Commun. Math. Phys. 159, 539-547 (1994)

On Geometrical Interpretation of the *p*-Adic Maslov Index

E. I. Zelenov*

Steklov Mathematical Institute, Vavilov Str 42, GSP-1, 117966, Moscow, Russia

Received: 18 August 1992/in revised form 10 May 1993

Abstract: A set of selfdual lattices Λ in a two-dimensional *p*-adic symplectic space $(\mathscr{V}, \mathscr{B})$ is provided by an integer valued metric *d*. A realization of the metric space (Λ, d) as a graph Γ is suggested and this graph has been linked to the Bruhat-Tits tree. An action of symplectic group $\operatorname{Sp}(\mathscr{V})$ on a set of cycles of length three of the graph Γ is considered and a geometrical interpretation of the *p*-adic Maslov index is given in terms of this action.

Introduction

In the paper [Z] a definition of the *p*-adic Maslov index of a triple of selfdual lattices in a two-dimensional *p*-adic symplectic space $(\mathscr{V}, \mathscr{B})$ was suggested. In general the construction is as follows. For any selfdual lattice \mathscr{L} in $(\mathscr{V}, \mathscr{B})$ we define an irreducible unitary representation $(H(\mathscr{L}), W_{\mathscr{L}})$ of the Heisenberg group $\mathscr{\tilde{V}}$ of space $(\mathscr{V}, \mathscr{B})$ in a separable Hilbert space $H(\mathscr{L})$. These representations are unitary equivalent and hence for any pair $(H(\mathscr{L}_1), W_{\mathscr{L}_1}), (H(\mathscr{L}_2), W_{\mathscr{H}_2})$ of two such representations there exists an intertwining operator $F_{\mathscr{L}_2, \mathscr{L}_1} : H(\mathscr{L}_1) \to H(\mathscr{L}_2)$. Therefore for any triple of such representations the operator $F = F_{\mathscr{L}_1, \mathscr{L}_3}F_{\mathscr{L}_3, \mathscr{L}_2}F_{\mathscr{L}_2, \mathscr{L}_1}$ commutes with all operators $W_{\mathscr{L}_1}(x), x \in \widetilde{\mathscr{V}}$. Thus F is proportional to an identity operator Id : $F = \mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$ Id. The complex number $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$ is the *p*-adic Maslov index of a triple $(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$ of selfdual lattices. In the paper [Z] simple properties of this index and explicit formulas for the index are given.

This paper is devoted to a geometrical interpretation of the *p*-adic Maslov index (we suppose that $p \neq 2$). This interpretation is given in terms of an action of *p*-adic symplectic group $\operatorname{Sp}(\mathscr{V})$ on a space Λ of selfdual lattices. Section 2 is concerned with the space Λ of selfdual lattices in a two-dimensional symplectic space $(\mathscr{V}, \mathscr{B})$ over the field \mathbb{Q}_p of *p*-adic numbers. It turns out that the space Λ can be provided with an

^{*} e-mail: zelenov@mph.mian.su

integer valued metric d. Based on this metric the space Λ is realized as a graph Γ . A set of vertices of this graph consists of selfdual lattices, a pair $\mathscr{L}_1, \mathscr{L}_2 \in \Lambda$ forms a link $[\mathscr{L}_1, \mathscr{L}_2]$ of Γ if $d(\mathscr{L}_1, \mathscr{L}_2) = 1$. It is shown that Γ consists of cycles of length three and can be derived from the Bruhat-Tits tree by a transformation "star-triangle."

Symplectic group $\operatorname{Sp}(\mathscr{V})$ acts transitively on sets of vertices and links of the graph Γ . The *p*-adic Maslov index is invariant under this action and therefore the action of $\operatorname{Sp}(\mathscr{V})$ on the set of cycles of length three is not transitive. The main result of this paper is that the last statement is exact in the following sense: for any two cycles $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$ and $[\mathscr{L}'_1, \mathscr{L}'_2, \mathscr{L}'_3]$ of length three there is a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ such that $g\mathscr{L}_1 = \mathscr{L}'_1, g\mathscr{L}_2 = \mathscr{L}'_2, g\mathscr{L}_3 = \mathscr{L}'_3$ if and only if the *p*-adic Maslov indices of these cycles coincide, that is $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = \mathfrak{m}(\mathscr{L}'_1, \mathscr{L}'_2, \mathscr{L}'_3)$.

2. Space of Selfdual Lattices

2.1. Graph of Selfdual Lattices

Let \mathscr{V} be a two-dimensional vector space over \mathbb{Q}_p . A finitely generated \mathbb{Z}_p -submodule \mathscr{L} of \mathscr{V} is called a lattice if it contains a basis of \mathscr{V} . (\mathbb{Z}_p denotes a ring of integers of \mathbb{Q}_p .) Let now \mathscr{B} be a nondegenerated skewsymmetric bilinear form on \mathscr{V} . For a lattice $\mathscr{L} \subset \mathscr{V}$ a dual lattice \mathscr{L}^* defines as follows: $\mathscr{L}^* = \{x \in \mathscr{V} : \mathscr{B}(x, y) \in \mathbb{Z}_p \ \forall y \in \mathscr{L}\}$. Notice that \mathscr{L}^* is canonically isomorphic to the module $\operatorname{Hom}_{\mathbb{Z}_p}(\mathscr{L}, \mathbb{Z}_p)$ [MH]. If $\mathscr{L} = \mathscr{L}^*$ then \mathscr{L} is selfdual and a pair $(\mathscr{L}, \mathscr{B})$ forms a space over \mathbb{Z}_p with symplectic inner product. Let Λ denote a set of all selfdual lattices in $(\mathscr{V}, \mathscr{B})$.

Now we define a function $d: \Lambda \times \Lambda \to \mathbb{Z}$ by the formula:

$$d(\mathscr{L}_1, \mathscr{L}_2) = 1/2 \log_p[(\mathscr{L}_1 + \mathscr{L}_2): (\mathscr{L}_1 \cap \mathscr{L}_2)], \tag{1}$$

where $\mathscr{L}_1, \mathscr{L}_2 \in \Lambda$ and $[(\mathscr{L}_1 + \mathscr{L}_2): (\mathscr{L}_1 \cap \mathscr{L}_2)]$ denotes order of a group $(\mathscr{L}_1 + \mathscr{L}_2)/(\mathscr{L}_1 \cap \mathscr{L}_2)$.

Proposition 1. Let $\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3 \in \Lambda$. The function d has the following properties.

- (i) $d(\mathscr{L}_1, \mathscr{L}_2) \geq 0, \ \dot{d}(\mathscr{L}_1, \mathscr{L}_2) = 0 \Leftrightarrow \mathscr{L}_1 = \mathscr{L}_2;$
- (ii) $d(\mathscr{L}_1, \mathscr{L}_2) = d(\mathscr{L}_2, \mathscr{L}_1),$

(iii) $d(\mathscr{L}_1, \mathscr{L}_3) \leq d(\mathscr{L}_1, \mathscr{L}_2) + d(\mathscr{L}_2, \mathscr{L}_3).$

Properties (i) and (ii) are obvious. For the proof of (iii) we prove the following formula for $\mathscr{L}_1, \mathscr{L}_2 \in \Lambda$:

$$d(\mathscr{L}_1, \mathscr{L}_2) = \log_p[\mathscr{L}_1 : (\mathscr{L}_1 \cap \mathscr{L}_2)] = \log_p[\mathscr{L}_2 : (\mathscr{L}_1 \cap \mathscr{L}_2)].$$
⁽²⁾

Notice that from the last relation it follows that the function d does take values in the set of integers \mathbb{Z} . Taking into account the relation

$$[(\mathscr{L}_1 + \mathscr{L}_2): \mathscr{L}_1] = [\mathscr{L}_1^*: (\mathscr{L}_1 + \mathscr{L}_2)^*] = [\mathscr{L}_1: (\mathscr{L}_1 \cap \mathscr{L}_2)],$$

we get

$$[(\mathscr{L}_1 + \mathscr{L}_2): (\mathscr{L}_1 \cap \mathscr{L}_2)] = [(\mathscr{L}_1 + \mathscr{L}_2): \mathscr{L}_1] [\mathscr{L}_1: (\mathscr{L}_1 \cap \mathscr{L}_2)] = [\mathscr{L}_1: (\mathscr{L}_1 \cap \mathscr{L}_2)]^2.$$

The relations (2) follow directly from the last formula and statement (ii) of Proposition 1.

Geometrical Interpretation of *p*-Adic Maslov Index

By means of the relation $\mathscr{L}_1 \cap \mathscr{L}_2 \cap \mathscr{L}_3 \subset \mathscr{L}_1 \cap \mathscr{L}_3$ we have

$$\begin{split} [\mathscr{L}_1 : (\mathscr{L}_1 \cap \mathscr{L}_3)] &\leq [\mathscr{L}_1 : (\mathscr{L}_1 \cap \mathscr{L}_2 \cap \mathscr{L}_3)] \\ &= [\mathscr{L}_1 : (\mathscr{L}_1 \cap \mathscr{L}_2)] [(\mathscr{L}_1 \cap \mathscr{L}_2) : (\mathscr{L}_1 \cap \mathscr{L}_2 \cap \mathscr{L}_3)] \end{split}$$

Taking into account the relation $\mathscr{L}/(\mathscr{L} \cap \mathscr{L}') \simeq (\mathscr{L} + \mathscr{L}')/\mathscr{L}'$ [L] we get

$$\begin{split} [(\mathscr{S}_1 \cap \mathscr{S}_2): (\mathscr{S}_1 \cap \mathscr{S}_2 \cap \mathscr{S}_3)] &= [(\mathscr{S}_1 \cap \mathscr{S}_2 \cap \mathscr{S}_3)^*: (\mathscr{S}_1 \cap \mathscr{S}_2)^*] \\ &= [(\mathscr{S}_1 + \mathscr{S}_2 + \mathscr{S}_3): (\mathscr{S}_1 + \mathscr{S}_2)] \\ &= [\mathscr{S}_3: (\mathscr{S}_3 \cap (\mathscr{S}_1 + \mathscr{S}_2))] \leq [\mathscr{S}_3: (\mathscr{S}_3 \cap \mathscr{S}_2)]. \end{split}$$

From two last formulas we have

$$[\mathscr{L}_1:(\mathscr{L}_1\cap\mathscr{L}_3)] \leq [\mathscr{L}_1:(\mathscr{L}_1\cap\mathscr{L}_2)] [\mathscr{L}_3:(\mathscr{L}_2\cap\mathscr{L}_3)].$$

Statement (iii) of Proposition 1 directly follows from (2) and the last formula. \Box

The proved proposition means that the pair (Λ, d) forms a metric space.

Now we realize the space (Λ, d) as a graph Γ . A set of vertices of this graph consists of selfdual lattices, a pair $\mathscr{L}_1, \mathscr{L}_2 \in \Lambda$ forms a link $[\mathscr{L}_1, \mathscr{L}_2]$ of Γ if $d(\mathscr{L}_1, \mathscr{L}_2) = 1$. For understanding of a structure of the graph Γ we recall a construction of the Bruhat-Tits tree (see for example [GP, M, S]).

Let \mathscr{V} be as before a two-dimensional vector space over \mathbb{Q}_p . If $s \in \mathbb{Q}_p^*$ and \mathscr{L} is a lattice in \mathscr{V} then $s\mathscr{L}$ is a lattice too and hence \mathbb{Q}_p^* acts on a set of lattices in \mathscr{V} . An orbit of this action is called a class of lattice, a set of such classes we denote by X. For a lattice \mathscr{L} from a class $L \in X$ in any class $L' \in X$ there is a unique representative $\mathscr{L}' \in L'$ with the property: $\mathscr{L}' \subset \mathscr{L}$ and the module \mathscr{L}/\mathscr{L}' is cyclic, that is $\mathscr{L}/\mathscr{L}' \simeq \mathbb{Z}_p/p^n\mathbb{Z}_p$ for some nonnegative integer n. The distance D(L, L') between classes L and L' is defined as D(L, L') = n and the map D does define an integer valued metric on the set X. Notice that we have the formula:

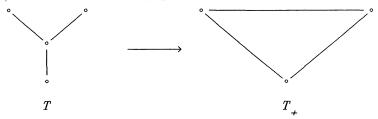
$$D(L,L') = \log_p[\mathscr{L}:\mathscr{L}'].$$
(3)

The space (X, D) can be realized as a graph T in a previous manner: a set of vertices of T consists of classes of lattices, two classes $L, L' \in X$ form a link of T if D(L, L') = 1. It turns out that the graph T is a tree. Let us clear up a connection between graphs Γ and T.

Let \mathscr{B} be a symplectic form on \mathscr{V} , $L \in X$ be a class of a selfdual lattice $\mathscr{B} \in \Lambda$ and X_+ denotes a set of vertices of the graph T placed at even distance D from L:

$$X_{+} = \{ L' \in X : D(L, L') \equiv 0 \, (\text{mod } 2) \} \,.$$

As before the metric space (X_+, D) can be considered as a graph T_+ with a set of vertices X_+ . Vertexes L and L' form a link of T_+ if D(L, L') = 2. Notice that the graph T_+ can be derived from the graph T by means of transformation "star-triangle":



Proposition 2. Graphs Γ and T_+ are isomorphic.

Let \mathscr{S} be as before a selfdual lattice from a class $L \in X_+$. For $L' \in X_+$ and an arbitrary $\mathscr{L}' \in L'$ there is a symplectic basis $\{e, f\}$ of $(\mathscr{V}, \mathscr{B})$ wherein \mathscr{L} and \mathscr{L}' have the form

$$\begin{aligned} \mathscr{L} &= \mathbb{Z}_p e \oplus \mathbb{Z}_p f \,, \\ \mathscr{L}' &= p^m \mathbb{Z}_p e \oplus p^n \mathbb{Z}_p f \end{aligned}$$

for some integers m and n. It is easy to see that D(L, L') = |m - n|. As $D(L, L') \equiv 0 \pmod{2}$ then $p^{-(m+n)/2} \in \mathbb{Q}_p^*$ and $\mathscr{L}'' = p^{-(m+n)/2} \mathscr{L}'$ belongs to the class L'. It is obvious that \mathscr{L}'' is selfdual. From the previous discussion it follows that \mathscr{L}'' is a unique selfdual lattice in L'. From the formulas (1) and (3) we have

$$D(L,L') = 2d(\mathscr{L},\mathscr{L}''), \qquad (4)$$

and hence the distance D between classes of selfdual lattices is even. Thus we get a one-to-one correspondence between sets of vertices of graphs Γ and T_+ . Formula (4) gives us also the needed correspondence between sets of links of these graphs. \Box

Notice that unlike T the graph Γ contains cycles of length three and hence Γ is not a tree.

22. Action of $\operatorname{Sp}(\mathscr{V})$ on Γ

Let $\operatorname{Sp}(\mathscr{V})$ denote a symplectic group of the space $(\mathscr{V}, \mathscr{B})$ and $\operatorname{Sp}(\mathscr{L})$ be a stabilizer of a lattice $\mathscr{L} \in \Lambda$ in $\operatorname{Sp}(\mathscr{V})$.

As \mathbb{Z}_p is a local ring then there is a symplectic basis $\{e, f\}$ of the space $(\mathcal{V}, \mathcal{B})$ wherein \mathcal{B} has the form $\mathcal{B} = \mathbb{Z}_p e \oplus \mathbb{Z}_p f$ [MH] and therefore the standard left action of Sp(\mathcal{V}) on Λ is transitive and Λ can be identified with a homogeneous space Sp(\mathcal{V})/Sp(\mathcal{B}). In other words Sp(\mathcal{V}) acts transitively on a set of vertices of the graph Γ . As for $\mathcal{L} \in \Lambda$ and $g \in Sp(\mathcal{V})$ the modules \mathcal{B} and $g\mathcal{L}$ are isomorphic then this action is isometric.

Moreover, for any two lattices \mathscr{L}_1 and \mathscr{L}_2 from Λ there is a symplectic basis $\{e, f\}$ of $(\mathscr{V}, \mathscr{B})$ wherein we have

$$\mathscr{L}_1 = \mathbb{Z}_p e \oplus \mathbb{Z}_p f, \qquad \mathscr{L}_2 = p^m \mathbb{Z}_p e \oplus p^{-m} \mathbb{Z}_p f$$

for some nonnegative integer m [W]. Notice that $m = d(\mathscr{L}_1, \mathscr{L}_2)$. From this we have that for any two pairs $\mathscr{L}_1, \mathscr{L}_2$ and $\mathscr{L}_1', \mathscr{L}_2'$ of selfdual lattices such that $d(\mathscr{L}_1, \mathscr{L}_2) = d(\mathscr{L}_1', \mathscr{L}_2')$ there is a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ such that $g\mathscr{L}_1 = \mathscr{L}_1', g\mathscr{L}_2 = \mathscr{L}_2'$. In particular, the action of $\operatorname{Sp}(\mathscr{V})$ on the set of links of the graph Γ is transitive.

2.3. Coordinates on Λ

Proposition 3. Let $\{e, f\}$ be a symplectic basis of $(\mathcal{V}, \mathcal{B})$ For any lattice $\mathcal{L} \in \Lambda$ there exists a pair $(m, \mu), m \in \mathbb{Z}, \mu \in \mathbb{Q}_p$ referred to as coordinates of \mathcal{L} in the basis $\{e, f\}$, such that Geometrical Interpretation of p-Adic Maslov Index

Two lattices \mathscr{S} and \mathscr{S}' with coordinates (m, μ) and (m', μ') respectively coincide if and only if m = m' and $\mu - \mu' \in \mathbb{Z}_p$.

For the proof see [Z].

As a useful example let us find coordinates of selfdual lattices placed at distance 1 from the reference point. Taking into account Proposition 2 and a structure of the graph T it is easy to calculate the number of such lattices, this number is p(p + 1).

Recall that any nonzero *p*-adic number $x \in \mathbb{Q}_p^*$ can be uniquely represented in the form $x = p^{\operatorname{ord}_p(x)} \varepsilon(x)$, where $\operatorname{ord}_p(x) \in \mathbb{Z}$, $\varepsilon(x) \in \mathbb{Z}_p^*$, and $|x|_p = p^{-\operatorname{ord}_p(x)}$. For the sake of convenience we put $\operatorname{ord}_p(0) = +\infty$.

Proposition 4. Let $\mathscr{L}_0, \mathscr{L} \in \Lambda$ have coordinates (0,0) and (m,μ) in some basis $\{e, f\}$ respectively Then the following formula is valid.

$$d(\mathscr{L}_0, \mathscr{L}) = \max\{-m - \operatorname{ord}_n(\mu), |m|\}.$$
(6)

It is easy to see that the lattice $\mathscr{L}_0 \cap \mathscr{L}$ consists of elements $\alpha e + \beta f$, where

$$\alpha, \beta \in \mathbb{Z}_p \,, \quad \alpha p^m + \beta p^m \mu \in \mathbb{Z}_p \,, \quad p^{-m} \beta \in \mathbb{Z}_p \,.$$

For the case of $m \ge 0$ the last conditions on α and β are equivalent to the following:

$$\alpha \in \mathbb{Z}_p, \quad \beta \in (p^{-m - \operatorname{ord}_p(\mu)} \mathbb{Z}_p) \cap (p^m \mathbb{Z}_p).$$

Taking into account the last formula and the formula (2) we get (6). For the case of m < 0 we choose a new symplectic basis $\{\tilde{e}, \tilde{f}\}: \tilde{e} = p^m e, \ \tilde{f} = p^{-m}f + \mu p^m e$. It is easy to see that in the basis $\{\tilde{e}, \tilde{f}\}$ the lattices \mathscr{L}_0 and \mathscr{L} have coordinates $(-m, p^{2m}\mu)$ and (0, 0) respectively. Further proof is obvious. \Box

Corollary. Coordinates of all lattices from Λ placed at distance 1 from the reference point are given in the following table.

m	-1	0	1	1	1
μ	0	μ_0/p	0	μ_0/p	$(\mu_0+\mu_1p)/p^2$

where $\mu_0 = 1, 2, \dots, p-1$ and $\mu_1 = 0, 1, 2, \dots, p-1$.

According to Proposition 3 coordinate μ should be considered up to a *p*-adic integer, for the same reason we consider either $\mu = 0$ or $\operatorname{ord}_p(\mu) < 0$. By virtue of the condition $d(\mathscr{B}_0, \mathscr{B}) = 1$ and the formula (6) the pair $(m, \operatorname{ord}_p(\mu))$ can take values $(-1, +\infty), (0, -1), (1, +\infty), (1, -1),$ and (1, -2). In the above table all possible lattices for which the pair $(m, \operatorname{ord}_p(\mu))$ takes mentioned values are given. It is easy to see that the number of these lattices is equal to p(p+1). \Box

3. p-Adic Maslov Index

Let $(\mathscr{V}, \mathscr{B})$ be as before a two-dimensional symplectic space over \mathbb{Q}_p $(p \neq 2)$ and $\mathscr{\tilde{V}}$ denotes the Heisenberg group of this space, that is

$$\hat{\mathscr{V}} = \left\{ (\alpha, x), \, \alpha \in \mathbb{T}, \, x \in \mathscr{V} \right\},\\ (\alpha, x) \, (\beta, y) = (\alpha \beta \chi (1/2 \mathscr{B}(x, y)), \, x + y) \, .$$

Here \mathbb{T} is a unit circle in the field \mathbb{C} of complex numbers and $\chi: \mathbb{Q}_p \to \mathbb{T}$ is a standard additive character of the field \mathbb{Q}_p of rank 0 (that is $\chi(x) = 1 \Leftrightarrow x \in \mathbb{Z}_p$).

For any lattice $\mathscr{L} \in \Lambda$ one constructs a unitary irreducible representation of the group $\tilde{\mathscr{V}}$ (so-called \mathscr{L} -representation). Let us recall its definition. The space $H(\mathscr{L})$ of the \mathscr{L} -representation consists of complex valued functions on \mathscr{V} which satisfies the following properties for all $x \in \mathscr{V}$ and $u \in \mathscr{L}$:

$$f(x+u) = \chi(1/2\mathcal{B}(x,u))f(x),$$
(7)

$$||f||^{2} = \sum_{\alpha \in \mathscr{F}/\mathscr{B}} |f(\alpha)|^{2} < \infty.$$
(8)

The space $H(\mathcal{L})$ is a separable Hilbert space with respect to the scalar product

$$(f,g) = \sum_{\alpha \in \mathscr{V} / \mathscr{Z}} f(\alpha)\bar{g}(\alpha).$$
(9)

[Taking into account formula (7) it is easy to see that expressions under sum symbols in formulas (8) and (9) don't depend on a choice of an element in a coset $\alpha \in \mathscr{V}/\mathscr{L}$ and in these expressions α denotes an arbitrary representative of a coset α .]

Operators $\tilde{W}_{\mathcal{K}}(\alpha, x)$, $(\alpha, x) \in \tilde{\mathscr{V}}$ of the \mathscr{L} -representation are defined as follows:

$$W(\alpha, x)f(u) = \alpha W_{\mathscr{L}}(x)f(u) = \alpha \chi(1/2\mathscr{B}(x, u))f(u - x)$$

 \mathscr{L} -representation is irreducible and for any two lattices $\mathscr{L}_1, \mathscr{L}_2 \in \Lambda \mathscr{L}_1$ - and \mathscr{L}_2 - representations are unitary equivalent. Therefore there is a unitary intertwining operator $F_{\mathscr{L}_2, \mathscr{L}_1}: H(\mathscr{L}_1) \to H(\mathscr{L}_2)$ which satisfies the properties

$$F_{\mathscr{G}_{2},\mathscr{G}_{1}}W_{\mathscr{G}_{1}}(x)F_{\mathscr{G}_{2},\mathscr{G}_{1}}^{-1} = W_{\mathscr{G}_{2}}(x),$$

$$F_{\mathscr{G}_{2},\mathscr{G}_{1}}^{-1} = F_{\mathscr{G}_{1},\mathscr{G}_{2}}$$
(10)

for all $x \in \mathscr{V}$. By virtue of (10) for any three lattices $\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3 \in \Lambda$ the operator $F = F_{\mathscr{L}_1, \mathscr{L}_3} F_{\mathscr{L}_3, \mathscr{L}_2} F_{\mathscr{L}_2, \mathscr{L}_1}$ commutes with all operators $W_{\mathscr{L}_1}(x), x \in \mathscr{V}$ and therefore it is proportional to an identity operator:

$$F = \mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$$
 Id.

The complex number $\mathfrak{m} = \mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) \in \mathbb{T}$ is the *p*-adic Maslov index of a triple of selfdual lattices. The following simple proposition is presented without proof (for the proof see [Z]):

Proposition 5. Let $\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3, \mathscr{L}_4 \in \Lambda$ The following statements are valid.

(i) $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = \mathfrak{m}(\widetilde{g}\mathscr{L}_1, \widetilde{g}\mathscr{L}_2, \mathfrak{g}\mathscr{L}_3)$ for all $g \in \operatorname{Sp}(\mathscr{V})$;

(ii) $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = 1$ if at least two lattices in the triple coincide,

(iii) $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$ remains the same under an even permutation of lattices in the triple and transfers to a conjugate expression under an odd one; (iv) the following cocycle relation holds.

$$\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_3, \mathscr{L}_4) = \mathfrak{m}(\mathscr{L}_2, \mathscr{L}_3, \mathscr{L}_4)\mathfrak{m}(\mathscr{L}_2, \mathscr{L}_4, \mathscr{L}_1)$$

Geometrical Interpretation of p-Adic Maslov Index

Now we present without proof an expression of the *p*-adic Maslov index in coordinates defined in Sect. 2.3 (for the proof see [Z]). For this according to [VV] we define a function $\lambda_p: \mathbb{Q}_p \to \mathbb{T}$ by the formula

$$\begin{split} \lambda_p(0) &= 1 \,, \\ \lambda_p(x) &= \begin{cases} 1, \, \operatorname{ord}_p(x) = 2k, \, k \in \mathbb{Z} \,, \\ \left(\frac{\varepsilon(x)}{p}\right), \, \operatorname{ord}_p(x) = 2k+1, \, k \in \mathbb{Z}, \, p \equiv 1 \,(\operatorname{mod} 4) \,, \\ i \left(\frac{\varepsilon(x)}{p}\right), \, \operatorname{ord}_p(x) = 2k+1, \, k \in \mathbb{Z}, \, p \equiv 3 \,(\operatorname{mod} 4) \end{split}$$

where $\left(\frac{\varepsilon(x)}{p}\right)$ is the Legendre symbol of a *p*-adic unit $\varepsilon(x) \in \mathbb{Z}_p^*$.

Proposition 6. Let $\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3 \in \Lambda$ have in a symplectic basis $\{e, f\}$ coordinates $(0,0), (m,\mu)$, and (n,ν) respectively. The following statements are valid (i) $\mathfrak{m} = (\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = 1$ for $\mu, \nu \in \mathbb{Z}_n$ and all $m, n \in \mathbb{Z}$;

(ii)
$$(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = \begin{cases} 1, & m \ge 0 \text{ or } \nu \in \mathbb{Z}_p, \\ \lambda_p(-\nu), & m < 0, 1 < |\nu|_p < p^{-2m}, \\ 1, & m < 0, p^{-2m} \le |\nu|_p, \end{cases}$$

 $\begin{array}{l} \textit{for } \mu \in \mathbb{Z}_p \textit{ and } n = 0; \\ (\text{iii) } \mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = \begin{cases} 1, & \mu \in \mathbb{Z}_p \textit{ or } \nu \in \mathbb{Z}_p \textit{ or } \mu - \nu \in \mathbb{Z}_p, \\ \lambda_p(\mu\nu(\mu - \nu)) & \textit{in other cases}, \end{cases} \\ \textit{for } n = m = 0. \end{array}$

4. Geometrical Interpretation of the *p*-Adic Maslov Index

As noted above a group $\operatorname{Sp}(\mathscr{V})$ acts transitively on sets of vertices and links of the graph Γ . Let lattices $\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3 \in \Lambda$ form a cycle of length three of the graph Γ , that is $d(\mathscr{L}_1, \mathscr{L}_2) = d(\mathscr{L}_2, \mathscr{L}_3) = d(\mathscr{L}_3, \mathscr{L}_1) = 1$ and $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$ denotes this cycle. (As usual cycle means oriented cycle, that is cycles $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$ and $[\mathscr{L}_1, \mathscr{L}_3, \mathscr{L}_2]$ are different). Any cycle $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$ of length three can be provided with the Maslov index m $(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3)$ which is called the index of a cycle $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$. The following theorem gives a connection between the *p*-adic Maslov index and the action of $\operatorname{Sp}(\mathscr{V})$ on a set of cycles of length three of the graph Γ .

Theorem. For any two cycles $[\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3]$ and $[\mathscr{L}'_1, \mathscr{L}'_2, \mathscr{L}'_3]$ of length three of the graph Γ there exists a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ which maps one of these cycles to another (that is $g\mathscr{L}_1 = \mathscr{L}'_1, g\mathscr{L}_2 = \mathscr{L}'_2, g\mathscr{L}_3 = \mathscr{L}'_3$) if and only if the Maslov indices of these cycles coincide: $\mathfrak{m}(\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3) = \mathfrak{m}(\mathscr{L}'_1, \mathscr{L}'_2, \mathscr{L}'_3)$.

Let \mathscr{L} and \mathscr{L}' have coordinates (0,0) and (-1,0) in some symplectic basis $\{e, f\}$ respectively. It follows from Proposition 4 that these lattices form a link $[\mathscr{L}, \mathscr{L}'] = [(0,0), (-1,0)]$ of the graph Γ . At first we find a stabilizer $\operatorname{Sp}(\mathscr{L}, \mathscr{L}') = \operatorname{Sp}(\mathscr{L}) \cap \operatorname{Sp}(\mathscr{L}')$ of this link in $\operatorname{Sp}(\mathscr{V})$. In the basis $\{e, f\}$ we have the following matrix realizations for $\operatorname{Sp}(\mathscr{L})$ and $\operatorname{Sp}(\mathscr{L}')$:

$$\begin{split} & \operatorname{Sp}(\mathscr{L}) \simeq SL(2, \mathbb{Z}_p) \,, \\ & \operatorname{Sp}(\mathscr{L}') \simeq \begin{pmatrix} p & 0 \\ 0 & 1/p \end{pmatrix} SL(2, \mathbb{Z}_p) \begin{pmatrix} 1/p & 0 \\ 0 & p \end{pmatrix} \,. \end{split}$$

From the last formula we easily get

$$\operatorname{Sp}(\mathscr{B}, \mathscr{B}') = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}_p) : c \equiv 0 \pmod{p^2} \right\}.$$

Notice that from the conditions $c \equiv 0 \pmod{p^2}$ and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$ it follows that $ad \equiv 1 \pmod{p}$.

As Sp(\mathscr{V}) acts transitively on the set of links of the graph Γ then for further proof of the theorem it is sufficient to consider an action of the group Sp($\mathscr{L}, \mathscr{L}'$) on the set of cycles of length three which contain the link $[\mathscr{L}, \mathscr{L}']$. From Proposition 4 we see that in coordates $\{e, f\}$ all these cycles have the form $[(0, 0), (-1, 0), (0, \mu/p)]$ for $\mu = 1, 2, \ldots, p - 1$. Let $\mathscr{L}(\mu)$ denote the lattice with coordinates $(0, \mu/p)$. For an arbitrary $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = g \in Sp(\mathscr{L}, \mathscr{L}')$ we have $g\mathscr{L}(\mu) = \mathscr{L}(\tilde{\mu})$ for some $\tilde{\mu} = 1, 2, \ldots, p - 1$, because Sp(\mathscr{V}) acts on Λ isometrically. By virtue of the relation $\mathscr{L}(\mu) = \begin{pmatrix} 1 & \mu/p \\ 0 & 1 \end{pmatrix} \mathscr{L}$ the condition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & \mu/p \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \tilde{\mu}/p \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
(11)

is valid for some $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{Z}_p)$. From the relation (11) we get $\mathbb{Z}_p \ni b = \beta + \mu \tilde{\mu} / p^2 c + (\tilde{\mu} d - \mu a) / p$, and therefore $\tilde{\mu} d - \mu a \equiv 0 \pmod{p}$. Taking into account the condition $ad \equiv 1 \pmod{p}$ in the residue class field $\mathbb{F}_p \simeq \mathbb{Z}_p / p\mathbb{Z}_p$, we get the relation $\tilde{\mu} = \mu a_0^2$, where $a_0 \in \mathbb{F}_p^*$ is a class of $a \in \mathbb{Z}_p$ in \mathbb{F}_p . From the above discussion it follows that if there is a symplectic transformation

From the above discussion it follows that if there is a symplectic transformation $g \in \operatorname{Sp}(\mathscr{L}, \mathscr{L}')$ which transforms $\mathscr{L}(\mu)$ to $\mathscr{L}(\tilde{\mu})$ then μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_p^*/\mathbb{F}_p^{*2}$.

Let now μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_p^*/\mathbb{F}_p^{*2}$. By direct calculations it is easy to show that the matrix

$$g = \begin{pmatrix} (\tilde{\mu}/\mu)^{1/2} & 0\\ 0 & (\mu/\tilde{\mu})^{1/2} \end{pmatrix} \in Sp(\mathscr{L}, \mathscr{L}')$$

satisfies the following condition:

$$g\begin{pmatrix}1&\mu/p\\0&1\end{pmatrix}=\begin{pmatrix}1&\tilde{\mu}/p\\0&1\end{pmatrix}g\,,$$

and therefore $g\mathscr{L}(\mu) = \mathscr{L}(\tilde{\mu})$.

From the above discussion we see that for the cycles $[\mathscr{L}, \mathscr{L}', \mathscr{L}(\mu)]$ and $[\mathscr{L}, \mathscr{L}', \mathscr{L}(\tilde{\mu})]$ there is a symplectic transformation that maps one cycle to another if and only if μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_p^*/\mathbb{F}_p^{*2}$. From Proposition 6 and properties of the Legendre symbol we see that corresponding Maslov indices have the same properties: $\mathfrak{m}(\mathscr{L}, \mathscr{L}', \mathscr{L}(\mu)) = \mathfrak{m}(\mathscr{L}, \mathscr{L}', \mathscr{L}(\tilde{\mu}))$ if and only if μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_p^*/\mathbb{F}_p^{*2}$. This finishes the proof. \Box

546

References

- [GP] Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Lect Notes in Math 817. Berlin, Heidelberg, New York: Springer 1980
- [L] Lang, S.: Algebra Reading, MA: Addison-Wesley 1965
- [MH] Milnor, J., Husemoller, D : Symmetric bilinear forms. Berlin, Heidelberg, New York: Springer 1973
- [M] Mumford, D.: An analytic construction of degenerating curves over complete local fields Composito Math. 24, 129 (1972)
- [S] Serre, J.-P.: Abres, amalgames, SL_2 . Asterisque **46** (1977)
- [VV] Vladimirov, V.S., Volovich, I.V.: p-Adic quantum mechanics. Commun. Math. Phys 123, 659–676 (1989)
- [W] Weil, A.: Basic number theory Berlin, Heidelberg, New York: Springer 1967
- [Z] Zelenov, E.I.: p-Adic Heisenberg group and the Maslov index. Commun. Math. Phys. 155, 489–502 (1993)

Communicated by H Araki