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Abstract: By quantizing the generalized Drinfeld-Sokolov reduction scheme for ar-
bitrary 5/2 embeddings we show that a large set W of quantum W algebras can be
viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many
known W algebras such as WN and W3

(2). Our formalism yields a completely algo-
rithmic method for calculating the W algebra generators and their operator product
expansions, replacing the cumbersome construction of W algebras as commutants
of screening operators. By generalizing and quantizing the Miura transformation we
show that any W algebra in ̂  can be embedded into the universal enveloping alge-
bra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a
subalgebra of the original affine algebra. Therefore any realization of this semisimple
affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in
this way a general and explicit method for constructing the free field realizations and
Fock resolutions for all algebras in W. Some examples are explicitly worked out.

1. Introduction

W algebras were introduced by Zamolodchikov as a new ingredient in the classifica-
tion program of conformal field (CFT) theories [1] (for a recent review see [2]). As is
well known such a classification would correspond to a classification of all possible
perturbative groundstates of string theory. However CFT and W algebras have been
shown to be related to several other areas of research as well such as integrable sys-
tems, 2D critical phenomena and the quantum Hall effect. W symmetries are therefore
an interesting new development in theoretical physics and it is the purpose of this
paper to provide a step towards understanding their meaning and structure.

The point of view that we shall develop in this paper is that the theory of
W algebras is closely related to the theory of Lie algebras and Lie groups. The
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construction of W algebras as Casimir algebras (with as a special case the Sugawara
construction), and the coset construction [3,4] are examples of such a relation, but
unfortunately these have some serious drawbacks. We therefore take the Hamiltonian
or Drinfeld-Sokolov (DS) [5, 6] reduction perspective which for classical W algebras
has been extremely successful.

The DS reduction approach starts with the observation that certain Poisson algebras
encountered in the theory of integrable evolution equations can be considered to be
classical versions of the W algebras first constructed by Zamolodchikov [7]. Drinfeld
and Sokolov had already shown that these Poisson algebras are reductions of Kirillov
Poisson structures on the duals of affine Lie algebras thus providing a relation between
Lie algebras and W algebras. A first attempt to quantize the classical W algebras
found by Drinfeld-Sokolov reduction (nowadays called WN algebras) was made in
[8]. There the Miura transformation was used to realize the generators of the classical
WN algebra in terms of classical free fields. The algebra was then quantized by
making the free fields into quantum free fields and normal ordering the expressions
fo the W generators. In general this is not a valid quantization procedure however
since it is by no means clear that the algebra of quantum W generators will close. In
fact it only closes in certain cases [2] (which are of course the cases that were studied
in [8]).

Since DS reduction is in essence Hamiltonian reduction in infinitely many
dimensions it is possible to apply the techniques of BRST quantization in order
to quantize the classical WN algebras. This was first done in [20] for the special case
of the Virasoro algebra and the WN case was solved by Feigin and Frenkel [16].

Even though WN algebras have an appealing description as BRST cohomologies
of affine Lie algebras the quantum DS method is still rather limited since WN algebras
are by far not the only W algebras. The quantum DS reduction leading to the by now
well known W^ ^ algebra [9,10] was however the first indication that DS reduction
can be generalized to include many other W algebras.

In [11] it has been shown that to every sl2 embedding into the simple Lie algebra
underlying the affine algebra there is associated a generalized classical DS reduction of
this affine algebra leading to a W algebra. The fact that one considers sl2 embeddings
is closely related to the fact that one wants the reduced algebra to be an extended
conformal algebra (i.e. it must contain the Virasoro algebras as a subalgebra and the
other generators must be primary fields w.r.t. this Virasoro algebra). Since the numer
of inequivalent sl2 embeddings into sln is equal to the number of partitions of the
number n the set of W algebras that can be obtained by DS reduction increased
drastically. The WN algebras turn out to be associated to the so-called "principal"
sl2 embeddings. The Polyakov-Bershadsky algebra W3

(2) is associated to the only
nonprincipal sl2 embedding into sl3.

The reductions considered in [11] are clasical and it is the purpose of this paper to
quantize them. The usual formalism developed in [16, 20] constructs the W algebra
as the commutant of certain screening operators which is rather difficult to generalize
to arbitrary sl2 embeddings. The main reason for this is that it is difficult to find
a complete set of generators of this algebra for arbitrary sl2 embeddings (one has
to make use of character formulas to check if one has obtained all generators.
These characters are however not known in advance). Also it makes use of free
field realizations of the original affine Lie algebra which means that one obtains, in
the end, the W algebra in its free field form. If the W algebra has affine subalgebras
this will therefore get obscured by the not very transparent free field form. In this
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paper we therefore use the formalism that was developed in [13] to quantize finite W
algebras. It turns out that this formalism still works, with some modifications, in the
infinite dimensional case considered here.

Let us now give an outline of the paper. In Sect. 2 we quantize the generalized DS
reductions of [11]. This is done by the same spectral sequence calculation that was
used in [13]. We also introduce the quantum Miura transformation for arbitrary sl2

embeddings and show how to obtain free field realizations for arbitrary W algebras.
In Sect. 3 we briefly discuss the conformal properties of the quantum W algebras
obtained in Sect. 2. Furthermore a general formula for the central charges of the W
algebras in terms of the level of the affine Lie algebra and the defining vector of
the sl2 embedding is given. In the last section we consider some examples in order
to illustrate the general procedure. We end the paper with some comments and open
problems.

2. Quantization

Let {ta} be a basis of the Lie algebra g = sln. The affine Lie algebra g associated
to g is the span of {J^} and the central element K. The commutation relations are
given by

[ J Z , J b

m ] = f?bJc

n+m+ngabKδn+m>0; ίK,J°} = 0, (2.1)

where gab is the inverse of gab = Ύr(tatb) and [tα, tb] = f^c- As usual we use 9ab
to raise and lower indices. Let %kg(k G C) be the universal enveloping algebra of g
quotiented by the ideal generated by K — k.

It was shown in [11] that one can associate to every sl2 embedding into g a
Drinfeld-Sokolov reduction of g leading to a classical W algebra. We shall now
quantize these algebras. Let {£0,£+,t_} be an sl2 subalgebra of g, then one can
decompose g into eigenspaces of the operator adt

9k . (2 2)

where gk = {x <E g \ [t0, x] = kx}. This defines a gradation of g which is in general
half integer. However, it was shown in [12,13] that in those cases where the grading
contains half integers one can replace it by an integer grading which in the end leads
to the same Drinfeld-Sokolov reduction. This is done by replacing t0 by a certain
element δ of the Cartan subalgebra which has the property that the grading w.r.t. the
operator adδ is an integer grading (for some basic facts on sl2 embeddings and the
explicit construction of δ given an sl2 embedding see the appendix). Without loss of
generality we can therefore assume that the gradation (2.2) is integral. The algebra g
now admits a triangular decomposition into a direct sum of a negative grade piece, a
zero grade piece and a positive grade piece denoted by g_, g0 and g+ respectively.

Under the adjoint action of the sl2 subalgebra {t0, t±}, g decomposes into a direct
sum of sl2 multiplets. Let us choose the basis {ta} such that all elements ta are basis
vectors of some sl2 multiplet. Of course this means that all ta are homogeneous w.r.t.
the gradation. From now on we let latin indices α, 6 , . . . run over the entire basis of
g, Greed indices α, / ? , . . . over the basis of g+ and barred Greek indices ά, β,... over
the basis of g0 Θ g_ (i.e. Xata + λ% = Xata).
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We now come to the constraints. Since the sl2 subalgebra {t0,t±} is a triplet
under its own adjoint action there must be some a+ such that t+ = Ata+. Define
the character χ of g+ (where g+ is the affinization of g+) by putting χ(J") =
Aδa>a+δn+l Q. The constraints one imposes are then J% = χ(J%). These constraints
are first class [11] for integral gradings which means that one can use the BRST
formalism. Thereto introduce the fermionic ghost variables c™, b% with ghost numbers
1 and —1 respectively and relations c™&(^-f fr^c™ = δa/3δn+rnμ. The algebra generated

by these ghost variables is the Clifford algebra Cl(g+ ® #*). As usual one then
considers the algebra Ωk — %kg 0 Cl(g+ Θ #*).

For calculational purposes it is convenient (as is standard practice in conformal
field theory) to introduce the following "basic fields" Ja(z) = ]Γ J^z~n~l\ ca(z) =

l. It is well known that the commutation relations in

Ωk can then be expressed in terms of the operator product expansions (OPE),

w) = kga ^2 + -£— Jc(w) + ..., (2.3)
(z — wY z — w

δβ

z — w
(2.4)

Now inductively define the algebra of fields F(Ωk) as follows: Ja(z),ca(z),b°ί(z)
are elements of F(Ωk) with "conformal dimensions" Δ = 1,0,1 respectively;
if A(z), B(z) e F(Ωk), then aA(z) + βB(z) e F(Ωk)\ if A(z) is an element

dA
of F(Ωk) of conformal dimension A, then — (z) is also an element of F(Ωk)

and has conformal dimension A + 1; if A(z),B(z) are elements of F(Ωk) of
conformal dimensions ΔA and AB respectively, then the normal ordered product
(AB)(z) = A_(z)B(z) ± B(z)A+(z) (where one has the minus sign if A and B
are fermionic) is also an element of F(Ωk) and has conformal dimension AA + AB.
Here A_(z) = ^ Anz~n-Δ^ and A+(z) = A(z) - A_(z). We say that F(Ωk)

n<-ΔA

is "generated" by the basic fields. Note that F(Ωk) C %kg\[z,z~l]\. The algebra
F(Ωk) is graded by ghost number, i.e. Ja(z\ ca(z) ana bα(z) have degrees 0, 1 and
- 1 respectively and we have the decomposition

fc)
(n>. (2.5)

The algebra of fields F(Ωk) is not simply the set of "words" in the fields that can
be made using the rules given above, there are also relations. If we denote the operator

product expansion of A and B by A(z)B(w) ~ ̂  - — , then the relations valid
in F(Ωk) are [4] r ^z ~ w*r

(AB) (z) - (BA) (z} = [A, B] (z) = (-l)r+l {AB}r ,

(A(BC)) (z) - (B(AC)) (z} = ([A, B] C) (z) ,
d(AB) (z) = (dAB) (z) + (AdB) (z) .

r+l

 r ,

(2.6)



Relation Between Quantum W Algebras and Lie Algebras 321

The BRST operator is then [15] D(.) = [d, .], where d = φ — d(z) and

d(z) = (Ja(z) - x(Ja(z)))ca(z) - \ fϊβ(F(cacβ)) (z) . (2.7)

D is of degree 1 (i.e. D(F(Ωk)
(l}) c F(βfc)

(Z+1)) and D2 = 0 which means that F(Ωk)
is a complex. One is then interested in calculating the cohomology (or Hecke algebra)
of this complex because the zeroth cohomology is nothing but the quantization of the
classical W algebra [15, 16]. This problem has been solved for the so-called "finite
W algebras" in [13].

The first step is to split the BRST current into two pieces [16]:

z ) , (2.8)

d,(z) = Ja(z)ca(z) - \ f%β(W(cacβ)) (z) , (2.9)

and to make F(Ωk) into a double complex F(Ωk) = @F(Ωk)
( r^ by assigning the

rs

following (bi)grades to its generators:

deg(Jα(z)) = (-fe,fe) if taegk,

deg(cα(z)) = (A, 1 - k) if ta G gk , (2.10)

deg(6α(*)) = (-M - 1) if tae§k.

The operators D0 : F(Ωk)
(r^ -> F(βfc)

(r+1>θ) and Dl :F(Ωk)
(r^ -+ F(Ωk)

(r>a+V
associated in the obvious way to dQ and dλ satisfy DQ = Ό\ — D0D{ + D^DQ = 0
verifying that we have obtained a double complex.

Let us now calculate the action of the operators DQ and Dl on the generators of
F(Ωk). For this it is convenient to introduce Jα(z) = Jα(z) + f*β(Wcβ)(z). One
then finds by explicit calculation

D0(cα(z)) =

=

= fgαJβ(z)cα(z) + kgααdcα(z)

From these formulas it immediately follows that D(Jα(z)) = 0 and D(bα(z)) =
Jα(z) - χ(Jα(z)). This means that the subspace Fα(Ωk) of F(Ωk) generated by
Jα(z) and bα(z) is actually a subcomplex. The cohomology of this complex can
easily be calculated and one finds H*(Fα(Ωk);D) = C. Note also that due to the
Poincare-Birkhoff-Witt theorem for field algebras (which follows immediately from
the relations (2.6)) the normal ordening map

Q(βfc) -> F(Ωk) (2.11)

defined by Aλ(z)<®. . .^A^z) ^ (Al . . . A^ (z) (where we always use the convention
(ABC) (z) — (A(BC)) (z)) is an isomoφhism of vectorspaces. Due to this and the
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fact that the BRST operator acts as a derivation 1 on F(Ωk) we have

H*(F(Ωk)\ D) ̂  H*(Fΐed(Ωk)', D) <g> (g) H*(Fa(Ωk) D)
a

= H*(F (Ωk)\D) (2.12)

where in the first step we used a Kunneth like theorem given in [13].
In order to calculate H*(FTQd(Ωk); D) one uses the fact that Fτed(Ωk) is actually a

double complex which makes calculation of the cohomology possible via a spectral
sequence argument [13, 16, 17]. The first term El of the spectral sequence is the D0

cohomology of F^Ω^. Note that we can write DΌ(J&(z)) = - Ίr([t+,tά]tβcβ(z)).

Therefore Dl(Ja(z)) = 0 iff tά G glw, where glw is the set of elements of g
that are annihilated by adt_ (the lowest weight vectors of the sl2 multiplets) and

where we used the fact [13] that ίά G Ker(adt_) iff ta G Ker(adt+). It can also

easily be seen that for all β there exists a linear combination a(β)δίJ
OL(z) such

that D0(a(β)άJ
δί(z)) = cβ(z). From this it follows [13] that purely on the level

of vectorspaces we have

Hn(F (Ω)\D) = Fι (Ωk*)δkCl, (2.13)

where Flw(Ωk) is the subspace of F(Ωk) generated by the fields {Ja(z)}taeglw

Since the only cohomology that is nonzero is of degree 0 the spectral sequence abuts
at the first term, i.e. E^ = El, and we find the end result

Hn(F (Ω ); D) = F (Ω )δ (2.14)

Having calculated the BRST cohomology at the level of vector spaces one now can
construct the cohomology (or W algebra) generators and their OPEs via a procedure
called the tic-tac-toe construction [18]. Consider a generator Ja(z) of degree (p, —p) of
the field algebra Flw(Ωk) (i.e. t^ G glw) then the generator of cohomology associated
to this element is given by

/=o

where W^(z) = Jδί(z) and Wf(z) can be determined inductively by

(2.16)

It is easy to check, using the fact that D0(Ja(z)) — 0 for t& G glw that indeed
D(Wδt(z)) = 0.

The formalism presented above provides us with a completely algorithmic pro-
cedure of calculating the W algebra associated to a certain sl2 embedding: First
determine the space glw. Then take a current Ja(z) with ta G glw and inductively
calculate the fields W^(z) using relations (2.16). The field (2.15) is then the cor-
responding W generator and the relations in the W algebra are then just the OPEs
between the fields {Wδί(z)}t_ί^ calculated using the OPEs in F(Ωk).

1 This follows from the fact that D(X(w)) = {d(z) X(w)}lt and from the following general identities
for operator product expansions: {AdB}λ = d{AB}l and {A(BC)}1 = (-l)AB (B{AC}λ) +
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In principle this algebra closes only modulo D-exact terms. But since we computed
the D cohomology on a reduced complex generated by Ja(z) and ca(z), and this
reduced complex is zero at negative ghost number, there simply aren't any D exact
terms at ghost number zero. Thus the algebra generated by {Wa(z)}t^eg closes in
itself.

As was shown in [13] for finite W algebras, the operator product algebra generated
by the fields Wδί(z) is isomorphic to the operator product algebra generated by their
(bi)grade (0,0) components Wp(z) (the proof in the infinite dimensional case is
completely analogous and will not be repated here). The fields Wp(z) are of course

elements of the field algebra generated by the currents {Ja(z)}toL^g^ ^e relati°ns

(i.e. the OPEs) satisfied by these currents are almost identical to the relations satisfied
by the unhatted currents,

kq&P + k&P f^F(w)
) = , % + ̂  - — + . . - , (2.17)

(z — w)1 z — w

where ka@ = f ^ χ f χ . Now, it is easy to see that g0 is just a direct sum of si and

u(l) algebras, i.e. forgetting for a moment about the u(l) algebras one can write

, - (2-18)

Within the slp component of #0 we have the identity

k&ί* = g*iί(h-hj), (2.19)

where h is the dual coxeter number of g and Λ, is the dual coxeter number of slp . We

therefore find that the field algebra generated by the currents {^(^Oj^epo' denoted

from now on by F0, is nothing but the field algebra associated to a semisimple affine
Lie algebra the components of which are affine slp and u(l) Lie algebras. This

semisimple affine Lie algebra is not simply g0 (whose field algebra is generated by
the unhatted currents) however because in g0 all components have the same level while
in FQ the level varies from component to component as follows from Eq. (2.19). This

is just a result of the ghost contributions ka@ in the OPEs of the hatted currents.
From the above we find that the map

W&(z)»(-\?W%(z) (2.20)

is an embedding of the W algebra into F0. This provides a quantization and gen-
eralization to arbitrary sl2 embeddings of the well known Miura map. In [8] the
standard Miura map for WN algebras was naively quantrised by simly normal or-
dering the classical expressions. This is known to work only for certain algebras [2].
Our construction gives a rigorous derivation of the quantum Miura transformations
for arbitrary Kac-Moody algebras and sl2 embeddings (the generalized Miura trans-
formations for a certain special class of sl2 embeddings were also recently given in
[23]).

As a result of the generlaized quantum Miura transformation any representation
or realization of F0 gives rise to a representation or realization of the W algebra.
In particular one obtains a free field realization of the W algebra by choosing
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the Wakimoto free field realization of F0. Given our formalism it is therefore
straightforward to construct free field realizations for any W algebra that can be
obtained by Drinfeld-Sokolov reduction.

2 1 . The Stress Energy Tensor

It is possible to give a general expression for the stress-energy tensor of a W algebra
related to an arbitrary sl2 embedding. For this purpose we write ί0 as ί0 = sata,
where the sa is only nonzero if ta lies in the Cartan subalgebra. Furthermore, let 6a

be the eigenvalue of adtQ acting on ta, thus [ί0,ία] = δata. From this it is easy to
see that δa — saf£

a Then the stress-energy tensor is

T = (gaobo(Ja°Jb°)+2gbJ\(Ja)-2(k+h)sadJa+gbJ
b

e

adJe) , (2.12)aobo

where the indices α0, b0 run only over #0, and h is again the dual Coxeter number.
By adding a D-exact term D(R) to (2.21), where

1
(2.22)

we can rewrite it as

(δa - δadbaca , (2 23)

which has the familiar form of improved Sugawara stress-energy tensor plus the stress
energy tensors of a set of free b — c systems. The other generators of the W algebra
cannot in general be written as the sum of a current piece plus a ghost piece. Actually,
(2.23) is precisely what one would expect to get from a constrained WZNW model.
Notice that δa is the degree of ta with respect to ΐ0, whereas a in (2.23) runs over
g+ which was defined with respect to a new, different, integral grading of the Lie
algebra.

In terms of the level k and the Cartan elemet of the sl2 embedding tQ (called
the "defining vector" since it determines the whole sl2 subalgebra up to inner
automorphisms) the central charge of the W algebra is given by

c(k\ £0) — dim(#0) - 2 dim(^!) - 12 (2.24)

where gλ is defined by (2.2), and ρ is half the sum of the positive roots,
2

1 V-Λ fb()Ci,

Q= 9 Z^ Ja ^π

3. Examples

In this section we consider the three simplest cases of quantum Drinfeld-Sokolov
reduction, namely the Virasoro algebra, the Zamolodchikov W3 algebra and the so-

called Polyakov-Bershadsky algebra Wf\ For notational convenience we shall omit
the explicit z of the fields where possible.
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3 1 . The Virasoro Algebra

The Virasoro algebra is the simplest W algebra and it is well known to arise from
the affine sl2 KM algebra by quantum Drinfeld-Sokolov reduction [20]. It is the W
algebra associated to the only nontrivial embedding of sl2 into itself, namely the
identity map. We consider this example here to contrast our methods to the ones used
by Bershadsky and Ooguri.

Choose the following basis of sl2:

72/2 73
J /Z J

jrl _j2/2

where ί0 = — 12, t+ — t\ and t_ — £3. The positive grade piece of the Lie algebra

g = 5/2 is generated by tl9 and the constraint to be imposed is J1 = 1. The BRST
current d(z) is given simply by

(Jlcl)-cl. (3.2)

The 'hatted" currents are J1 = J1, J2 = J2 + 2(61c1) and J3 = J3. The cations of
DQ and Dλ are given by

£0(J2) = -2Cl, Dl(J3) = (J2c2) + (k + 2)dcl,

D0(bl) = -l, Dv(bl} = Jl,

On the other fields D0 and Dl vanish. From (3.3) it is immediately clear that

H(FτQA(Ωk)\ DQ) is generated by W0

3 = J3, in accordance with the general arguments
in Sect. 2. To find the generator of the .D-cohomology, we apply the tic-tac-toe
construction. We are looking for an element Wf(z) G Fτed(Ωk) such that D0(Wf(z)) =
D^WQ). The strategy is to write down the most general form of Wf(z), and then to
fix the coefficients. In general, Wf* must satisfy the following two requirements:
1. if Wf has bidegree (—k, k), then wf+l must have bidegree (—k - 1, k + 1),
2. if we define inductively the weight h of a monomial in the Jα by h( Jά) = I — k if
t& G gk, h((AB)) = h(A) + h(B) and h(dA) = h(A) + I2, then ft(Wf) = h(W?+l).

These two conditions guarantee that the most general form of Wf* will contain only
a finite number of parameters, so that in a sense the tic-tac-toe construction is a finite
algorithm. In the case at hand, the most general form of W± is aγ(J2 J2) + α2<9J2,

and the D0 of this equals — 4α1(J2c1) — (4a{ + 2α2)0c1. Thus, aλ — -1/4 and
α2 = — (fc + l)/2. Since D{(W3) — 0, the tic-tac-toeing stops here and the generator
of the D cohomology reads

W3 = Wl -Wl = P + (J2 J2) + (

As one can easily verify, T = W3 /(k + 2) generates a Virasoro algebra with central
charge

(3.5)- - r ,
k + 2

a result first found by Bershadsky and Ooguri [20].

2 The weight h is similar to the conformal weight, but not always equal to it. It is independent of
the way in which the J are ordered
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Let's now consider the quantum Miura transformation. In the case at hand #0 is

the Cartan subalgebra spanned by t2 and F0 is an affine ^(1) field algebra at level

k + 2 generated by J2. Indeed defining the field dφ = vJ2, where v = \/2(fc -f 2), it
is easy to check that

dφ(z)dφ(w)= .
(z —

In terms of the field φ the (bi)grade (0, 0) piece of T is given by

(3.6)

(3.7)

where α0 = \ v . This is the usual expression for the Virasoro algebra in terms2 v
of a free field ώ.

3.2. The Zamolodchikov W3 Algebra

Having illustrated the construction in some detail for the Virasoro algebra, we will
now briefly discuss two other examples. We start with the Zamolodchikov W3 algebra
[1]. This algebra is associated to the so-called "principal" sl2 [11]. In terms of the
following basis of sl3:

J8 \

J4

3
τ4 τ5

\(J2-^ 4--4-
(3.8)

the sl2 subalgebra is given in this case by ί+ = 4ί2, ί0 = — 2ί5 and ί_ = 2tΊ.

The constraints are therefore J1 = J3 = 0 and J2 = 1 according to the general
prescription. The BRST current associated to these (first class) constraints reads

d(z) = (J2 - I)c2 + J3c3 + 2(61(c2c3)) . (3.9)

The cohomology H(Fκά(Ωk); D0) is generated by J7 and J8 since ί7 and ίg span
glw. The tic-tac-toe construction gives as generators of H(F(Ωk);D) the fields
W1 = W0

7 - VF/ and VF8 = W$ - Wf + W$, where

=JΊ,
= _ I ( j 4 j 4 ) _ l ( j 4 j 4 ) _ ;

Wf = -(J5 J6) + i (J4 J7) - (Jb + 2)9J6 , (3.10)

2) ( J5 2 J4
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With some work, for instance by using the program for computing OPE's by
Thielemans [22], one finds that

1

2(fc + 3)
Γ =

W =

generate the W3 algebra with central charge

c(fe) = 50 - 24(/c + 3) -

(3.11)

24

k + 3
(3.12)

For any principal embedding the grade zero subalgebra gQ is just the Cartan

subalgebra. In the case at hand F0 is therefore a direct sum of two affine u(l) field

algebras, both of level k + 3, generated by J4 and J5. Defining dφl = v\ J4and

dφ2 = v2 J
5, where vλ = \/6(k + 3) and z/2 = ^/2(fc + 3) it is easy to check that

δudφ (z)dφ (w) = —r- + . . . . (3.13)J (z - w)2-

According to the general prescription the Miura transformation reads in this case
W1 ^ -Wl and W* ι-> WL and the fields

also generate a W3 algebra with central charge (3.12). Note that according to (3.10)
T(0'0) and W(0'0) only depend on φ} and φ2. This is the well known free field
realization of W*.

33. The Wf} Algebra

The two examples discussed above are both related to principal sl2 embeddings. In
order to illustrate that our methods work for arbitrary embeddings we now consider

the example of the
embedding into s/3.

To describe the \

algebra which is associated to the (only) nonprincipal sl2

algebra, we pick a slightly different basis of s/3, namely

/ J^_ J5

6 2
J6 J8 \

J2 J4

3

J1 τ3 |_ ___
" ^ I ~

(3.14)J7

J^ J5

6

The 5/2 embedding reads t+ = tl9 tQ = t5 and t_ = ίg. The gradation of g with
respect to adtQ is half-integer which means that there will be class constraints [11]

corresponding to the fields with grade —1/2. If one wants to use the BRST formalism
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all constraints should be first class. One way to get around this problem is to introduce
auxiliary fields [10]. This is not necessary however as was shown in [12, 13] since it
is always possible to replace the half integer grading and the constraints associated to
it by an integer grading and a set of first class constraints that nevertheless lead to the
same Drinfeld-Sokolov reduction. As mentioned earlier we have to replace the grading

by tQ by a grading w.r.t. an element δ.3 In this specific case δ — | diag(l, 1, -2).

With respect to adδ, tl and t3 have degree 1 and span g+. The BRST current is

((Jl-l)cl) + J3c3. (3.15)

Notice that there is no need for auxiliary fields, since the constraints J1 = 1
and J3 = 0 are first class. The cohomology H(Fτeά(Ωk)',Do) is generated by

{ J4, J6, J7, J8}. Again using the tic-tac-toe construction one finds that H(F(Ωk)\ D)
is generated by W4 = W0

4; W6 = Wj; WΊ = W7 - W] and VF8 - W§ - Wf, where

=

1 (J2 j4} _ (k + l}gJ2 ? (3.16)

W* = -i (J5 J5) - (J2 J6) + y- ΘJ5 .

The OPE's of the hatted currents involving shifts in level are in this case

(z-

J5(z)J\w)~

+ . . . ,

(z-™ΐ ' " ' (3.17)
3_

(z — w)2
J\Z)J\W)~——+ . . ,

~o ΛA (K -+- L ) 7 \u u Jj2f~\ 7D/ Λ ,Λ ^ ' i z i
J (Z) J (W) ~ -r H h

(^ — w)1 (z — w)

If we now define the following generators:

H = -W4/3,

G+ = W6,

3 Essentially what one does is split the set of second class constraints in two halves. The constraints
in the first half, corresponding to positive grades w r t 6, are still imposed but have now become
first class. The other half can then be obtained as gauge fixing conditions of the gauge invariance
generated by the first half
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we find that these generate the W^ ^ algebra [10], with

c(fc) = 25 - 6(fc + 3) --^-, (3.19)
k + 3

a formula that was found in [10] by a counting argument.
In the case at hand the subalgebra gQ is spanned by the elements t4, t5, tβ and t2.

Obviously g0 = sl2 θ u(l). Therefore F0 is the direct sum of an affine sl2 and an
affine u(l) field algebra, and using Eq. (2.19) the levels of these can be calculated to
be k + 1 and k + 3 respectively. Indeed if we introduce the currents

^=i(J4

J θ = l ( j 5

J- = |J2,

J+ = 2J6,

then these satisfy the following OPE's:

rU/ \ τ±/ \ \^/ i

Z — W

Ί+, , Ί-, , ( fc+1) 2JV)
/ ' / ' V J / / ' J / t l I I

t7 v^/ <J \uj) — 7 Γα" \ ~τ~ 5
(z — u>) z — K;

1

"?) \ "T" J- /

(z - w)2 '

(z — to)2

and all other OPEs are regular. As stated before the shifts in the levels that one can
see in these OPEs are a result of the ghost contributions.

The quantum Miura transformation in this case reads: W4 \-+ WQ, W6 ^ WQ,

W1 ι-> -Wl> W* ^ -Wf. This means that in terms of the currents J±, J° and φ the
grade (0, 0) components of the W generators read (let's for notational convenience
denote the (0, 0) components of H, G+, G~ and Γ again simply by the same letters
since they generate an isomorphic algebra anyway)

H = J° - i do,

G~ = (J- J°) + (J° J-) + 2(k + 3)dJ~ - 2dφJ- ,

T = ̂ -^ (2(J° J°) + (J- J+) + (J+ J-)

+ (k + 3)<9J° + f (dφdφ) + Q0

where QQ — — (k + 1). We recognise in the expression for T the improved sl2

Sugawara stress energy tensor and the free boson in a background charge. Note that

these formulas provide an embedding of W3

(2) into F0. In [11] a realization of this
type was called a "hybrid field realization" since it represents the W algebra partly
in terms of KM currents and partly in terms of free fields.



330 J de Boer, T Tjin

It is now easy to obtain a realization of W3

(2) completely in terms of free fields by
inserting for the sl2 KM currents J±, J° their Wakimoto free field form

J+ = -(72/3) - kdj - V2kVβ^ίdφ , (3.20)

J° = -2(7/3) - V2k + βidφ ,

where as usual /?, 7 and φ are bosonic fields with the following OPEs:

-γ(z)β(w) = - + .. . ,

^7 (3.21)
idφ(z)idφ(w) = - - -̂  + . . . .

(z — w)1

This example gives a nice taste of the general case. By the Miura transformation
one can write down for any W algebra a hybrid field realization, i.e. a realization
partly in terms of free fields and partly in Kac-Moody currents. When required one
can then insert for the KM currents the Wakimoto free field realization giving you a
realization of the W algebra completely in terms of free fields.

4. Discussion

In this paper we have quantized all generalized Drinfeld-Sokolov reductions. This was
done using a formalism that differs from the formalism first used by Bershadsky and
Ooguri. The formalism of Bershadsky-Ooguri makes use of the Fock space resolutions
of affine Lie algebras and W algebras. In the calculation of the BRST cohomology
they have to prove that the BRST cohomology and the resolution cohomology

commute. This they indeed did for the Virasoro algebra but in the case of the W3

(2)

algebra it is an assumption [10]. The W algebras are in the end constructed as the
commutant of certain screening operators. Calculating this commutant and finding a
complete set of generators of it is in general very difficult. In [10] Bershadsky doesn't
prove that the generators that he provides are a complete set nor does he show how he
has obtained them. Our method on the other hand does not make any assumptions, is
completely algorithmic and works for arbitrary sl2 embeddings. The difference with
the cohomology calculations of Feigin and Frenkel [16] is that the spectral sequence
they use is different from the one that we use (in principal one can associate two
spectral sequences to any double complex).

An important open problem is to find unitary representations of the W algebras in
the set W\ It is believed that many questions about the representation theory can be
answered using the correspondence between Lie algebras and W algebras exhibited
in this paper. For example it should be possible to derive character formulas for the
W algebras from the affine characters (see also [24]). This is now under investigation.
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5. Appendix

In this appendix we review some basic facts on sl2 embeddings [25]. The sl2

embeddings into sln are in one to one correspondence with the partitions of n. (Let
(n1? n2, ...) be a partition of n with n^ > n2 > ..., then define a different partition
(m1,m2, .) of n by letting mk be the number of i for which ni > k. Furthermore

t
let st = Σ mi- Then the sl2 embedding associated to the partition (n l 5n2, ...) is

i=\
given by

t = V V E
+ Z-^ L-J l+sk_!,l+ι

t - V V (HI + I
ro - 2^ Z^ I 2

/>! fe=l V

'- = / J / J fc(^ί

where E- is as usual the n x n matrix with zeros everywhere except for the matrix
element (ίj) which is equal to one. The element δ which defines the grading on s/n,
that we use to impose the constraints is given by [13]

k>ι j=ι Σ'

One can check that in case the grading provided by ί0 is integer then <5 = t0.
The fundamental representation of «s/n decomposes into irreducible sl2 multiplets.

This we denote by n —> φn^, where i is the z-dimensional representation of sl2.
i

We then have the following identities that come in useful when trying to calculate
the central charge c(k\ δ) for a certain specific case:

(5.2)

i(ί + 1)(3r ~ ί -
This concludes our discussion of sl2 embeddings.
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