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Abstract: Let HB be any fixed one-dimensional Bloch Hamiltonian with only the
first m gaps open and HF = HB + Fx be the corresponding Stark Hamiltonian. For
any positive F small enough HF has only m ladders of sharp resonances given by
the analytic translation method, the decoupled band approximation and the regular
perturbation theory. This way, the Wannier conjecture becomes a definite regular
perturbation theory for the Stark ladders as eigenvalues of the translated Hamiltonian.

I. Introduction

In 1960 Wannier [23] suggested the existence of (Stark) ladders of bound states (or
resonances) in the Bloch Stark Hamiltonian:

, 0 i v \<ju, i j. ^ , K vx,; — y(x + α) and F. a > 0, (LI)
dx2

which does not have any bound state for zero external electric field. This location effect
given by the external uniform field on Bloch problems is in agreement with the tilted
bands picture of Zener. Actually Wannier proved that the one band approximation
gives a (Wannier) ladder of bound states for each finite band, but he was not able
to extend the result to the full problem. Even in the absence of definite experimental
results, the existence of the ladders was put in doubt [24]. Some years ago this attitude
changed because of the accurate numerical works [4, 6], the new experimental results
[3] and a rigorous definition of ladder resonances by means of eigenvalues of a suitable
operator [15]. In 1982 Avron [2], assuming the existence of ladders of resonances
and using the crystal momentum representation, studied the width behavior of the
resonances in the Fermi Golden Rule approximation. Recently, rigorous proofs of
existence have appeared in different regimes: for large electric field strength [1], for
electric field strength small with h [8,10] and for large period [13].

We want now to continue and to extend the line of research started with Wannier
in order to obtain the existence of resonances for a fixed Bloch model and weak
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external field. In this paper, making the assumption of a finite number m of finite
bands as in Avron [2], we prove the existence of ladders of resonances for α and h
fixed and arbitrarily small electric field strength F. Since the potential is translation
analytic, as in Herbst and Rowland [15] we consider the translated Hamiltonian

H£ = - — + V(x + A) + Fx + Fλ; 3λ < 0, (1.2)
dx1

and we extend the crystal momentum representation and the Wannier decoupled band
(DB) approximation to the case of complex λ. The spectrum of the Wannier DB
approximation is the union of m ladders of real eigenvalues and the line \F + R.
Moreover, the coupling term between the bands is relatively compact with respect to
the Wannier DB approximation. Therefore, the Wannier ladders become ladders of
complex eigenvalues of (1.2) (resonances of (I.I)) when the coupling term between the
bands is restored. Our proof of existence, based on the new extension of the crystal
momentum representation to the analytic translated problem, justifies the Wannier DB
aproximation as the basis of a regular perturbation theory.

We have now the first part of a rigorous theory on the Stark ladders containing
all the already known results as the asymptotic expansion of Nenciu [7, 12, 19, 21],
the Buslaev-Dmitrieva [9] asymptotic behavior of the widht of the last ladder and the
generic singular behavior of the ladders given by us [12]. We give here the explicit
exponential behavior of the width of the last ladder up to the second perturbation order
(Fermi Golden Rule) previously studied by Avron [2]. Another interesting analysis
should regard the behavior of the crossings of different ladders considered by Avron
[2], Bentosela etal. [6], and Ferrari etal. [11].

Let us notice that the class of potentials with a finite number of bands is not void
and moreover it is dense in the set of real-valued L2

OC periodic potentials [18]. So, the
general problem could be seen as a limit case of the one considered here. The results
of this paper have been announced in [14]. In Sect. 2 of this paper we define the
extended crystal momentum representation (ECMR) for the translated Bloch operator
in the case of a finite number of bands. In Sect. 3 we define the resonances and
we prove the existence of them by means of the regular perturbation theory and the
Kato-Rellich Theorem. Finally, in Sect. 4 we give the behavior of the width for the
second order expansion.

II. The Extended Crystal Momentum Representation (ECRM)
for the Finite Bands Number Model

Let us consider the one-dimensional Bloch Hamiltonian HB with real-valued L2

OC(R)
periodic potential V(x) of period 2ττ:

dx2

The lower bounded self-adjoint operator formally defined by HB has purely absolutely
continuous spectrum which is the union of closed intervals, called bands,separated by
open intervals, called gaps [20]. In the following we shall assume:

Hypothesis. The spectrum of the Bloch operator HB has a finite number of bands,
say m + 1 More precisely, we assume that the first m gaps are open and the other
ones closed, that is.

σ(HB) = [E\, E\} U . . . U [Eb

m, E^] U [E^+1, +oc), E\ < E\+l, I = 1, . . . , m
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Hence, see Theorem XΠL91d in [20], the periodic potential V(x) is analytic in the
stripe \3x\ < 2λ0 + δ, for some λ0 > 0 and δ > 0.

In this section we define the extended crystal momentum representation (ECRM)
for the operator formally defined by

H£ = H£ + FX + FX, H^ = --^ + V(X + \), |x\| < 2λ0 + δ (iι.2)

In order to do this we need the following results on the band functions of HB. The
energy function <§Γ(p) is a multisheeted analytic function in the complex plane with
branch points of square root type ±^ and ±j^, where zl — l/2 + ih^ I — 1,2, . . . , m
and hl > 0. The restrictions of S(p) on particular sheets give the band functions
^(fe), / = 1, . . . , m, and ^m+1(p) (Theorem XIII. 95 in [20]). The firsts m band
functions <§^(/c) are periodic functions of period 1 and

E\ = min ^(k) , E\ = max gj(fe) ,

where J? is the Brillouin zone, that is the torus R/l with respresentatives on (0,1].
The m + 1-th band function ^m+1(p) is defined by &(p) on the sheet obtained by

TΪΊ 777
cutting the complex plane by two lines linking directly -- \- ίoo and -- ίoo with,
respectively, zm and zm and such that

Let φ^x^k) = elkxul(x^k) and (/?m+1(x,p) = e/lpxum_{_l(x,p) be the Bloch func-
tions associated to the band functions, where ι^(x,/c) and um+l(x,p) are periodic
functions in x of period 2π and, for fixed x,ψι(x,k) are periodic functions on the

Brillouin zone Jg5. We have this result ί in the following let us denote by C

r\ r\

any positive constant, dk :— — and dp := —
c/ K C/p

Lemma 1. Letrf - {wf(K)}KeZ and wp

m+l = {w^+l(K)}KeZί be, respectively,
the Fourier coefficients of ι^(x,/c) and um+l(x^p). Then, the following estimates
uniformly hold for p G R and K G Z

p|λ0] ,

/, / = 1, . . . , m, and

< C(\ + b|Γ2exp[-2|# |λ0] ,

for some positive constant C.

Proof From the hypothesis we have that for any fixed k G J? the periodic functions
Uι(x,k) and their derivatives dkut(x^k) are analytic functions for x in the stripe
px| < 2λ0 + δ. Therefore they are uniformly bounded for k G .̂ ? and 1 3x| < 2λ0

and so, from the well known estimate on the Fourier coefficients of analytic functions,
we have for k G 38 and K £ Z:

and d
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Moreover, taking into account that w\ +l\K) — wf(K •+- 1), (II. 3) follows. Now, in
order to prove (II.4), the same arguments still work since the uniform boundedness
of um+l(x,p) and of its derivative dpum+l(x,p) for x in the stripe \3x < 2λ0 and
p e R follows from the asymptotic behaviors

*Wι(*,P) = 1 + 0(p~l) and dpUπι+l(x,p) = O(p~2) (II.6)

as p goes to infinity. See, for instance, Sect. 21.7 in [22] for x 6 [0,2ττ] and in the
case of x + iα, α e [— 2Λ0, -f 2λ0], (II. 6) follows in a similar way. In particular, we
remark that the estimates 21.7.2 and 21.7.3 in [22] hold for any p because in the
infinite band the singular crossings are at a finite distance hm from the real axis. D

Finally, we have the completeness result for the Bloch functions (Theorem XIII.98
in [20]), that, for such a finite number bands model, assumes the following form: let
/ G ι5^(R), ,9* is the space of functions of rapid decrease, and let

1 r _ 1 r _
ξt(k)=—= I f(x)φt(x,k)dx and η(p) = — = I f(x)φm+l(x,p)dx . (II. 7)

γ2π J V2π J

Then, we have that

+ -7= J η(p)φm+l(x,p)dp (II.8)

R

and
m

H / l l W) = Σ II^H2t2(^dfc) + lkll2L2 ( R j d p ) . (H 9)
1=1

By extending this isometric transformation on L2(R, dx) by continuity we have a
unitary transformation (£,77) = %f, ξ = (£1? . . , ξm), which maps L2(R, dx) onto

^ = j&d 0 β#c9 where β%d = 0 ,̂ , ̂  = L2(.̂ , dk) and 3%c - L2(R, φ).
ι=\

We consider now the translated Bloch operator Hg. The band functions of Hg
coincides with the old ones and the associated Bloch functions are given by φ^x+λ, k)
and (^m+1(x+λ,p). The above completeness result (II.7) and (II. 8) takes the following

form for the Bloch functions of H):

Theorem 2. Let & the dense space spanned by the parabolic cylinder functions

Dn(x) = e~χ2/2Hn(x), n = 0,1, . . . The transformation ?άx:L2(R,dx) -> 3%
defined on & by (ξ, 77) = ^λ/, where

1 Γ - = -
ξt(k) = —j= I f(x)φl(x + λ, k)dx ,

V2π J
R

r

= -— J f(x)e-^xum+l(x +

_ (IL 10)

η(p)
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and such that:

- =
Λ/2π

(II 11)

admit a bounded analytic extension %x for A in the stripe |3λ| < 2λ0, unitary for A

w//7z bounded analytic inverse (?/?x)~l

Proof For real Λ, #<λ/ coincides, up to a phase factor, with the previous trans-
formation ?/, of f ( x — A) wich unitarily maps L2(R, dx) onto ,%. Let λ £ C and
/ G ̂ , then /(x) is an entire function and /(x - A) £ ̂ . Now, for |3λ| < 2λ0

(11.10) and (11.11) follow computing (II.7) and (II.8) for f ( x - A) and redefining η(p)
by η(p) — > elpλη(p). Boundedness and analyticity of ?^Λ follow from (11.10) and
Lemma 1. Indeed, one has

η(p) =

where the Fourier coefficients
hence

of

K) ,

satisfy the estimates (II.4),

Since the same results still hold for any ξj(fc), boundedness and analyticity of ?^λ

follow. In a similar way, from (11.11) and Lemma 1, boundedness and analyticity of
the inverse (/^λ)~1 follow too. D

Here, we call the vector (ξ,η) = %xf of ̂ , ξ = (£1? . . . , ξm) G ̂ d and
ry e .'%?c, the extended crystal momentum representation (ECMR) corresponding to
the vector / £ ^2(R, dx). In this representation the position operator x takes the form

where Xx(ξ,η) —

l = diag(ίdk - Λ, . . . , idk - A, idp) + Xλ

and

(11.12)

(11.13)

Theorem3. Xx is an analytic family of bounded operators in the stripe |3λ| < 2A0.

Proof From the boundedness of '?όx we have
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and, from (11.13) and Lemma 1, boundedness of Xχ follows; indeed:

m
II A l l ^ ^Γ~^ M > | | V~^

c) - Z^ H^l i^z / .
1=1

+ NUΣ

Analyticity of the family Xχ follows immediately from Theorem 2 and (11.13). D

Remark 4. Let us stress that this result does not extend to the general case of an
analytic potential with infinitely many open gaps.

Here, the operator Xχ on 3$ — 30 ά 0 3@c represents the coupling term between
all the bands and it has the form

yλ vλ \

l " I'M . (11.14)

More precisely, the term X^d coincides with the usual interband matrix which couples
the first m bands, that is:

Xd,d = (Xd,d\V '

where _

(11.15)

The term X^c couples the infinite band with itself and it is given by

*cη) (P) = e~iLXXc,Mr,(p + L) ,
iez (Π.16)

where TL is the translation operator in l2(Z):(TLa)(K) = a(K 4- L). Now, since
φ^x.k) and φrn+l(x^p) are orthonormal functions in L2([0, 2π], dx/2π), we have
that:

^d(*) = ̂ dj(fe) and ^(Λ) := ̂ d(Λ) Ξ Xz(fc) for any A ; ,

and
X-£(p) = X^C(P - L) for any p.

Moreover, by the gauge choice um+l(x,p) -+ e^m+l(p-)iim+1(x,p), we can choose

XCC(P) identically zero for a real and suitable φm+l(p). Therefore, in (11.16) the sum
is taken on Z — {0}. let us stress that, in general, one can choose Xι(k) constant by
the gauge choice ut(x, fc) —> e^/(fc)nz(x, fc) for a real suitable function φl defined on
J&; in particular, if the potential is even or odd, Xl can be chosen identically zero
for each /. Finally, X^ c and X^d are given by:

dξ) (p) =
i=1 (11.17)

η\ (k) = Σ e-'(fc+L)λ^jC(fc + L)η(k + L), Xl

d>c(p) = X'c>d(p).
Lez
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Remark5. From Lemma 1 the exponentially decreasing behavior follows:

\Xl

Cιd(p)\<C\p\exp(-2\p\X0] for any / ,
T ^ (11.18)

\*c,M < C \L\ . (1 + |p|Γ2exp[-2|L|λ0] .

In the ECMR the operator corresponding to (1.2) is given by

HX = HpB>x + Fxx , (Π.19)
where

Hί'^^H ...... *_,*»>,

Xx := XΛ - diag(Xdiag, 0) and Xdiag = diag^ , . . . , Xm) .

We dub H®B'X the decoupled band DB approximation and it acts on 3$ as:

Z = l , 2 , . . . , m, and #C

Λ = iF<9 + gΓm+1 + Fλ . (11.21)

III. Existence of the Stark Ladders and Perturbation Theory

In order to prove the existence of resonances for the Stark- Wannier operator (I.I) we
consider the family of operators (11.19) which is an analytic family of type (A) for
|3λ| < 2Λ0. As we shall see, for — λ0 < Xλ < 0 the analytic translation x — » x + λ
defines the resonances by shifting the continuous spectrum of HF on the line Fλ+R in
the lower complex half-plane: they are the Λ-independent eigenvalues of Hp between
its essential spectrum and the real axis. Existence of them will follow by means of a
stability result of the Wannier ladders with respect to the interband term.

Now, let us consider
H x ( f ) = H™>x + fXx, (III.l)

where / e C is an auxiliary parameter which plays the role of the perturbative one
in the perturbation theory; for / = F we have, of course, Hp(F) = Hp. Here,
Hp(f) is an analytic family of type (A) with respect to the parameters / and λ. The
resolvent [#£(/) - z]~l = Rp(f,z) = Rx(f,z) (for sake of simplicity let us drop
the parameter F) acts on 3@ = j

where R%(f,z) and Rx(f,z) are the compression of the resolvent on the subspace
^ and .^rc: that is R*(f, z) = ̂ Rχ(f, z)&> and Rx(f, z) = ̂ Rx(f, z)5?^, where
& is the projection on S$ά and &^- = 1 — ̂  is the projection on 5$c. Moreover
Rx(Q,z) = [Hx - z]~l and Rd(Q,z) = [Hd - z]~l are, respectively, the projection
of the resolvent of the DB approximation on ,%&c and 3%d.

We have the following results:

Theorem 6. The spectrum of Hd is purely discrete, X-independent and coincides with
the Wannier ladders:

σ(Hd) = {Elί} = (%) + 2πjF + FXυ I = 1, 2, . . . , m, j e Z} , (III.3)

(•) denotes the mean value on JS
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The spectrum of Hx is purely essential and is given by

σ(Hx) = iF3X + R. (III.4)

Proof Taking into account that Xt(k) = (X^ is constant, the first statement is a
well known result on the spectrum of the Wannier DB approximation. The second
statement is obvious. D

Theorem 7.

Proof From the Weyl criterion (Theorem IV. 5. 3 5 in [17]) we have the stability of
the essential spectrum if the perturbation Xx is relatively compact with respect to the
unperturbed operator #^!B'λ, that is if XXRX(0, z) is a compact operator. Now, since
the analytic continuation of an operator-valued function with compact values on the
real axis is compact, it is sufficient to prove the compactness result when λ is real,
for instance λ = 0. In particular, we prove the compactness of X® CR^(Q, z) and the
compactness of the other terms will follow in a similar way. Indeed^ from the explicit
expression of Λ°(0, z) (Sect. III.6 in [17]) for 0 < 3z (the case of 3z < 0 is similar)
and from (11.16) for any η e 3@c we have that:

, z)η) (p)= ί h(p, r)η(τ)dτ ,

R

where h(p, r) is the measurable function in L2(R, dp) ® L2(R, dr) given by:

Γ p 1
ψ£(p) = exp [i/F /(^m+1(τ) + FX - z)dτ\ is a solution of [#c

λ - z]ψ = 0 and χ7

denotes the characteristic function on the set /. Now, from (11.18) we have:

f dp f dτ\h(p,τ)\2 < C ί (I +p2Γ2dp < oo , (III.7)
j j j

for some positive constant C, that is X^CΛ^(0, z) is of Hubert-Schmidt type and thus
compact. D

Remarks As a first result we have that, from the analyticity of Hp, from Theorem 7
and since the spectrum of HF is purely absolutely continuous for our class of
potentials [5], the discrete spectrum of Hp\

is Λ-independent and contained in the lower complex half-plane and it defines the
resonances for HF in the stripe F3X < 3z < 0.

Now, let Γ be the positive clock-wise contour of a rectangle in the stripe
\3z < Fpλ|/2 of length 2ττF, height F\3\\ and such that dist(Γ, σ(#d)) > d =
min{F|Xλ|/2, Fπ/m}; so it contains m eigenvalues of H%9 one for each Wannier
ladder. Let ρ(Hp(f)) be the resolvent set of Hp(f). We have the following result.

Theorem 9. Let -λ0 < Jλ < 0. There exists F0 > 0 such that for any F, 0 < F < F0,
Γ C ρ ( H * ( f ) ) f o r a n y \ f \ <F
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Proof. We have to prove that the resolvent (III.2) is uniformly bounded for any
I/I < F and z G Γ. In particular, the expression of Rd(f, z) for z e Γ is given by
the partition method [16] and the resolvent formula:

, z) = [Hd + f(Xdfd - Xdiag) - z - t

= Rd(0, z) [1 + Qd(f, z)Γl [1 - fXd,cA
λ(f, z)]-1 , (IΠ.9)

where

A\f,z) = [l+Q^(f,z)ΓlRcΦ

is an operator from 3%d to 3$c, Q
x(f, z) — ̂ c(0, z) f^-cc *s a bounded operator from

J$c to ,%gc and Qd(f, z) = f(Xd^d - Xd[ag)Rd(Q, z) is a bounded operator from 3%d

to 3@d. The other terms in (III.2) are given by:

Qc

λ(/, z)Γl RX

C(Q, z) ,

S λ ( f , z ) =

(11.11)

c

λ(0, z)fXx

dR
x(f, z) .

We need of the following lemma.

Lemma 10. There exists F0 > 0 such that for any F, 0 < F < FQ, the following
estimates uniformly hold for z G Γ and \f\ < F:

and

Q d ( f , z ) Γ l \ \ < C

(III. 12)

(III. 13)

for some positive constant C Therefore, for any 0 < F < F0, A
λ(/, z) is a uniformly

bounded operator from 3%ά to 3%cfor z G Γ and |/| < F:

μλ(/,^)||<c. (in. i4)

Proof. Proof of (III. 12): for ξ = (^, . . , ξm) e ̂ d we have that (Sect. III.6 in [17]):

F a>L I eQi — 1

where ρl = ϊ(z — ̂  0)/^ an^

V;d,z(r) = exP (III. 15)
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is a solution of [Hl — z]ψdl — 0. Hence, we obtain:

Denoting

m

Σ
/=!

+00

= £{/,+//,}.

+ 00

we have that

and, integrating by parts,

ed - 1

-

; -

dr

(III. 16)

dr, (III. 17)

(III. 18)

(III. 19)

Now, from (11.18) we have that for each / the integral (III. 17) is absolutely convergent
and, by integrating by parts like in the stationary phase method, one obtains the
following estimate:

exp[-2A0|p|]) .

Hence, it follows that:

I/I

(IΠ.20)

(111.21)

and so the estimate (III. 12) follows because \(esι — 1)~!| < C for any /.

Proof of (UL13). The first estimate in (III. 13) follows because:

/,*)]2|| < \\Qc(f,2)/fl*(0,z)|| \\X*C\\ = 0(VF) (111.22)
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by the stationary phase method. Indeed, from (11.16) and by integrating by parts (see
Sect. III.6 in [17] for the expression of R* (0, z)) we have that:

where
+00 r T+L

VL(p) = e ~ F *c

L

c(τ)exp dr.

Now, since <?m+1(—p) = <Sm+1(p) for real p, we have that, if p < — L/2,
then there exists r0 = —L/2 e [p,+00) such that <^n+1(τ0 + L) = <§Vn+ι(τ0)
and so we can apply the stationary phase method. Here, the leading term of the
asymptotic expansion of VL(p) given by the stationary phase method is bounded by

Λ/jFC(l + l^l)"1 exp[-2|L|λ0 + L3z/F] for some positive constant C. Otherwise,
for p > -L/2 we have, by integrating by parts, the following estimate ^(p)! <
FC\L\ exp[-2|L|λ0 + L3z/F]/(l + |p|). So, by both estimates, (111.22) follows.

In similar way one can prove that:

\\Ql\\ < \\Xdtd - Xdiag\\ \\fRd(0,z)Qd(f,z)\\ = 0(F), (111.23)

and so the second estimate in (III. 13) follows too. The proof of the lemma is so
completed. D

Now, we are ready to complete the proof of the theorem; indeed, from the above
lemma and from the boundedness of X^c we have

\\fX$tCA
χ(f,z)\\ <C\f\<l and \ \ A χ ( f , z ) f X * c \ \ < C \ f \ < I (111.24)

for any |/| < F, where 0 < F < F0, for some F0 > 0. Therefore, R$(f,z) and

Rl

c(fιz) are uniformly bounded on Γ for any \f\<F and so, from (III. 11), we have
the uniform boundedness of the whole resolvent. D

Now, let us state our main result:

Theorem 11. If the Hypothesis is satisfied, then there exists F0 > 0 such that for any
F, 0 < F < F0, the m Wannier ladders of HF(Q) become m ladders of resonances
E l j ( f , F) of HF(f) for f = F. No other sharp resonance exists.

Proof. Let λ £ C, -λ0 < 3λ < 0, be fixed. Since H^(f) is an analytic family of
type (A) for |/| < F, from the existence of m isolated Wannier eigenvalues in Γ for
/ = 0 and from Theorem 9 the Kato-Rellich Theorem implies that

dim P£(/) = dim p£(0) = m, for any |/| < F ,
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where PF(f) is the eigenprojection on the domain enclosed by Γ:

F(/» z)dz . (IIL25)

Therefore, for / = F we have the existence of ra eigenvalues for HF contained
in the domain enclosed by Γ and from Theorem 7 and Remark 8 they represent ra
resonances of HF = HF(F). D

Remark 12 The proof of existence of resonances we give is constructive and it
directly comes from the Rayleigh-Schrόdinger perturbation theory. In particular, the
resonances El^(F) = El -(F, F) are given by the degenerate perturbation equation:

/(£?) = det ί <f(t/>dil,Rd(f,zWdilf)zdz - E

\r r

for I/I < F.

Remark 13. We recall the Nenciu method [7, 12, 19, 21] where, at the nth step,

Hp = HpB'X + FXX is redefined as

Hp = Hp^x + Fn+lXx . (111.26)

Γ)R λ Γ)R λ
Here, HF n' has the same properties of HF ' , apart from a F dependence of the

redefined band functions, and X* is still bounded. The above proof of existence
T~)R λ

works for (111.26) too and so each Wannier ladder obtained by HFr^ coincides

with the ladder of resonances up to O(Fn+1). This proves the existence of a real
asymptotic expansion of the ladders coinciding with the Nenciu one (for an explicit
computation of the second order term coinciding with the Nenciu one, see [14]).
The asymptotic expansion of Nenciu does not directly come from the Rayleigh-
Schrόdinger perturbation theory because of the dependence on F in the perturbation
coefficients. The width of the resonances is O(F°°).

IV. Fermi Golden Rule and Estimate of the Width

In the previous section we have proved the existence of ladders of resonances. In order
to compute these resonances we consider the usual Rayleigh-Schrodinger formula.

DR λ
That is, let El 3 be an isolated eigenvalue of HF ' for F < F0, we avoid crossing

of resonances: \El j — Elf / > CF, π/m > C > 0. By mimicking the proof of

Theorem 9 we can state that Γ c ρ ( H F ( f ) ) for any |/| < F, where Γ is the circle
surrounding El^J with radius CF.

Therefore, the Rayleigh-Schrodinger formula takes the form
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which gives, for / = F, the resonances El 3(F) = El (F,F). Now, we have that

the resonances coincide, up to O(F2\ with the Wannier DB states and we obtain the
second order perturbation approximation of E^(F):

Eltj(F) = Ef):j(F) + O(F5/2) , as F -> 0

where the imaginary part of the second order term, if the Berry phase is absent (i.e.
( X t ) = 0), is given by [2, 14]:

Here, for / = m, the estimate of this integral is given by the saddle point method
where we observe that the saddle points zm and zm coincide with a polar singularity
of X™c(p) as well as with a branch point of square root type of the band functions.
Indeed, in [14] we have proved that zm and zm are simple poles of X™c with residue

±1/4. Therefore, the stationary phase evaluation is determined by the minimal angle
between two steepest descendent directions, i.e. 4π/3, and the pole residue. Hence,
we have that:

P φ &(p)dp
Γ

7m

OCF2/3)}, (IV.3)

where C = π2/18, 7m is a clock-wise regular contour around a cut linking directly zm

and zm and &(p) is the energy function defined by <5?(ra/2 + 1) = <Sm+1(m/2 -f 1)
on the sheet. This value of C should be compared with the one of Buslaev and
Dmitrieva [9, 14]: C = 1/2, for the full behavior of ZE^^F). If we are in the
crossing restriction: F such that El — Ev ,, we can study the crossing phenomena
[2,6,11].
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