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Abstract: We give two formulas for the lowest point & in the spectrum of the
Schrodinger operator L = —(d/dt)p(d/dt) + g, where the coefficients p and q are
real-valued, bounded, uniformly continuous functions on the real line. We determine
whether or not & is an eigenvalue for L in terms of a set of probability measures on
the maximal ideal space of the C*-algebra generated by the translations of p and q.

Introduction

In this paper, we will study the Schrodinger operator

on ̂  C L2(R). As usual, the domain &2 of this operator is the collection of functions
/ G L2(R) which have the property that / and /' are absolutely continuous functions
on every finite interval and /', /" e L2(R). We assume that p and q are real-valued,
bounded, uniformly continuous functions on R. In addition, we assume that p' is also
a bounded, uniformly continuous function on R and that there is a c > 0 such that
p(t) > c for every t G R. It is well known that, under these assumptions, L is a
self-adjoint operator on &2 The main goal of this paper is to study the lowest point
& — inf{λ : λ G σ(L)} of the spectrum of L. There have been estimates of the value
S? in the literature when the coefficients p and q of the operator have recurrence
properties [4]. We will give two formulas for the value S7. These formulas are related
to a C*-algebra associated with the functions p and q.

Before we state our results, some definitions are necessary. For a function / defined
on R, by a translation of / we mean a function /s given by the formula fs(t) = f(t+s).
We denote by ̂  the C*-algebra generated by all the translations of p, p1', q and all
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the constant functions on R. Let ,̂  = {/ G ̂ 6 : f G ,̂ }. For each state ρ on
, ̂ , let HQ be the Hubert space completion of ,/£ with respect to the inner product

(/? g) ρ = Q(fg). Let ,,̂  be the collection of states ρ on the C* -algebra ./?? such that

\Q(f'}\ < Cρ[£(|/|2)]1//2 f°r every / G , ̂ , where C^ is a constant depending only on
£>. Equivalently, ,M is the collection of states ρ for which there is a unique /^ G ̂

such that £>(/') = {/, hρ)ρ for every / G ̂  Let

J^ = {pw1 + (pw)' : w is any real-valued function in L/S1} ,

and let :^~ be the closure of the convex hull of ,9§ in the norm topology. Let
d0(φ) = inf{\\φ - u^ : u G .̂ } and d(φ) = inf{\\φ - u^ : u G .

Theorem 1. (a) d0(/) = d(f)for every f G

(b)^Hkiioo-^-lkiioo)
(c) 7/J7 < 0,
(d) & = min{£(g) + \(phρ, hρ)ρ : ρ G JK}.

(e) Ifd(q) > 0, then -& = d(q) = max{-£>(g) - \(phρ, hρ)ρ : ρ G ̂ }

We particularly emphasize the fact that in (d) and (e) above, the extrema are
attainable. We will explain in Sect. 3 that the fact that they are attainable makes ̂  a
"quasi-eigenvalue" for L. In other words, we assert that when the coefficients p and q
satisfy our assumptions, the lowest point in the spectrum of L = —(d/dt)p(d/dt) + q
is always a quasi-eigenvalue. In fact quasi-eigenvalue is the most that one can say
about & in general. Although & can be a genuine eigenvalue, in the case p and q are
almost periodic functions, it is known that & is not an eigenvalue in probability 1.

It is obvious that for each s G R, the map φs : f ι—> fs is an automorphism of
the C*-algebra ,/&. The fact that the functions in , ̂  are uniformly continuous on R
implies that the group of automorphisms {φs : s G R} is strongly continuous in the
sense that for every / G ./&, s ι—> φ s ( f ) = fs is a continuous map from R into ,/€.
Therefore the automorphism group {φs : s G R} induces a strongly continuous group
of homeomorphisms {as : s G R} of the maximal ideal space Ω of .^. In other
words, the map (u;,s) ι—> ots(ω) from Ω x R to Ω is continuous. If we identify Λ
with C(Ω\ then obviously ,/£l can be regarded as the subset Cl(Ω) of / G C(Ω)
such that the limit /' = lim(/ o aε — f)/ε exists in the norm topology of C(Ω).

Similarly, ,/M can be identified with the collection of probability measures μ on Ω
such that

1/2

f'dμ

Ω

ϊ l /

<Cμ
dμ

for every / G Cl(Ω), where Cμ > 0 is a constant which depends only on μ. Given

a μ G yM, Dμ : f \-+ f is a linear operator from the dense subspace Cl(Ω) into

L2(J7, μ). It seems that the subscript of the symbol Dμ is unnecessary, for the operator
itself is actually independent of the measure μ. The reason we write Dμ is that its

adjoint D* does in general depend on the measure μ. If we let p ana q denote the
Gelfand transforms of p and q respectively, then it follows from Theorem 1 that the
set

e^:.^ =<<?,!}„ +
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is not empty. Here, we denote the inner product in L2(Ω, μ) by { . , . }μ. Since each
point s £ R corresponds to a maximal ideal s £ Ω, there is a continuous map
L / : s \-^ s from R into J?. Obviously i ^(R) is dense in Ω. Note that unless p and g
are periodic functions and have a common period, the map i % is injective.

Theorem 2. Suppose that i % is injective. Then & is an eigenvalue of the Schrodinger
operator L if and only if there is a μ £ ,M(p^ q) which is concentrated on ί ^(R)

If ra is a probability measure on Ω and is invariant under the group {as : s £ R},
then it is well known that

Lm = -DmPDm + $

is a self-adjoint operator on a dense domain in L2(Ω,πι).

Theorem 3. Suppose that m is an invariant probability measure on Ω. Then & is an
eigenvalue of Lπι if and only if there is a μ £ .̂ (p, q) which is absolutely continuous
with respect to m

In the main text, we will obtain results which are slightly more general than
the theorems stated above. Rather than starting with the coefficients p and q of the
Schrodinger operator and build the algebra Λ, we will take the following approach.
We will start with a continuous flow (X, {as : s £ R}) and functions P, Q G C(X).
We will consider the family of operators {Lx : x £ X}9 where

Parts (a), (b) and (c) of Theorem 1 will be proved in Sect. 1 and 2. Parts (d) and
(e) of Theorem 1 will be derived from (b) and (c) in Sect. 3 by what amounts to
solving a dual extreme problem. Theorems 2 and 3 will also be proved in Sect. 3.
Furthermore, we will explain in Sect. 3 that the question whether or not ̂  is an
eigenvalue can be converted to a question which is completely independent of the
study of Schrodinger operators and which leads to what seems to be a generalization
of the notion of ergodicity. In Sect. 4, we will specialize our results to the case where
the flow is generated by functions on R.

1. The Distance Formula

Let X be a compact Hausdorff space. Suppose that α = (αt : t £ R} is a continuous
group of homeomorphisms on X. That is, ( x , t ) \-+ at(x) is a continuous map from
X x R to X. The dynamical system (X, R, α) will simply be referred to as a flow.
For a function φ on X, we denote φ'(x) — lim(φ(ah(x)) — φ(x))/h whenever such

h—>Ό

limit exists. φ'(x) can be thought of as the derivative of φ in the direction of the flow.
Let C^(X) be the collection of continuous functions φ on X such that φf(x) exists
for every x £ X and x H^ φ'(x) is a continuous function on X. For any function
/ on X and any x £ X, let fχ denote the function on R defined by the formula
f x ( t ) = f(at(x)). For the rest of the paper, P will denote a function in Cl

a(X) such
that P(x) > 0 for every x £ X.

Definition 1.1. (a) Define .̂ (P) = {Pφ1 + (P<p)' : 99 £ C£(X) and <p is real-
valued},
(b) Let ^(P) be the sup-norm closure of the convex hull
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(c) For every / G C(X), let d p ( f ) = inf{||/ - u^ : u G ^(P)}, the distance from
to

Theorem 1.2. If ψ is a real-valued function in C(X\ then ψ + dp 00) G

Proof. Suppose that the theorem were false. Then, by the Riezs representation theorem
and the Hahn-Banch separation theorem, there would be an α G R and a real-valued
regular Borel measure μ on X such that

(ψ + dp(ψ))dμ> a> I

x x

udμ

for every u G ^(P). For any real-valued function / G C^(X), Pf2 = (1/2)(P/2 +
(P/)0+(l/2)(P(-/)2+(P(-/))'). Because C^(X) is dense in C(X) [2], this means
that &(P) contains every non-negative function in C(X). Hence it follows from the
above inequality that μ(E) < 0 for every Borel set E c X.It also follows from the
above inequality that

(Ψ — u)dμ > —j.

x

for every u G .̂ ~(P), where

b = I (ψ -f dp(ψ)) dμ — a > 0.

x

Since —μ(X) > 0, μ = μ/(—μ(X)) is a probability measure on X. We have

> — u) dμ > dp(ψ) + b/(

x

for every i/, G J^~. But this is inconsistent with the fact that dp(ψ) is the distance
between ψ and ̂ (P). D

Let Q be a real-valued function in C(X). For each x e X, define the Schrodinger
operator

on &2 — {/ '• / and /' are absolutely continuous on every finite interval, /, /',
/" G L2(R)} C L2(R). It is well-known that Lx is a self-adjoint operator on ̂
[9]. Let S^ denote the closure of |J cr(Lx). (For a linear operator A, σ(A) denotes

its spectrum.) Let & denote the infimum of the set J .̂ In the situation where it is
necessary to indicate the coefficients P and Q of the Schrodinger operator to avoid
confusion, we will write LPQ x, 5̂ (P, Q) and ̂ (P, Q) instead of Lχ9 S^ and ̂ .

Proposition 1.3. -dP(Q) < &.

Proof. For any ε > 0, there exist real-valued functions gλ,...,gn G C^(X) and

a{,..., an G (0,1] with αj + . . . + αn = 1 such that

- Let φ = ^ '(P + ^P9^ ~ ®' For each x G X' let
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denote the first order differential operator —id/dt + Wj x. Then A* XPXA x =

-(d/dt)Px(d/dt) + Pxg
2,x + (Pg3}'x. Hence

7 \ / 7 \ n n

H )F*( ̂  I + y^ϊCPxSL + tPsΛi) - V α .A*jXPxAix > 0./ - f / ^ \ x7 / / -̂  J χuj ,x ^ ^2/χ/ / -j 3 Jιχ x J >x —
. j X x i x3 Jιχ x J >x —

.^ ^

Since H^H^ < dp(Q) + ε, we have

(L,/, /) = ((Lx + Vg/, /) - (ΨJ, /) > -(dP(Q) + ε)</, /}

whenever / belongs to the domain of Lx. This implies σ(Lx) c [—dP(Q) — ε, oo)
for every x e X. Hence 5̂  C [—dp(Q) — ε,oo) for every ε > 0. Therefore
-dp(Q) < J7. D

Proposition 1.4. Suppose that A < & Then Q - λ G (̂P).

Remark We will show that when λ < ,̂ the positive operator Lx — X admits a
factorization

with M G C^(X). In general, given a positive operator A, one thinks of the
factorization problem A = "^B^Bk in an algebra associated with A as a non-

commutative moment problem. In the case where A is a differential operator with
coefficients which are rational functions in £, such a moment problem was solved in
[7]. Note that for our operators, the moment problem has a one-term solution B*B.
Also see Remark 1 after Theorem 3.2. The proof of this proposition will be given in
the next section.

Theorem 1.5. (a) ^ = HQIL - dP(Q - \\Q\U.
(b) Suppose that & < 0. Then ¥ = -dP(Q).

Proof. Suppose that λ < & < 0. Proposition 1.4 says that Q - λ G
Hence dP(Q) < |λ| = — λ. In particular dp(Q) < —& + 1/n for every n. Hence
dP(Q) < — & or, equivalently, —dP(Q) > Ϊ7. Proposition 1.3 provides the opposite
inequality. This proves (b). Because 0 < -(d/dt)Px(d/dt) < (\\P\\00)(-d2/dt2)
and because σ(-d2/dt2) = [0, oo), 0 G σ(-(d/dt)Px(d/dt)\ For every x G X,
Qx ~ I I Q I l o o < 0 on R. Hence (-00, 0] Π σ(Lx - \\Q\\ ̂  + 0. Therefore part (a) is a
consequence of part (b) and the identity (̂P, Q) = \\Q\\ ̂  + ̂ (P, Q -

Proposition 1.6. ^(P) /5 ^n^e in

Proof. For each w G J^(P), dp(u) = 0. If we apply Propositions 1.3 and 1.4 to
Q = u, we see that ^ + ε G Jξ"(P) for every ε > 0. Hence the distance between u
and J (P) is 0. D

2. Weyl's m-Functions

This section is devoted to the proof of Proposition 1.4. Our proof requires only
elementary techniques of differential equations and some aspects of the proof should
be familiar to experts in this area. And some of the technical details perhaps need
not be included. But for the convenience of the reader, we will present them anyway.
If one uses the theory of spectral bundles of differential systems developed in [10],
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it is possible to find an alternate proof which could be somewhat shorter but not as
elementary.

Recall that ̂  = J/%P, Q) is the closure of the union of the spectra of all
Lx = LPQX, x £ X. Let &+ be the collection of functions / on [0, oo) such
that / and f are absolutely continuous on every finite interval [0, A] and such that
/, /', /" G 1/2 [0, oo). Similarly, ^~ denotes the collection of functions on (— oo,0]
with the same properties. Define ̂  = {/ G ^± : /(O) = /'(O) = 0}. For each
x G X, let L+ (respectively L~) be the symmetric operator —(d/dt)Px(d/dt) + Qx on
^p+ (respectively on ̂ f). The differential equation -(PX)'(0 + QX(£XO = ̂ 00
will be abbreviated as ixu = zu. For x £ X and z G C, define ̂ +

z = {u : lxu = zu
and the restriction of u to [0, oo) belongs to ̂ +}. Similarly, &~z = {u : ixu — zu

and the restriction of it to (— oo,0] belongs to ^~}.

Lemma 2.1. Let z G C <zwd x G -AT If u is a solution of lxu = zu and \u2 is
integrable on [0, oo) (respectively on (—00, 0]J, ί/Z£ft u £ <§ζ̂  (respectively u G ̂ "J

(X)

Proof. Suppose that / \u(t)\2dt < oo. Since u and u' are continuously differentiable,
o

00

it suffices to show that / \u'(t)\2dt < oo. Straightforward differentiation shows that
o

(Px(\u 2yy = 2(Qx-Re(z))\u\2 + 2Px uf\2. Hence Px u'\2 = (Px(\u2\YY /2-(Qx -
Re(z))|w|2. Consequently we have

T

f Px(t)\uf(t)\2dt = l-[(\u2\)'(T)Px(T) - (H2)'(0)PX(0)]

- ί(Qx(t)-Re(z))\u(t)\2dt.
j

T

Since / u2(t)\ dt < oo, (\u2\)'(t) cannot be strictly positive any interval [A, oo).
o

Hence Px\u'\2 is integrable on [0, oo). By the assumption on P, there is a δ > 0 such
o

that P > δ on X. Hence u' G L2[0,oo). The case / \u(t)\2dt < oo is similarly
— oo

treated. D

Proposition 2.2. Suppose that z G C\J^. Then for any x G X, dύm(&xz) =

Proof Suppose that z G C\R. By WeyΓs limit point-limit circle alternatives, for
both symmetric operators Lx and L~, the deficiency indices are either (1, 1) or (2, 2)
(see, for example, [1 or 9]). By Lemma 2.1, this means that dim^+J and ά\m(&xz)
are either 1 or 2. If dim((¥x^) = 2, then g^ D <ξ~ . Hence 2: is an eigenvalue for
Lx. But this is not possible due to the fact that Lx is self-adjoint and z G C\R.
Hence dim(^) = 1 and, similarly, dim(&~z) = 1 if z G C\R. If z φ ¥, then

IK^ί - *)f\\2 = \\(L

X - ^f\\2 > d(z,jr)\\f\\2 for every / Ξ 0̂

+ (̂ + is considered
as a subset of L2(R) in the natural way). Therefore (Lx — ̂ )̂ 0

+ is closed. It follows
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from Corollary 2 on p. 42 of [9\ that ί+z = L 2 fO. oc) Θ (L+ - Z)(/Q~ and that

dim(c ί

+

2) remains constant on C \ ϊ / . D

Definition 2.3. For each pair ( x . z ) £ X x (C\i/), E+r denotes the orthogonal

projection from L2[0, oc) onto the one-dimensional subspace {/ | [0, oc) / G %+

2}.

Similarly, E~ z denotes the orthogonal projection from L2( — oc. 0] onto {g ( —oc, OJ

Proposition 2.4. 77z<? /??#/;> (,τ.2) ι—» E+z fresp. (.r.z) ι—>• ^72J is continuous from

X x (C\ /) into (/(L2[0. oc)) fresp into C/(L2(—oc, 01)) equipped with the operator
norm topoloyv

Proof Let (Λ'0,20) G Jί x (C\ f /) be given and let g0 G E"+ Z,2fO. oo) be a unit

vector Note that for any 2 G C\!/, | |(/4-2)/||2 = ||(Lr - 2)/i | 2 > r/(2. /)| |/ | |2 if
f G V + . Since E'ί .L2ΓO. oc) = L 2ΓO. oc) O (Lt - 2){/+, we have/ G V()

+. Since E^^L2^. oc) = L2[0, oc) θ (L^ - ^)^/o+' we ha^e

: / e 1/0

+ . / V 0

-1—sup^'^^n ~ / J / ' / ^ ^ - / ^ O

Because (/0 G 1/+ and Px G C(X), the maps j: ^ Pχ9b x ^ ^r^c/ anc^
x ^ Q rϋo are continuous from X into L2[0. oc) Hence for any ε > 0, there is
a neighborhood [/ of XQ and a (5 > 0 such that \\gQ — E+ zgQ\\ < ε if x G U and

2 - z()\ < δ The desired continuity follows from the formulas .E+^/i = ( h , g Q ) g ( )

and E+ J? = (^ϊ^^^ί.^o/H^ΐ^olli The continuity of ( x . z ) ^ E~z can be
similarly proved. D

Proposition 2.5. (a) Let φ G L2[0. oc) (resp. ψ G L2(-oc. 0]j «/?J / G (0, oc) (resp.
f G (-00.0)) be given Then ( x , z ) ^ (E+_zφ)(t)1 fresp. ( x . z ) \-* (E~zφ)(t)) is a

continuous function from X x (C\./) into C
(b) Let φ G L2[0, oc) fresp. φ G L2(-oc,0]j and i G (0. oc) fresp f G (-oc.O)j be
given Then (x. z) ^> (E+ zφY(t) (^resp. (x, 2) ̂  (E~zψ)'(t)) is a continuous function
from X x(C\'/) into C

1 Stπctly speaking, E^ zφ is an element in L2[0, oo) and represents a class of functions which diffei

fiom each othei on sets of measuie zeio So it is necessaiy to give a cleai definition foi (E^ zφ}(t],

the value of E£ zφ at t Theie is a solution of the differential equation txu — zu on R such that

ι/|[0, oc) represents the same element E^ zφ G L2[Q. oc) The value (E+ zφ)(t) is defined to be u(ί]

Also when we wiite (E£zφY(t) we mean u\t] (E~yψ)(t) and (E~zιp)'(ί} aie defined similaily
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The proof of this proposition will be divided into several steps. The main
ingredients in the proof are Proposition 2.4 and a sequence of lemmas in elementary
analysis. We will now establish these lemmas.

Lemma 2.6. Let f > 0 be a Cl function on [α, 6].

b
(a) There is an s G (α, 6) such that f'(s) > -8 / f ( t ) dt/(b - α)2

α
b

(b) There is an r £ (α, b) such that /'(r) < 8 / f ( t ) dt/(b - α)2.
α

6

Proof. Let 77 — 8 f f ( t ) d t / ( b — α)2. (a) Suppose that such an s did not exist. Then
α

(6+α)/2

/'(ί) < -77 for every t G (α, 6). Hence /((6 + α)/2) - /(λ) = / /'
λ

~ Λ) for every λ e (α'(6 + α)//2]' τhat is'
77 ί -- λ] whenever λ G (α,(6 + α)/2]. Since / > 0 on [α, 6], we have

6 (6+o)/2 (6+α)/2 L _ ,

//(λ)dλ > / /(ί)dί > 77 / ί — -- Λ j dλ = η(b - α)2/8, which is a
α α α ^ ^ ^
contradiction. This proves (a), (b) is proved in a similar way. D

Lemma 2.7. Let B be a bounded subset of C\J^ ύwd /βί ε > 0. TTzerc there is an
N = N(P, Q, B, ε) > 0 .ywc/z that for every (x, z) e X x B,

< TV

zrn/f vector in L2[0, oo)

//^ /^ α unit vector in L2(-oc, 0]

Proof. Suppose that φ G L2[0, co] is a unit vector. Since \\χ^ ε]\E+ zφ\2\\ι < 1, it
follows from Lemma 2.6 (a) that there is an s = s(φ, x, z) G (0, ε) such that

Write w for ̂ ^^ for the moment. Since -(Pxu')' 4- Qx^ — ̂ ^ on (0, oo), we have

(Pχ(\u 2 ) f y = 2Px\v! 2 + 2(QX - Re(z))\u 2. Suppose that P(x) > δ > 0 for every
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x G X. Then

r

δ
ε

627

ιzp)'(f)|2dί < j Pχ(t)\u'\\t)dt

S

T

= l-[Px(T)(\u 2)'(T) - Px(s}(\u\2)'(s)} - j(Qx(t) - Re(z))\u(t)\ dt

< Px(T)-(\u\2Y(T) + '2) + I I Q I l o o + sup{|w : w G B} .

)'̂ ) : t >Since the function \u\2 is integrable on [0, oo), for any A > 0, inf{
A} < 0. Hence

oo

/ \(E+zφ)'(t)\2dt < \[\\P\\^/ε2) + IIQIL + sup{H : w E B}].
J o
ε

The proof for the other inequality is similar and will be omitted. D

Lemma 2.8. Let B be a bounded subset of C\9^ and let ε > 0. There there is a
C = C(P, Q, B, ε) > 0 such that for any ( x , z ) G X x B and t > ε,

C

if φ is a unit vector in Z/2[0, oc) and

|(£-

ifψ is a unit vector in L2(— CXD, 0].

Proof For any u G ̂ +,

oo oo

ί Px(s)u'(s)ύ"(s)ds = -Px(t)\u'(t)\2 - ί(Pxu'Y(s)ΰ'(s)ds.
J J

Therefore

CXJ CXJ

Px(t)\u'(t)\2 = - f Px(s)u'(s)ΰ"(s)ds - j(Pxu')r(s)ΰ'(s)ds

t t
oo oo

= - /' u'(s)(Pxΰ')'(s)ds- j(Pxu
/)'(s)ΰ'(s)ds

t

P'x(s)\u'(s)\2ds

<2 \s)\2ds
1/2

2ds.
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Let ΛT, = sup{|™ w B}. Then \\(Px(E+tZφ)Ύ\\2 <

whenever (x, z) G X x B and (/? G L2[0, oo). Let TV be the constant provided by the
previous lemma. Then obviously C = (2N{v^N + HP'H^ΛO/ό will do. D

An immediate consequence of this lemma is the following:

Corollary 2.9. Let B be a bounded subset of C\S^' and let ε be a positive number
Then there is a K = K(P,Q,B,ε} > 0 such that for any ( x , z ) G X x B, and
s,t G [ε, oo),

if φ is a unit vector in L2[0, oo); and

\(E-zψ)(-t) - (E~zφ)(-s)\ < K\t - s\

ifψ is a unit vector in L2(— oo, 0].

Proof of Proposition 2.5. (a) Let t G (0, oo) and φ G L2[0, oo) be given. Let
(XQ,ZO) G X x (C\J/Ό and let B be a bounded neighborhood of z0 in C\S^ By
the previous lemma, there is a K > 0 such that

l(£ί>X*ι) - (E+tZφ)(s2)\ < K\Sl - S2

whenever (x, z) G X x B and s{, s2 G [t/2, oo). Let n0 > 2/t and define

77
s) ds = - (

77 /*

2 y (Etz

for n > n0. It follows from Proposition 2.4 that each #n is a continuous function on
X x (C\.5^). On the other hand, for (x, z) G X x 5,

n

2

n

2
Kds = K/n.

This shows that on X x 5, the function (x, z) K^ (E+ zφ)(t) is the uniform limit the

continuous functions {gn} Therefore it is continuous. The continuity of (E
can be established similarly.

(b) Let s <t. Then

= (Qx(X) - = ((Qx - z)E+zφ, χ[β>t])
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For any g G L2[0, oc), x ι-» Qxg is a continuous map from X into L2[0, oo). Hence
the map (x, z, 5) ι-» {(Qx - z)E+^φ, χ[s?t]) is continuous on X x (C\^) x [ί/3, t/2].

This implies that OE,Z) ̂  Px(t)(E^zφ)'(t) — Px(.)(E^zφ)'(.) is a continuous map

from X x (C\^) into C[i/3, ί/2]. Therefore

t/2

(x,z) ^ j[Px(s}Γl[Pχ(t}(E^zφ)'(t) - 1

ί/3

= Px(t)(E+!Zφ)'(t) (Px(s)Γl ds - (E^zφ)(t/2) + (E+zφ)(t/3)

is a continuous function on X x (C\5^). Since the last two terms are continuous
by part (a), so is the first term. The continuity of (E~^)'(t) is established
similarly. D

Suppose that z G C\9*. Given a φ G L2[0, oo), there is a unique solution u of the
differential equation ixu — zu on R such that K^^ is represented by the restriction

of u to [0, oo) in the space I/2[0, oo). We can also think of u as the natural extension
of E^zφ to R. For the sake of convenience, we will use the same symbol E+ zφ

to denote this function on R. Similarly, for ψ G L2(— oo,0], we also use E~zψ to
denote its natural extension to R.

Proposition 2.5'. (a) Let φ G I/2, [0, oo) fresp. ^ G L2(— oo, 0]j α^J t eR be given
Then ( x , z ) ι-> (E^zφ)(t) fresp. (x,2) ι-> (E~tZψ(t)) is a continuous function from
X x (C\5^) mto C.'
(b) L^ y? G L2[0, oo) (τesp. ψ G L2(-oo,0]) and t G R be given. Then (x,z)
(E+ιZφ)'(t) fresp. (x,z) ι-> (E~^)r(t)) is a continuous function from X x

' C

Let ξ'(t) = A ( x , z , t ) ξ ( f ) be the standard 2 x 2 first order linear differential
equation system which is the equivalent of the second order equation ixu = zu. For
any a G R, let Φa(x, z, t) be the fundamental solution matrix of ξ'(t) = A(x, z, t)ξ(t)
such that Φα(x,2,α) is the 2 x 2 identity matrix. Proposition 2.5/ is an immediate
consequence of Proposition 2.5 and the well-known fact that for any fixed t G R,
(x, z) i— » Φa(x, z, t) is a continuous map from X x C into M2. D

Suppose that z G C\R. Then it is well-known that a function in ̂ z which
is not identically zero cannot vanish on R. This is due to the simple fact that the
natural extensions of the operators L± to {/ G ^Γ± : /(O) = 0} are self-adjoint and,
therefore, cannot have any non-real eigenvalues. Our next objective is to establish
the same result for real values z G (—00, J7). But since the possibility of the self-
adjoint extensions of L^ having eigenvalues in (—00,^) cannot be excluded, the
proof becomes quite involved.

Proposition 2.10. Suppose λ<,9r.Ifφe ^λ and φ is not the constant function 0,
then φ(t) ^ Of or every t G R

Proof. We first assume that A < HQH^. Suppose φ G &£x and φ(tQ) = 0. Define a
function φ on R such that φ(t) = φ(t) for t>t0 and φ(t) = —φ(2t0—t) for t < t0. It is
easy to see that since φ(tQ) = 0,φis absolutely continuous on every bounded interval.
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The definition of φ also ensures that the left derivative and the right derivative of φ
at £Q agree. Therefore φ1 is also absolutely continuous on every bounded interval. It is
obvious that φ, φr and φ" all belong to L2(R). Hence φ G &2- Define U(t) = Px(t)
and V(t) = Qx(t) for t > t0 and define U(t) = Px(2t0 -1) and V(t) = Qx(2t0 - t )
for t < t0. Since -(Pxφ'Y + Qxφ = λψ on R, it follows that -(Uφ')r + Vφ = \φ on
R. If ψ were not identically zero, then λ would be an eigenvalue for the self-adjoint

operator L = -(d/dt)U(d/dt) -f V. But this is impossible because λ < — I I Q I l o o and

I > -min{P(y) : y G X}d2/dt2 - \\Q\\^ > -\\Q\\^
For the general case λ < J7, we need the following function: For (y, 2) G

X x (C\^), define

where ^+ is any nonzero function in <?̂  and ι/>_ is any nonzero function in g^. That

the spaces ̂ z are one-dimensional guarantees that the definition of Γ is independent

of the choice of ψ±. Since Py(ψ+ψ'_ — ψ'+ψ_) is the Wronskian for the differential

equation £ u — zu, there is a nonzero constant c such that ψ+ψ'_ — Ψ+ψ^ = c/Py

Hence Γ is well defined. (Actually, Γ(y,z,t) = G(y,z,t,t)/Py(t\ where G is the
Green's function for ίyu = zu.) For any s G R, the functions t ι—» ^(t + s)

belong to ̂ (l/)^. Hence Γ(y,z,t + s) = Γ(as(y),z,f). Let η+ = ^+|[0,oo) and

?7_ = ^_ |(—oo, 0]. Then there is a neighborhood U of (y, z) in X x (C\J^) such that

Etwη+ and E7wη_ are not identically zero for (ξ, w) G t/. Hence it follows from

Proposition 2.5' that for each t G R, (y, z) H-> Γ(y, z, t) is a continuous function on
X x (C\J/0.

From the relation Γ(at(y),z,Q) = Γ(y,z,t) it follows that for a fixed z, the
function G^(y) = Γ(y, 2,0) has a zero on X if and only if there is a ξ G X such
that one of the spaces g^ contains a nonzero function which vanishes somewhere
on R. That is, Gz is not an invertible element in C(X) if and only if one of the
spaces ^z contains a nonzero function which vanishes somewhere on R. Suppose

that the proposition were false. That is, there were an x G X and a λ < & such
that (S^χ U &~x contains a nonzero function which vanishes on R. Then the set

Z = inf{z G (—oo,ι$0 : Gz is not invertible in C(X)} would not be empty. Since
( y , z ) i—> Γ(y, 2,0) is continuous and X is compact, the map 2 ι—» G2 from C\J^
into C(Jί) is also continuous. Because the subset of non-invertible elements in the
C*-algebra C(X) is closed, Z is closed in (—00,^). We will next show that Z is
also an open subset of (—00,^).

Suppose that λ0 G Z and suppose that δv+

λ contains a non-trivial function 99 such

that ψ(a) = 0. Since λ0 is real, we may assume that φ is a real-valued function.
Furthermore, we may assume that φ — E>~λ 77 with some appropriate real-valued

function η. That </? is not identically zero ensures that φ'(a) ^ 0. Hence φ has
positive as well as negative values on R. It follows from Proposition 2.5' that there is
an ε > 0 such that for ω G (λ0 - ε, λ0 + ε), E^ωη also has both positive and negative

values on R. This means that E^ωη must vanish on R. Hence Gω is not invertible for

ω G (λ0 — ε, λ0 + ε). If <§̂ Γλ contains a non-trivial function which vanishes on R, then

we can similarly show that Gω vanishes for ω in a neighborhood of λ0. Therefore the
set Z is open. The first paragraph of the proof tells us that Z ^ (—00,^). Thus we
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have created a nonempty, proper subset of (—00,^) which is both open and closed.
This contradiction completes the proof. D

Proof of Proposition 1 4. For (x, z, f) G X x [(C\R) U (-00,.^)] x R, define

and

where c^± G &^z are functions which are not identically zero. The fact that

άim(K^z) — 1 guarantees that M± are independent of the choice of φ±. It follows
from Proposition 2.10 and the discussion preceding it that the values of M± are
finite numbers. It follows from Proposition 2.5' that for each t G R, the functions
(x, z) i— » M±(x, z, t) are continuous on X x [(C\R)U(— oo,^)]. Finally, if φ G <§ζ^,

then<p(s+.) G ̂ (x)^. Therefore M±(x, z,ί) = M±(αt(x), z,0). For λ G (-00, ̂ 7),
it is straightforward to verify that

P(x)M2

±(x, λ, 0) + P(αt(x))M±(αt(x), λ, 0) = Q(x) - λ . D

3. The Dual Extreme Problem and Quasi-Eigenvalues

We will next investigate the extreme problem dual to :7 = —dP(Q) = —inf{\\u -
Qlloo '• u £ '^(P)} m me case ^ < 0. In other words we will express dP(Q)
as a supremum. This dual extreme problem involves probability measures on X.
By a probability measure on X we mean a positive, regular Borel measure on X
whose total mass is 1. Suppose that μ is such a measure and consider the space
L2(X, μ). Let | |. | | 2

 and ( > )μ denote the norm and the inner product on L2(X, μ)

respectively. On the subset C^(X) C L2(X,μ), we denote by Dμ the differential

operator (D f)(x) = lim(/(αε(x)) — /(x))/ε = f'(x). (The operator Dμ is actually

independent of μ; it is its adjoint D* that depends on μ.) Let ̂  be the collection of
probability measures μ on X such that the constant function 1 belongs to the domain
of D*. It is obvious that a probability measure μ on X belongs to ,M if and only if
there is a C > 0 such that

(DJ)(x)dμ(x)

X

<c\\f\\μ,2

for every / G C^(X). Because C^(X) is dense in I/2(Jί, μ), in the case μ G ̂ M, the
smallest such value C is | | -Dμl | | μ 2

Theorem 3.1. (a) Suppose that dP(Q) > 0 Then

dP(Q) = sup< - (Q, l)μ - -(PD*l,D*l)μ : μ G ^

(b) In any case,

.7 = inf ((Q, l)u + \(PD*l,D*l)u : μ e ...
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Proof, (a) Suppose that 0 < A < dP(Q). Then, since Q + λ φ &(P\ there is a
real-valued regular Borel measure v and a number α G R such that

/ (Q + λ) dv < -a < I udv

x x
(3.1)

for every u G ̂ (P). Since ^(P) contains every non-negative function in C(X)9

a > 0 and v is a positive measure. Let μ — v/v(X) and

-b = inf J udμ:u£
J
x

Ί
I .
I

J

Hence / Pf2dμ + 6 > f ( P f ) ' d μ for every real function / G Cl

a(X). This implies
x x

that

[Pf2dμ + b> J
j J
X X

DPfdμ

for every real function / G C^(X). Replacing / by tf with t G (0, oo), we see that

ί [ Pf2dμ + b/t> I DμPfdμ
J

X

2 1/2

X

If we set t = \b/ f Pf2dμ\ , then

2Vb[(PfJ)μ]
l/2>\(DμPf,l)μ\.

Hence the constant function 1 belongs to the domain of £)*. The above inequality
can be rewritten as

where μP(E) = / P dμ. It follows from the equality (#,D*l)μ = (Dμg,l)μ that
E

1 is a real-valued function in L2(X, μ). Therefore the above inequality implies
that

2Vb > ||Z?* (3.2)

If 6 = 0, ||D*l||μp>2 = 0. Suppose that 6 > 0. Because ^(P) is dense in

(Proposition 1.6), for any ε G (0, b) there is a real-valued g G C^(X) such that

[

x

i.e.

Therefore
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This implies that ||£)μ*l|| 2 ̂  2\/6. Combining this with (3.2), we have

-I ιι -^ik .. n O

It follows from (3.1) that

) + \)dμ<-b=\\\D*μ\\γ 2 .
4" ^

x

That is,

x

This proves that

dP(Q) < sup | - (Q, l)μ - ^(PD*l,D*l)μ : μ € .Jfλ . (3.3)

Suppose now that μ is an arbitrary measure in ^M. For any real-valued function
/ G Cl

a(X), we have

x

In other words,

X

Adding — / Q dμ to both sides, we have
x

- JQdμ- \\\D*μ\\\lpι < j(Pf2 + (PfY -Q)dμ< ||P/2 + (Pf)' - Q^ .

X X

Since .̂ (P) is dense in .^(P\ we have - f Q dμ - ^||U*1||^P)2 ^ dp(Q\
x

Combining this with (3.3), we have

dP(Q) = sup | - (Q, l)μ - ±(PD*μl,D*μl)μ : μ e

(b) Take any λ e R such that :?(P, Q - λ) < 0. Then it follows from part (a) and
Theorem 1.5 that

.̂ (P, Q) = ̂ (p, Q - Λ) + λ = -dP(Q - λ) + λ

= inf < (Q-λ, 1) 4- -{PD* !,£>*!} : μ e ^
I 4

1 Ί
. D
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Define

(̂P, Q) = J μ G J6 : & = (Q, l)μ +

Theorem 3.2. Suppose that x is a point in X such that at(x) ^ x for every t •=£ 0
Then the following are equivalent.
(a) There exists a μ G ̂ (̂P, Q) which is concentrated on the orbit {at(x) : x G R}.
(b) jT" w α« eigenvalue for the self-adjoint operator Lx

Proof, (b) =Φ (a): Suppose that u G L2(R) is a real-valued unit vector such
that Lxu — <7u. Then μ({at(x) : t G £"}) = fu2(s)ds define a proba-

bility measure concentrated on the orbit {at(x) : t G R}. It is easy to see
that //dμ = / f ( a t ( x ) ) u 2 ( t ) d t for / G C(X). Furthermore, for / G C£(X),

V 1?-Λ. tv

//dμ = fu2(t)—f(at(x))dt = - 2 / f ( a t ( x ) ) u ( t ) u ' ( t ) d t . Hence (D*l)(αt(x))
X R "̂  R

= —2uf(t)/u(t). (Because u is a non-trivial solution of the differential equation txu =
3?u, the set {t G R : u(t) = 0} has no limit points. Therefore uf(t)/u(t) is well defined

for a.e. ί G R.) Thus |{P£)*1, D*l)μ = $ Px(t)(u'(t))2dt = - f u(t)[Px(t)u'(t)]'dt.
R R

Therefore <Q, l)μ + i(PZ3*l, D*l)μ - ̂ .

(a) => (b): Suppose that μ G ̂ (P, Q) is concentrated on {at(x) : t G R}. Then
μ(E) — μ({at(x) : t G J5}) is a probability measure on R. It is easy to see that
f φdμ = f φxdμ for every φ G C(X). Therefore,
X R

for all φ, ^ G C(X) and, in particular,

Let ^ = {̂  : φ G C^(X)}. We claim that ^ is dense in L2(R,μ). Let / G CC(R),
let g be a (7°° function on R with a support contained in [— A, A], and let ε > 0 be
given. There is an TV > 0 such μ([-7V, TV]) = μ({at(x) : -N < t < A/'}) > 1 - ε.
The function F(αt(x)) = /(ί) is continuous on the compact subset K = {at(x) :
-A-7V-1 < ί < A + 7V+l} . By Tietze's extension theorem, F can be extended
to a continuous function on X such that H-FH^ = H / H o o Obviously the function
g * F(z) = f g(s)F(as(z))ds belongs to C^(X). Since g is supported on [—A, A],

R

we have (g * F)x(t) = /^(5)F(o;s+ί(x))dθ = f g ( s ) f ( t 4- 5)ds for -TV <t<N.
R R

Hence

/ \9*f-(9*F)I

2dμ= J \g*f-(g*F)x

2dμ

\t\>N

This shows that g * / is contained in the closure of ̂  in L2(R, μ). Hence W is dense
in L2(R, μ).
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Define Dμ(ψx) = (Dμψ)x = (ψ\ = (ψj for ψ e Cl

a(X). Because

f Dμ(Ψx)dμ

635

and because W is dense in L2(R, μ), there is a unique h — D? 1 G L2(R, μ) such that

for every / G ̂ . Suppose that # is a compactly supported C°° function on R. Then

/ 91 * (<£*) dμ = / [#' * <p]χdμ - - / [(g * <p)']x dμ

R R R

^ - I [(g * φ)x]' dμ = -((g*φ}x,h}~μ = -(g*(φx),h)β

R

for every φ G C(X). Let ξ G CC(R). Using Tietze's extension theorem once more,
we see that there is a sequence {φn} C C(X) such that (φn)x = ξ on [-n,n] and
IKIIoc = IK l l o o Therefore \\g' * φj^ < | | ^ΊI ι l lζ | loo and lim [gf * ((y>n)x)](ί) -

n— >CXD

px * ξ(ί) for every t G R. By the dominated convergence theorem, we have

In particular, if ξ G C^(R), then

7) * ζdμ. = (g * ξ,h)β

Hence

for every ξ G C^(R). This in particular implies that h is a real-valued function. The
map φ h-» y?^, (̂  G C^,(X), extends to a unitary operator [7 from L2(X,μ) onto
L2(R,μ). Since (y>,D*l)μ = { ,̂ l)μ = {(^)7, 1>A - <E7y>,Λ) A - {^,£/*ft)μ for

every φ G C^(X), we have ft = ί/D*l. Similarly, it follows from (UPD*l,φx)β =

(PD^φ)μ = (D^Pφ)μ = (h,Pxφx}~μ = <PZΛ,^)A that P,ft = UPD^l.
Hence
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For any / e C^(X)t we have

foat-foas=

Therefore

' (/°a* - / °as)dμ

x x

dλ

< t-s\ βmaxt \\f o αλ | |μ j 2 | |Z>*l| |μ > 2 < \\f\U\D*l

for every / G C^(X). Since Cl

a(X) is dense in C(X)9 we have

* oat - f oas)dμ (33)

for every / G C(X). By the regularity of μ, this implies that if A is a Borel set in
X, then

\μ(at(Δ)) - μ(as(Δ))\ < ||£>*1 ||μ>2|ί - 5| .

Hence for every Borel subset E C R,

In particular, the function t h-» μ(E +1) is continuous. It follows from this continuity
that μ is absolutely continuous with respect to the Lebesgue measure on R. Therefore
dμ(t) = g0(t)dt with some g0 G Ll(R,dt). Since h G L2(R,μ) C I/HR,//) =
Ll(R,g0dt), hg0 is Lebesgue integrable on R. The equality

f(t)gQ(t)dt= ί f(t)h(t)g0(t)dt
j

R R

holds for every / G C^(R). From this it is easy to see that if s and t are Lebesgue
points for #0, then

t

= \ h(λ)g0(X) d\ .

Since gQ £ I/^R, c/ί), there exists a sequence {sn} of Lebesgue points of g0 such that
s — > -oo and ^ ( 5 ) — > 0. Hence

if ί is a Lebesgue point of gQ. Now define

= h(λ)g0(\)dλ.
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for every t G R. Then g{ is absolutely continuous on R and we have dμ(t) = gλ(t) dt.
Let u — ^fg[ on R. Then hu G L2(R) and

1 1
(QTu,u) -\—(P~.hu, hu) = (<2 , 1)~ H—(Ph, h).~. = £7.

4 μ 4 μ

We claim that u is absolutely continuous on every finite interval and that (u')2 —
h2gl/4 = (hu)2/4.

To prove this claim, we start with the identity

ίf(t)h(t)gλ(t)dt = ί f(t)9l(t)dt = - ίf(t)g[(t)dt

R R R

for / G Cl

c(R). Since the closed set F = {s G R : g^s) = 0} has at most a
countable number of isolated points, we have g [ ( t ) = 0 for almost every t G F (with
respect to the Lebesgue measure). Therefore we may choose h(t) = — g ( ( t ) / g { ( t ) if

9l(t) ^ 0 and h(t) = 0 if g^t) = 0. That h G L2(R,gldt) means that (g'rf/gγ = h2gl

is Lebesgue integrable on R\F. Therefore for any finite interval [α,6], the function

9\l'\fd~\ = [(^ί)2/5Ί]1//2 — \h2/9\\1/2 is Lebesgue integrable on [α, b]\F. We will now
use this fact to prove that u — J~g[ is absolutely continuous on any finite interval.

Since gl > 0, for any positive integer n, un = ^Jgλ + (1/n) is absolutely
continuous on finite intervals. Hence for any α < 6,

0 0

ιn(b)-un(a) = j u'n(t)dt= ί : d t

= dt.

[a,b]\F l

Since g(/^fg\ is Lebesgue integrable on [α,6]\F, it follows from the dominated
convergence theorem that

u(b) — u(a) =

[α,b]\F

This proves that u is absolutely continuous on any given interval.
On the other hand, since R\F is open, u = ^/g^ is almost everywhere differentiable

on R\F and 2uuf = g(. Hence the equality

holds on on R\F a.e. This shows that uf G L2(R) = L2(R,dt). To complete
the proof, we will show that u belongs to the domain of Lx and Lxu = J7u.
Let ̂  = {/ G L2(R) : / is absolutely continuous on every finite interval and
/; G L2(R)}. Define

) - (Qxf,g) + (PjΊrt
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for /, g G &ι Since (u,u) = f g}(t)dt = 1, we have
R

H(u, u) = (Qxu, u) + {/>' , u'} - ,7

= (Qxu, u) + i (P^/m, hu)-& = 0.

We claim that H(g,g) > 0 for every g G J^. Suppose that g belongs to the domain
^2 = {/ G ̂  : /' G ^}. Then H(g,g) = ((Lx - J}g,g} > 0. For an arbitrary

g G 5q, one find a sequence {#n} C ̂ 2

 sucn tnat l l#n ""SΊb ~~* 0 anc^ ll#n "^Ίk ~^ ^
Hence we always have H(g,g) > 0 for g e ^. The positivity of H(g,g) implies
that the Cauchy-Schwarz inequality holds for the Hermitian form H. Hence

for every / G

\H(f,u)\ <

. In particular, if / G ^2»
 we

This implies u G ̂ ? and D

Remark I The proof clearly shows that in the case ,7 is an eigenvalue for Lx, there
is an eigenvector u which is non-negative on R. Since u and ?/ cannot have common
zeros, we have u(t) > 0 for every t G R. That is, non-trivial eigenvectors of Lx

corresponding to the eigenvalue 7 do not vanish on R.

Remark 2 The proof also shows that if μ is a finite positive Borel measure on R
such that

f f'dμ <C I/I2

R

, then there is a ?/ > 0 in ̂  such that

= u2(t) dt .

for every / G

The analogue of this result on the unit circle T can be established using the same
argument. (Actually the case of unit circle is covered by Theorem 3.3 below.) It was
proved in [6J that if a finite positive Borel measure v on T has the property that

p'dv < C \p\2du
1/2

for every trigonometric polynomial p, then

where w'ks are absolutely continuous functions on such that ]Γ \w'k\
2 G L1. In [6],

this result was obtained through an operator-theoretical approach. And the terms wk,
while not unique, have meanings in the related operator theory. Our approach, which
uses real analysis only, yields an absolutely continuous function u > 0 on T with
\u' 2 G I/1 such that dv(t) = u2(t)dt. In other words, ̂  \wk

 2 always has a square
k

root u in the ί/, of the unit circle.
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Remark 3 There are examples of almost periodic potential Q (with P = 1), where
,7 is an eigenvalue for Lx for some x (see [3, 5]). On the other hand, if the flow
(X, {as : s £ R}) is minimal, it is easy to show using [8, Proposition 2.11] that
for almost every x £ X (with respect to any given ergodic measure), & is not an
eigenvalue for Lx.

Remark 4 The theorem is false when the assumption at(x) =^ x for every t ^ 0 is
dropped. In fact if aa(x) — x with some a / 0, then Qx and Px are periodic functions.
In this case the spectrum of the operator Lx is known to be absolutely continuous.
But in the case aa(x) = x, the orbit {at(x) : t £ R} is either a circle or a single
point. Therefore there is an invariant probability measure of the flow concentrated on
the orbit. In general :7 may still be an eigenvalue for a Schrodinger operator with the
same coefficients P and Q but on a different L2-space.

Suppose that m is an invariant probability measure of the dynamical system
(X) R, α). Then Dmφ — φ' is a skew-symmetric operator on L2(X, m). In fact it is the
infinitesimal generator of the unitary group utφ = φ o at, φ £ L2(X, m), t £ R. Let
^jm denote the domain of Dm and let ί̂ 2

m denote the domain of D^Dm = -D^.
Then ίF2

m = {φ e &™ : Dmφ e ̂ ,m} and it is also the domain of the self-adjoint
operator

Lm = -DmQDm + P

Suppose that η £ J 2̂

m with \\τj\\drn2 ~ l Then dμη = \η\2dm is a probability

measure on X. For / £ C^(X)9 we have

fdμη = (ηDmf,η}m = (Dmfη,η}m - (fDmη,η)m

X

= -[(fη,Dmη)m + (fDmη,η)m] = J f[-η(Dmη) - η(Dmη)]dm

X

x

where hη(x) = —2Rt[(Drnη)(x)/η(x)] when η(x) ̂  0 and hη(x) — 0 when η(x) — 0.

This means that each η £ ^2

m giγss rise to a μ^ £ ,/M with ί^*^ 1 = h . Furthermore,

(PDmη,Dmη)rn = Jp\Dmηfdm > 1

X X

Hence, by Theorem 3.1, we have

+

Theorem 3.3. Let m be an invariant probability measure of the flow (X, R, a) Then
7 is an eigenvalue for Lm if and only if there exist a μ £ </M(P, Q) which is absolutely
continuous with respect to m

Proof Suppose that ? is an eigenvalue for LΏl and let u £ ^2

m be a unit vector
such that Lmη = ,7u. From the discussion preceding the theorem we see that
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Let us now prove the other implication. Let μ be a measure in «̂ f (P, Q) which is
absolutely continuous with respect to m. Suppose that dμ — g dm. As in the proof of
the previous theorem, we will show that u = ^/g represents an element in the domain
of Lm and that Lmu = S?u. The first step is to show that u represents an element in

^ιm.

Denote h = D*l e L2(X,gdm) = L2(X,μ). Then

f ίI fg dm = fhg dm

x x

for every / £ C^(X). By the Cauchy-Schwarz inequality, hg £ Ll(X,dm). Since

— foar = ( f o αr)
/, we have

a ΊΓ

X

—f o aλdλ gdm

= /Ί/(/oαλ)'dλ
J J

g dm

> Oίχhg dm dλ. (3.5)

Hence for 6 ̂  0 and / e Cl

a(X\

J
x

hg dm

I
x

foa_δ-f
-δ

dm (f oa\- f)hgdm d\

-δ

f[(hg) o a_x - hg] dm d\

o x

This implies that

IX

oo SUP
\\\<\δ\

lim = 0. (3.6)
dm,l

For each ε > 0, let uε — ^/g + ε. For any / G C^(X),

f ° 0 ί δ - f

X

uFdm= lim / /
δ^oj J

X

r f i t l \9°®= lim / /
δ-*oj \ uεoa_δ + uεj

x

uε o a_δ -

δ

— dm.

- dm

(3.7)
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Upon choosing a sequence δn —> 0 such that uε o a__δn —» uε a.e., we see from (3.6)
and (3.7) that

x

"uεdm= ί(fhg/2

x

,u ) dm. (3.8)

Therefore

/ f'uεdm
j
x

< ί\f\2dm
j

,x

~ 4

1/2

j\f\2dm

.X

/

'
(hg/2uεfdm

.x
1/2

\ ί Ί 1 / 2

/ h2gdm\
J

.X J

I 1/2

Letting ε -» 0, we obtain | f f'udm\ < \ \f\\dτna\\h\\gdm,2 for everY /

This inequality implies that u G J^m.
It follows from (3.8) that

f ί / 1 /"/ fDmudm = — f'udm = — - / f(hg/u)dm,

x x

where (hg/u)(x) is defined to be 0 whenever g(x) = 0. Hence

(PDmu,Dmu}m = ~j'ph2gdm=l-(PD*μl,D;i)μ

Define

- .^<ξ, η)

for ξ, 77 G ̂ m. Then

It follows from the paragraph preceding the theorem that Hm(f,f) = ((Lm -
&)f, f)m > 0 for every / G ^2

m. For each / G ^f1, there is a sequence {fn} C ̂
such that \\fn - /||m j 2 - 0 and \\Dmfn - Dmf\\ma -+ 0. Hence ffm(/, /) > 0 for

every / G ^ι

l

rn. It follows from the Cauchy-Schwarz inequality for the positive
Hermitian form H that

whenever / G ^2

m. Hence u G H^ and Lmu = ,7. D

Theorem 3.4. Suppose that X is metrizable Then ^M(P, Q) is a non-empty, convex,
weak-* closed subset ofC(X)*

Proof Suppose that μ{,- ,μn G ,/M(P,Q) and α l 7 , an G (0,1] are such that
aγ + + an = 1. Let μ = alμl + + anμn F°r ^ — M or Mj» we have

= sup Hι/,2 - 1 (39)
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Therefore for any / G C^(X),

/ dμ

x

J(VPf)'dμ3

X

This implies (P£>*l,£>*l)μ <
.7=1

3 = 1

1/2 |- n

1/2

ί,

I I / I U . 2 -

- Therefore

1/2

(3.10)

Hence μ G (̂P, Q). This proves that yM, (P, Q) is convex.
The assumption that X is metrizable implies the unit ball of the dual space C(X)*

is metrizble in the weak-* topology. Hence there is a sequence {μn} C ̂  which
converges to a probability measure μ on X in the weak-* topology and which has the

property Jirn^Q, l)μn + J^l.Z^l}^] = ̂ . Then (Q, l}μn - (Q, l)μ

and, therefore, (PD*μnl,D*n\)μn -> 4(^ - (Q, l)μ). Since | f(^Pf)'dμn\
2 <

> D } H / I I ' I I / H 2 - l l / l 2 and

(3.11)

for every / G C^(X), we have

This implies that

fdμ

X

x

ί(VP(f/VP))'dμ

X

-(Q,i),J\\f/JP\\lt2<W-(Q,

whenever / G C^(X). Hence the constant function 1 belongs to the domain of D*.

It follows from (3.9) and (3.11) that 4(^ - (Q, l)μ) > (PD*l,D*l)μ. That is,

By Theorem 3.1, the reverse inequality always holds. Hence μ G
proves that ̂ (P, Q) is a closed non-empty set. D

, Q). This
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Next we will linearize the extreme problem of finding μ G Λ& for which the

equality & = (Q, l)μ + ^(PD*l,D*l)μ holds. For each r > 0 let

Λίr(P) = {μ G ΛS : (PD*l,Dμl)μ < r} .

Proposition 3.5. Suppose that X is metrizable. Then for each r > 0, ̂ r(P) is a
convex subset of C(X}* which is closed in the weak-* topology.

Proof. Suppose that μ 1 , . . . ,μ n G ^Mr(P) and α 1 , . . . , α n G (0,1] are such that
al + -f αn = 1. Let μ = α^ + + anμn. By (3.10), we have

1/2

II/IU.2

for every / G C^JQ. By (3.9), this implies (PD*l,D*l)μ < E^l

< r. Therefore J&T(P} is convex. 3=l

Suppose that {μn} is a sequence in ^Mr(P) which converges to some probability
measure μ on X in the weak-* topology. Then for any / G Cl

a(X\

ί
J

lim j(y/PJ)'dμn

x

<limsup| |V /PD*nl | |μ n )

Hence (PD*l,D*l}μ<r. D' μ^-μ

Corollary 3.6. Suppose that X is metrizable. Let μ0;.Λ<I>
that

extreme point μ of the convex set

1

, Q) and let r0 =
(P) such

Proof. Define ρ(v) = Re(/Qcίz/) on C(X)*. It is a well-known fact that on a
x

convex compact (in the weak-* topology) set such as Λ&r (P), the real functional
Q attains its extreme values at extreme points. Hence there is an extreme point
μ G ^ro(P) such that (Q, l)μ = min{(Q, 1)^ : v G ^ro(P)}. Therefore

,£*l)μ < <«, l)μo + r0/4 = ̂ . D

Because of this corollary, the problem of finding μ G J?&(P, Q) is reduced to
the problem of characterizing the extreme points of ^Mr(P) for r > 0. One should
think of this as the linearization of the extreme problem of determining .̂ The set
^r(P) is certainly more accessible than (̂P, Q). The problem of determining the
extreme points of ^r(P) is completely independent of the study of Schrodinger
operators and is interesting in its own right. For example, ^ 0̂(P) consists of all
the invariant measures of the flow (X, R, α) and its extreme points are precisely the
ergodic measures. So when we consider the extreme points of J r̂(P), it seems that we
are investigating a generalization of the notion of ergodicity. In view of Theorems 3.2
and 3.3, if we know what the extreme points of ^Mr(P) are then we can completely
answer the question of whether or not & is an eigenvalue for Lx or for Lm.



644 J. Xia

4. When the Flow Is Generated by Functions

For a function / defined on R and an s G R, denote fs(t) — f(t + s). Suppose that
p and q are real-valued, bounded, uniformly continuous functions on R. In addition,
we assume that p' is also bounded and uniformly continuous on R and that there is
a c > 0 such that p(t) > c for every t G R. We will now consider the Schrodinger
operator

L = - » +q

on ^2 C L2(R).
Let ./£ be the C* -algebra generated by the translations of p, q, p' and the constant

functions. Denote the maximal ideal space of ̂  by Ω. Because ,A is separable, Ω
is a metrizable space. R is naturally identified with a dense subset in Ω. The point
in Ω corresponding to t G R under this identification will be denoted by ί. For each
s G R, the map / H^ fs is a C* -algebra isomorphism on ̂  and, therefore, induces
a homeomorphism rs on J?. We have τs(ΐ) = (t + s)Λ for all ί, s G R. The uniform
continuity of p, q and p' ensures that the map (ω,s) H-» τs(α;) is continuous. Hence
we obtain a flow (J?, R, r). If π denotes the Gelfand transform from . /^ to C(Ω), then

for all / G . ̂ , cj G Ώ, and s G R. The following is a family of operators which are
related to the operator L : For each ω G β, we have an operator

[Recall that φω(s) = φ(rs(ω)).] Naturally L = L§. Similarly, if we denote

/ d \ ( d \
Ls = —I — p f — j + qs

for every s G R, then Ls = L§.

Proposition 4.1. Suppose that f G ./^ Then π(/) G C^(Ω) if and only if f G ̂
Furthermore, if f G ,^, then τr(/)' = τr(/').

• Suppose that φ(ω) = dπ(f)(τs(ω))/ds\3=Q G C(Ω). Then

- π(/)(rt(6)) - π(/)(rβ(6)) = j <p(τλ(0)) ^Λ .

s

Hence /'(ί) = φ(τt(0)). On the other hand, if /' e ,̂ , then /(α + ί) - /(α + s) =

7 /'(λ)rfλ = 7 π(/')(rλ(0))dλ = /π(/')(rλ(fi))dλ. Hence
α+s α+s s

ί

π(/)(rt(α;)) - π(/)(rβ(α;)) = ί π(f')(τχ(ω))dλ

s

for every ω G Ώ. D
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Proposition 4.2. For every ω G Ω, σ(Lω) c σ(L)

For each ω e Ω, let J?ω be the C* -algebra generated by {(Xω — z)~l : z G
C\R} and the identity operator. To prove the proposition, it suffices to show that the
map ρω : (L — z)~l i-» (Lω - z)~l extends to a C* -algebra homomorphism from
J§5 to JSω. This assertion is obviously true when ω = s. For in this case, we have

U*LU8 = Ls = L§, where Ua is the unitary operator (U3f)(t) = f(t + s) on L2(R).
For an arbitrary ω e Ω, choose a sequence {tn} c R such that tn — >• ω in the topology
of Ω. To complete the proof, it suffices to show that Qιn((L — z)~l) = (L$ — z)~l

converges to (Lω — z)~l in the strong operator topology. For each u £ L2(R), there
is a v £ ̂ 2 such that u = (Lω — z)υ. Therefore

i(Lω ~ zΓl ~ (Lί - zΓl]u = v - (Lί - zΓ\Lί -z + Lω- Lf

n - π(p') Ji/ + (π(q)ίn - π(q)Jυ] .

The proposition follows from the fact that for any φ £ C(Ω) and η £ I/2(R),
(φςn — φω}η — > 0 in the norm topology of I/2(R). D

Let & — ^(p,q) = infjλ : A £ σ(L)}. The preceding proposition tells
us that & = infjλ : λ £ σ(Lω), cj £ 1?}. Hence the theorems stated in the
Introduction are obtained by applying the results in Sects. 1, 2 and 3 to the setting
(X, R, α) = (β, R, r), P = π(p) and Q = τr(ςr).
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