0 and a > 0,

1

(fc-l-i)

drJ\l-ε2r2J dyi \l - y2 J '

where y = ex with |ί/| < AεA < \ and

1 1

dri V 1 - ε2r2

From (B.17)-(B.18) and again Leibniz formula,

( fc-l \ι+

Therefore

< c.
L~(B1/2)

This concludes the recurrence and the proof of Part i).
ii) Let A > 0 and k > 1. Let us prove by compactness arguments

(Pε,JVε)^(Q,-Q2) in Hk(BA)xHk(BA).

We already know that

(Pε,Ag^(Q,-Q2) in L2(BA)xL\BA).

From Part i), there is a c > 0 such that for 0 < ε < εA,

C'

(B.16)

(B.18)
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Therefore by compactness arguments for each sequence εn — > 0 as n — > + oo there
is a subsequence (denoted εn) such that

(Pn^n) = (Pεn,Nεn)^(P,ff) in Hk(BA)xHk(BA) as n^+oo.

Thus (Pn, TVJ -> (P, TV) in L2(BA) x L2(BA). From the uniqueness of the limit, we
have (P, TV) = (Q, -Q2). We conclude that

(Pε,TVε)^(g,-Q2) in Hk(BA)xHk(BA),

and the proof of Proposition B.I follows.

Step 4. Uniform estimates of (Pε, TVε) at infinity in R2 as ε — > 0.
In Part I, we obtain some estimates on (Pε, TVε) at infinity for a fixed ε > 0. We

prove in this step these estimates uniformly for ε small.

Proposition B.2. There exist constants δ > 0, εl > 0 and ck for each k < 1
that VO < ε < ε1? Vfc > 1, Vr > 0,

<

Proof. We prove in fact by recurrence on k the property:

\P(

ε

l\r)\ < cke~δr for 0 < / < k + 2 ,

for 0 < I < k .l

a) We prove (̂ ). We begin by estimates on Pε.

Lemma B.3. There exist constants δ > 0, εl > 0 and c such thai for 0 < ε < ε1?

Vr >0,
i) |Pε(r)| < ce~6r.

ii) \P'ε(r}\ + \P'ε'(r)\ < ce~δr.

Proof, i) We need a crucial estimates on TVε proved in Part I (see Proposition 4.12):
There exists constants ε2 > 0 and A > 0 such that for 0 < ε < ε2,

l^ε L°°({\x\>A}) < 2

From Proposition B.I, there exist constants εl > 0, c such that for 0 < ε < ε l 5

|P ε |Loo ( B A )<c. (B.19)

Therefore we only have to estimate Pε(r) for r > A.
We consider the elliptic problem on (A, + oo),

We have for 0 < ε < εl and r > A,

Pε(A)\ < c , Pε(+ oo) = 0 and \ < (Nε(r) + 1) < | .
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Thus by usual techniques of maximum principle, there exists a constant c and δ > 0
which does not depend on ε such that for 0 < ε < εl9

Vr e [A, + oc) , \Pε(r)\ < ce~δr (B.20)

and Part i) follows.
ii) Let us prove the same estimate for P'ε and P" .

Writing (rPε(r))' = r(Nε(r) + l)Pε(r) and integrating on (r, + oo), we obtain (by
decay of P'ε for a fixed ε proved in Part I)

+ 00

rPε(r) = - ί (N£(s) + l)Pe(s)s ds . (B.21)
j
r

It follows from (B.20) and (B.21) that

Vr > A , |rPε'(r)| < cre~δr . (B.22)

We conclude from (B.22)

VO < ε < ε2, Vr > 0 , \Pε(r)\ < ce~δr .

The estimate on Pε follows.
- on one hand, from the uniform bound of Pε on [0, A],
- on the other hand, from the relation on [A, + oc),

Pe" - + (N£

and estimates on Pε and P'ε. This concludes the proof of Lemma B.3.
We now estimate Nε.

Lemma B.4. There is c > 0 such that for ε > 0 small,

c
\Nc(r)\ <

1+r3 '

Proof. We use for this estimate the integral formula (B.I6) of Nε,

where

l/e

We remark that Vr,

r

Kε(r) = ί Pε(s)P^s) (εV - I)1/2 cίs. (B.23)
J

r r

\Kε(r)\ <c i e~2δs(ε2s2 - I)1/2 ds < c ί e~2δs(εs + 1) ds

l/ε l/ε

r

/

=A
e~δs ds < c(e ε + ε~δr). (B.24)

Therefore
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- for 0 < r < —,
~ ~ 2ε

\Ne(r)\ < c\Kε(r)\ < c(e

2
- for r > -,

ε

\N(r)\<c1 ε( )l ~ - l)3/2 - " (ε2Γ2)3/2 - I + Γ3

- for — < r < - and ε > 0 small
2ε ~ ~ ε

<

-δ
e ε

(εr - l)3/2(i + εr)3/2

r

f(εs-\)l/2di

e s (εr_ 1)3/2 ^ c C

c -TTT < ce 2ε < —-7 <ε (εr- l)3/2 - - / χ \ 3 - 1+r3

This concludes the proof of the lemma.
b) Property (^k) implies property ( .̂+1).

We first prove the estimates on Nε and then on Pε.

Lemma B.5. There is a constant ck such that

V O < e < e 1 , V r , |

1 2
/V6><9/. i) Estimates for 0 < r < — and r > -.

Writing again Nε(r) = bε(r)Kε(r), where

r

= / Pε(s)Pε'(s) (ε2r2 - I)1/2 ds ,

l/ε (B.25)

"εV< / - (ε2r2 _ 1)3/2 -

Leibniz formula yields

ΐ=0

r)|. (B.26)
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1 2
- From (B.24) and direct calculations, we have for 0 < r < — or r > -,

\b(*\r)\ < c, (B.27)

\Kε(r)\ <c(e~ +e~6r). (B.28)

- From estimates on P ε,... ,Pε

(/c+1), and again Leibniz formula we have Vί =

|((1 - ε2r2)1/2Pε(r)Pε'(r))(/c-z) < ce~δr . (B.29)

- We claim that

fi* I—H>i le'V)^^^. (B-30)

Indeed,

dyk+ι '

where b(y) — — 77^ and y = ex. From direct computations, for I y — 1 > «,
(τ/2 - I)-3/2 2

dy,k+\ \y\k+4'
and therefore

which proves (B.30).

We then deduce from (B.27)-(B.30) that for \εr - 1| > i,

\N(k+l)(r)\ <μVε (T)l-

Γ 1 21
ii) Estimates for r G — , - .

[2ε ε\
We write Nε(r) = aε(r)Yε(r) where

αe(r) =
1

Zε(r) = 2Pε(r)Pε(r) (εr + 1)1/2 .

Leibniz formula yields

|^Vf+ 1 )(r)|<c/
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On one hand

Γ 1 21
On the other hand, Lemma 2.9 in Part I and estimates for r G —, - ,

Pε(r)| + ... + |Pf+2)(r)|<ce^,

we deduce

|yto>(r)|<c|Ze | / x <ce^. (B.32)

1 21
From (B.31) and (B.32), Vr G — , - ,

2ε ε

I - C Z^ & ° - j , r/c+4 '
0<p</c+l

which concludes the proof of the lemma.
We now estimate P^+3).

Lemma B.6. There exists c such that for all 0 < ε < ε1?

Proof. From Proposition B.I, there exists a constant c such that for 0 < ε < ε l 5

|p(fc+3)| <rKε |L^(B!)^C-

Let us estimate p(k+3\r) for r > 1. We derive (k + 1) the following relation:

and we obtain

- Σ +c

From the estimates on Pε, . . . , P^+2) and 7Vε, . . . , AΓ^+1) we deduce

Vr > 1, \P(

ε

k+3\r)\ <ce~δr.

Thus the lemma and property (^+1) is proved.
This concludes the proof of Proposition B.2.

Step 5. We are now able to prove (00ε,n0ε,nlε) — > (Q, — Q2,0) in j^, Vfc > 1,
which with Step 2 concludes the proof of Theorem 3.

Proposition B.7. Let p, q > 0. W<? ί/zerc /zαve α^ ε — » 0:
i)

ii)
iii)
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Proof, i) Let p,q>0.
On the one hand, from Proposition B.2 there is a constant c such that

VO < ε < ε1? Vx G E2 , |

which belong to L2.
On the other hand from step 3, Pε -> Q in #£c for fc > 0. Therefore

Pε

(9)(x) — » Q(q\x) on compact sets and

Vx, Pε

(<?)(^) -> Q(ς)(^)

The convergence dominated theorem allows us to conclude to the proof.
Proofs of Parts ii) and iii) are similar.
Let us now conclude the proof of Theorem 3.

Proof of Theorem 3. We recall that

?

n0ε(x) = Nε(x) , n lε(x) - c0ε(|x|7V^(x) + 27Vε(x)) ,

and the proof of Theorem 3 is reduced to the proof of the convergence of
(</>0ε,n0ε,n lε) to (Q, -Q2,0) in Hk for k > 1, that is

i) φQε -> 0 in ^Γfc,

ii) n0ε -> -Q2 in ff^1,

iii) n l ε -> 0 in ίί̂ -2 if fe > 2, in ̂ -! if k = 1.

i) Let us prove that φ0ε -> Q in Hk for all k > 0: VA; > 0, φ(£ -* Q(/c) in L2. By
Leibniz formula and from Proposition B.2,

c cε .
p+q=k

Furthermore from Proposition B.7 and the dominated convergence theorem,

e lV0£p£

(/c)-*Q(/c)

 in L2 as ε^Q

Therefore φ^ε —> Q^ in L2 and this concludes the proof of Part i).

ii) n0ε — 7Vε —» — Q2 in Hk by Proposition B.7.
iii) Case k = 1. We have by definition

where V vε = nlε. By direct computations (see Part I),

vε(x) = εxNε(x).

Therefore |nlε(x)|^-ι = ε\xNε\L2 < cε —» 0 as ε -^ 0.
Case fc > 2. nlε(x)\Hk-2 < c0ε| |x|7Vε(x) + 2N£(x)\Hk-2 < cε by Proposition

B.7, that is \nlε(x)\Hk-2 -^ 0 as ε -̂  0.
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B.2 Case of Multiple Periodic Solutions. We consider as in Theorem 3 a real radial
solution of

(VJ ωV = ΔV+\V\2V in R2

and (u(t),n(t)) = (eiωtV(x), -\V(x~)\2) associated periodic solution of (ICQ).
We assume that V is a nondegenerated in the following sense: the operator

Lv: W -> ΔW - ωW + 3V2W

is a continuous one to one application from H2 to L2 with continuous inverse.
By a similar proof to the one in Part I, we can prove that, for ε £ (0,£j) small

enough, there exists a radial solution (Pv , Λfy ) of

:-PVε = NVt£PVie, (B.33)

9 ,τ
ε ε V£ vε , (B.34)

such that (Pv>e, Λ/V,ε) -> (V, -V2) in F1 x L2 as ε -> 0.
In addition,

<^<r

where ωε = — , Γ > 0, and 0 e 51, is a blowing up solution in Hl of equation
(I ) coε
v CQ^

Indeed, we only use in Part I
- exponential decay at infinity of V (which is still true - see Berestycki-Lions [4]),
- the nondegeneracy condition,
to be able to prove that the operator

(h) - Ly\(V + h)Jζ((V + /ι)2) + V3 + W2h)Vt£

has a unique fixed point hv in a neighbour of 0 in H2 = H^. Π H2 for ε > 0 small
enough.

We remark then (PVε, Nv >ε) = (V + hVjε,Λ£((V + ftvje)
2)) is a solution of (Πλ).

Moreover we have Pv — > V in #2 as ε — > 0 and there exists constants ε2 > 0 and
A > 0 such that for 0 '< ε < ε2,

We now apply the same procedure as the one of B.I to prove the instability of the
periodic solution (eιωtV(x), — \V(x)\2,0). As in Sect. B.I, we prove that the initial
data

nle(x) -



388 L. Glangetas, F. Merle

of the associated blowing up solution

ι

ne(ί,x)=

converges to (V, -|V|2,0) in #fc, Vfc > 1 as ε -> 0.
This concludes the proof of Theorem 4.
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