On Geometrical Interpretation of the p-Adic Maslov Index

E. I. Zelenov*
Steklov Mathematical Institute, Vavilov Str 42, GSP-1, 117966, Moscow, Russia

Received: 18 August 1992/in revised form 10 May 1993

Abstract

A set of selfdual lattices Λ in a two-dimensional p-adic symplectic space $(\mathscr{V}, \mathscr{B})$ is provided by an integer valued metric d. A realization of the metric space (Λ, d) as a graph Γ is suggested and this graph has been linked to the Bruhat-Tits tree. An action of symplectic group $\operatorname{Sp}(\mathscr{V})$ on a set of cycles of length three of the graph Γ is considered and a geometrical interpretation of the p-adic Maslov index is given in terms of this action.

Introduction

In the paper [Z] a definition of the p-adic Maslov index of a triple of selfdual lattices in a two-dimensional p-adic symplectic space (\mathscr{V}, \mathscr{S}) was suggested. In general the construction is as follows. For any selfdual lattice \mathscr{L} in $(\mathscr{V}, \mathscr{B})$ we define an irreducible unitary representation $\left(H(\mathscr{L}), W_{\mathscr{C}}\right)$ of the Heisenberg group $\tilde{\mathscr{V}}$ of space $(\mathscr{V}, \mathscr{B})$ in a separable Hilbert space $H(\mathscr{B})$. These representations are unitary equivalent and hence for any pair $\left(H\left(\mathscr{L}_{1}\right), W_{\mathscr{L}_{1}}\right),\left(H\left(\mathscr{L}_{2}\right), W_{\mathscr{L}_{2}}\right)$ of two such representations there exists an intertwining operator $F_{\mathscr{L}_{2}, \mathscr{E}_{1}}: H\left(\mathscr{L}_{1}\right) \rightarrow H\left(\mathscr{L}_{2}\right)$. Therefore for any triple of such representations the operator $F=F_{\mathscr{L}_{1}, \mathscr{L}_{3}} F_{\mathscr{L}_{3}, \mathscr{L}_{2}} F_{\mathscr{L}_{2}, \mathscr{L}_{1}}$ commutes with all operators $W_{\mathscr{S}_{1}}(x), x \in \tilde{\mathscr{V}}$. Thus F is proportional to an identity operator Id $: F=\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ Id. The complex number $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ is the p-adic Maslov index of a triple $\left(\mathscr{L}_{1}, \mathscr{B}_{2}, \mathscr{L}_{3}\right)$ of selfdual lattices. In the paper [Z] simple properties of this index and explicit formulas for the index are given.

This paper is devoted to a geometrical interpretation of the p-adic Maslov index (we suppose that $p \neq 2$). This interpretation is given in terms of an action of p-adic symplectic group $\operatorname{Sp}(\mathscr{V})$ on a space Λ of selfdual lattices. Section 2 is concerned with the space Λ of selfdual lattices in a two-dimensional symplectic space (\mathscr{V}, \mathscr{B}) over the field \mathbb{Q}_{p} of p-adic numbers. It turns out that the space Λ can be provided with an

[^0]integer valued metric d. Based on this metric the space Λ is realized as a graph Γ. A set of vertices of this graph consists of selfdual lattices, a pair $\mathscr{E}_{1}, \mathscr{L}_{2} \in \Lambda$ forms a link $\left[\mathscr{L}_{1}, \mathscr{L}_{2}\right]$ of Γ if $d\left(\mathscr{C}_{1}, \mathscr{L}_{2}\right)=1$. It is shown that Γ consists of cycles of length three and can be derived from the Bruhat-Tits tree by a transformation "star-triangle."

Symplectic group $\operatorname{Sp}(\mathscr{V})$ acts transitively on sets of vertices and links of the graph Γ. The p-adic Maslov index is invariant under this action and therefore the action of $\mathrm{Sp}(\mathscr{V})$ on the set of cycles of length three is not transitive. The main result of this paper is that the last statement is exact in the following sense: for any two cycles [$\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$] and $\left[\mathscr{L}_{1}^{\prime}, \mathscr{L}_{2}^{\prime}, \mathscr{L}_{3}^{\prime}\right]$ of length three there is a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ such that $g \mathscr{L}_{1}=\mathscr{L}_{1}^{\prime}, g \mathscr{L}_{2}=\mathscr{L}_{2}^{\prime}, g \mathscr{L}_{3}=\mathscr{L}_{3}^{\prime}$ if and only if the p-adic Maslov indices of these cycles coincide, that is $\mathfrak{m}\left(\mathscr{B}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=\mathfrak{m}\left(\mathscr{B}_{1}^{\prime}, \mathscr{B}_{2}^{\prime}, \mathscr{L}_{3}^{\prime}\right)$.

2. Space of Selfdual Lattices

2.1. Graph of Selfdual Lattices

Let \mathscr{T} be a two-dimensional vector space over \mathbb{Q}_{p}. A finitely generated \mathbb{Z}_{p}-submodule \mathscr{L} of \mathscr{V} is called a lattice if it contains a basis of \mathscr{V}. $\left(\mathbb{Z}_{p}\right.$ denotes a ring of integers of \mathbb{Q}_{p}.) Let now \mathscr{B} be a nondegenerated skewsymmetric bilinear form on \mathscr{V}. For a lattice $\mathscr{L} \subset \mathscr{T}$ a dual lattice \mathscr{L}^{*} defines as follows: $\mathscr{L}^{*}=\left\{x \in \mathscr{V}: \mathscr{B}(x, y) \in \mathbb{Z}_{p} \forall y \in\right.$ $\mathscr{L}\}$. Notice that \mathscr{L}^{*} is canonically isomorphic to the module $\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\mathscr{B}, \mathbb{Z}_{p}\right)[\mathrm{MH}]$. If $\mathscr{L}=\mathscr{L}^{*}$ then \mathscr{L} is selfdual and a pair $(\mathscr{L}, \mathscr{B})$ forms a space over \mathbb{Z}_{p} with symplectic inner product. Let Λ denote a set of all selfdual lattices in (\mathscr{V}, \mathscr{B}).

Now we define a function $d: \Lambda \times \Lambda \rightarrow \mathbb{Z}$ by the formula:

$$
\begin{equation*}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=1 / 2 \log _{p}\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right):\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right] \tag{1}
\end{equation*}
$$

where $\mathscr{L}_{1}, \mathscr{L}_{2} \in \Lambda$ and $\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right):\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]$ denotes order of a group $\left(\mathscr{L}_{1}+\right.$ $\left.\mathscr{L}_{2}\right) /\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)$.
Proposition 1. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$. The function d has the following properties.
(i) $d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \geq 0, d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=0 \Leftrightarrow \mathscr{L}_{1}=\mathscr{L}_{2}$;
(ii) $d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=d\left(\mathscr{L}_{2}, \mathscr{L}_{1}\right)$,
(iii) $d\left(\mathscr{L}_{1}, \mathscr{L}_{3}\right) \leq d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)+d\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right)$.

Properties (i) and (ii) are obvious. For the proof of (iii) we prove the following formula for $\mathscr{L}_{1}, \mathscr{L}_{2} \in \Lambda$:

$$
\begin{equation*}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=\log _{p}\left[\mathscr{L}_{1}:\left(\mathscr{B}_{1} \cap \mathscr{L}_{2}\right)\right]=\log _{p}\left[\mathscr{D}_{2}:\left(\mathscr{D}_{1} \cap \mathscr{L}_{2}\right)\right] \tag{2}
\end{equation*}
$$

Notice that from the last relation it follows that the function d does take values in the set of integers \mathbb{Z}. Taking into account the relation

$$
\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right): \mathscr{L}_{1}\right]=\left[\mathscr{L}_{1}^{*}:\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right)^{*}\right]=\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]
$$

we get

$$
\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right):\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]=\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right): \mathscr{L}_{1}\right]\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]=\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]^{2}
$$

The relations (2) follow directly from the last formula and statement (ii) of Proposition 1.

By means of the relation $\mathscr{L}_{1} \cap \mathscr{L}_{2} \cap \mathscr{L}_{3} \subset \mathscr{S}_{1} \cap \mathscr{L}_{3}$ we have

$$
\begin{aligned}
& {\left[\mathscr{B}_{1}:\left(\mathscr{B}_{1} \cap \mathscr{L}_{3}\right)\right] \leq\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2} \cap \mathscr{B}_{3}\right)\right]} \\
& \quad=\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]\left[\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right):\left(\mathscr{L}_{1} \cap \mathscr{L}_{2} \cap \mathscr{L}_{3}\right)\right]
\end{aligned}
$$

Taking into account the relation $\mathscr{L} /\left(\mathscr{C} \cap \mathscr{B}^{\prime}\right) \simeq\left(\mathscr{B}+\mathscr{L}^{\prime}\right) / \mathscr{L}^{\prime}$ [L] we get

$$
\begin{aligned}
{\left[\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right):\left(\mathscr{L}_{1} \cap \mathscr{L}_{2} \cap \mathscr{L}_{3}\right)\right] } & =\left[\left(\mathscr{L}_{1} \cap \mathscr{L}_{2} \cap \mathscr{L}_{3}\right)^{*}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)^{*}\right] \\
& =\left[\left(\mathscr{L}_{1}+\mathscr{L}_{2}+\mathscr{L}_{3}\right):\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right)\right] \\
& =\left[\mathscr{L}_{3}:\left(\mathscr{L}_{3} \cap\left(\mathscr{L}_{1}+\mathscr{L}_{2}\right)\right)\right] \leq\left[\mathscr{L}_{3}:\left(\mathscr{L}_{3} \cap \mathscr{L}_{2}\right)\right] .
\end{aligned}
$$

From two last formulas we have

$$
\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{B}_{3}\right)\right] \leq\left[\mathscr{L}_{1}:\left(\mathscr{L}_{1} \cap \mathscr{L}_{2}\right)\right]\left[\mathscr{L}_{3}:\left(\mathscr{L}_{2} \cap \mathscr{L}_{3}\right)\right]
$$

Statement (iii) of Proposition 1 directly follows from (2) and the last formula.
The proved proposition means that the pair (Λ, d) forms a metric space.
Now we realize the space (Λ, d) as a graph Γ. A set of vertices of this graph consists of selfdual lattices, a pair $\mathscr{L}_{1}, \mathscr{L}_{2} \in \Lambda$ forms a link $\left[\mathscr{L}_{1}, \mathscr{L}_{2}\right]$ of Γ if $d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=1$. For understanding of a structure of the graph Γ we recall a construction of the BruhatTits tree (see for example [GP, M, S]).

Let \mathscr{V} be as before a two-dimensional vector space over \mathbb{Q}_{p}. If $s \in \mathbb{Q}_{p}^{*}$ and \mathscr{L} is a lattice in \mathscr{V} then $s \mathscr{L}$ is a lattice too and hence \mathbb{Q}_{p}^{*} acts on a set of lattices in \mathscr{T}. An orbit of this action is called a class of lattice, a set of such classes we denote by X. For a lattice \mathscr{C} from a class $L \in X$ in any class $L^{\prime} \in X$ there is a unique representative $\mathscr{L}^{\prime} \in L^{\prime}$ with the property: $\mathscr{L}^{\prime} \subset \mathscr{L}$ and the module $\mathscr{B} / \mathscr{C}^{\prime}$ is cyclic, that is $\mathscr{C} / \mathscr{L}^{\prime} \simeq \mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$ for some nonnegative integer n. The distance $D\left(L, L^{\prime}\right)$ between classes L and L^{\prime} is defined as $D\left(L, L^{\prime}\right)=n$ and the map D does define an integer valued metric on the set X. Notice that we have the formula:

$$
\begin{equation*}
D\left(L, L^{\prime}\right)=\log _{p}\left[\mathscr{C}: \mathscr{B}^{\prime}\right] . \tag{3}
\end{equation*}
$$

The space (X, D) can be realized as a graph T in a previous manner: a set of vertices of T consists of classes of lattices, two classes $L, L^{\prime} \in X$ form a link of T if $D\left(L, L^{\prime}\right)=1$. It turns out that the graph T is a tree. Let us clear up a connection between graphs Γ and T.

Let \mathscr{B} be a symplectic form on $\mathscr{V}, L \in X$ be a class of a selfdual lattice $\mathscr{L} \in \Lambda$ and X_{+}denotes a set of vertices of the graph T placed at even distance D from L :

$$
X_{+}=\left\{L^{\prime} \in X: D\left(L, L^{\prime}\right) \equiv 0(\bmod 2)\right\}
$$

As before the metric space $\left(X_{+}, D\right)$ can be considered as a graph T_{+}with a set of vertices X_{+}. Vertexes L and L^{\prime} form a link of T_{+}if $D\left(L, L^{\prime}\right)=2$. Notice that the graph T_{+}can be derived from the graph T by means of transformation "star-triangle":

T_{+}

Proposition 2. Graphs Γ and T_{+}are isomorphic.
Let \mathscr{L} be as before a selfdual lattice from a class $L \in X_{+}$. For $L^{\prime} \in X_{+}$and an arbitrary $\mathscr{L}^{\prime} \in L^{\prime}$ there is a symplectic basis $\{e, f\}$ of $(\mathscr{V}, \mathscr{B})$ wherein \mathscr{L} and \mathscr{L}^{\prime} have the form

$$
\begin{gathered}
\mathscr{L}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f \\
\mathscr{L}^{\prime}=p^{m} \mathbb{Z}_{p} e \oplus p^{n} \mathbb{Z}_{p} f
\end{gathered}
$$

for some integers m and n. It is easy to see that $D\left(L, L^{\prime}\right)=|m-n|$. As $D\left(L, L^{\prime}\right) \equiv 0(\bmod 2)$ then $p^{-(m+n) / 2} \in \mathbb{Q}_{p}^{*}$ and $\mathscr{L}^{\prime \prime}=p^{-(m+n) / 2} \mathscr{B}^{\prime}$ belongs to the class L^{\prime}. It is obvious that $\mathscr{L}^{\prime \prime}$ is selfdual. From the previous discussion it follows that $\mathscr{L}^{\prime \prime}$ is a unique selfdual lattice in L^{\prime}. From the formulas (1) and (3) we have

$$
\begin{equation*}
D\left(L, L^{\prime}\right)=2 d\left(\mathscr{B}, \mathscr{L}^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

and hence the distance D between classes of selfdual lattices is even. Thus we get a one-to-one correspondence between sets of vertices of graphs Γ and T_{+}. Formula (4) gives us also the needed correspondence between sets of links of these graphs.

Notice that unlike T the graph Γ contains cycles of length three and hence Γ is not a tree.

22. Action of $\operatorname{Sp}(\mathscr{T})$ on Γ

Let $\operatorname{Sp}(\mathscr{V})$ denote a symplectic group of the space $(\mathscr{V}, \mathscr{B})$ and $\operatorname{Sp}(\mathscr{L})$ be a stabilizer of a lattice $\mathscr{B} \in \Lambda$ in $\operatorname{Sp}(\mathscr{V})$.

As \mathbb{Z}_{p} is a local ring then there is a symplectic basis $\{e, f\}$ of the space $(\mathscr{V}, \mathscr{B})$ wherein \mathscr{B} has the form $\mathscr{B}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f[\mathrm{MH}]$ and therefore the standard left action of $\operatorname{Sp}(\mathscr{V})$ on Λ is transitive and Λ can be identified with a homogeneous space $\mathrm{Sp}(\mathscr{V}) / \mathrm{Sp}(\mathscr{L})$. In other words $\mathrm{Sp}(\mathscr{V})$ acts transitively on a set of vertices of the graph Γ. As for $\mathscr{L} \in \Lambda$ and $g \in \operatorname{Sp}(\mathscr{V})$ the modules \mathscr{L} and $g \mathscr{L}$ are isomorphic then this action is isometric.

Moreover, for any two lattices \mathscr{L}_{1} and \mathscr{S}_{2} from Λ there is a symplectic basis $\{e, f\}$ of $(\mathscr{V}, \mathscr{B})$ wherein we have

$$
\mathscr{L}_{1}=\mathbb{Z}_{p} e \oplus \mathbb{Z}_{p} f, \quad \mathscr{L}_{2}=p^{m} \mathbb{Z}_{p} e \oplus p^{-m} \mathbb{Z}_{p} f
$$

for some nonnegative integer m [W]. Notice that $m=d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)$. From this we have that for any two pairs $\mathscr{L}_{1}, \mathscr{L}_{2}$ and $\mathscr{C}_{1}^{\prime}, \mathscr{L}_{2}^{\prime}$ of selfdual lattices such that $d\left(\mathscr{B}_{1}, \mathscr{L}_{2}\right)=d\left(\mathscr{L}_{1}^{\prime}, \mathscr{L}_{2}^{\prime}\right)$ there is a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ such that $g \mathscr{L}_{1}=\mathscr{L}_{1}^{\prime}, g \mathscr{L}_{2}=\mathscr{L}_{2}^{\prime}$. In particular, the action of $\operatorname{Sp}(\mathscr{V})$ on the set of links of the graph Γ is transitive.

2.3. Coordinates on Λ

Proposition 3. Let $\{e, f\}$ be a symplectic basis of $(\mathscr{V}, \mathscr{B})$ For any lattice $\mathscr{C} \in \Lambda$ there exists a pair $(m, \mu), m \in \mathbb{Z}, \mu \in \mathbb{Q}_{p}$ referred to as coordinates of \mathscr{B} in the basis $\{e, f\}$, such that

$$
\begin{equation*}
\mathscr{L}=\mathbb{Z}_{p} p^{m} e \otimes \mathbb{Z}_{p}\left(\mu p^{m} e+p^{-m} f\right) \tag{5}
\end{equation*}
$$

Two lattices \mathscr{L} and \mathscr{L}^{\prime} with coordinates (m, μ) and $\left(m^{\prime}, \mu^{\prime}\right)$ respectively coincide if and only if $m=m^{\prime}$ and $\mu-\mu^{\prime} \in \mathbb{Z}_{p}$.

For the proof see [Z].
As a useful example let us find coordinates of selfdual lattices placed at distance 1 from the reference point. Taking into account Proposition 2 and a structure of the graph T it is easy to calculate the number of such lattices, this number is $p(p+1)$.

Recall that any nonzero p-adic number $x \in \mathbb{Q}_{p}^{*}$ can be uniquely represented in the form $x=p^{\operatorname{ord}_{p}(x)} \varepsilon(x)$, where $\operatorname{ord}_{p}(x) \in \mathbb{Z}, \varepsilon(x) \in \mathbb{Z}_{p}^{*}$, and $|x|_{p}=p^{-\operatorname{ord}_{p}(x)}$. For the sake of convenience we put $\operatorname{ord}_{p}(0)=+\infty$.
Proposition 4. Let $\mathscr{L}_{0}, \mathscr{L} \in \Lambda$ have coordinates $(0,0)$ and (m, μ) in some basis $\{e, f\}$ respectively Then the following formula is valid.

$$
\begin{equation*}
d\left(\mathscr{L}_{0}, \mathscr{L}\right)=\max \left\{-m-\operatorname{ord}_{p}(\mu),|m|\right\} \tag{6}
\end{equation*}
$$

It is easy to see that the lattice $\mathscr{L}_{0} \cap \mathscr{L}$ consists of elements $\alpha e+\beta f$, where

$$
\alpha, \beta \in \mathbb{Z}_{p}, \quad \alpha p^{m}+\beta p^{m} \mu \in \mathbb{Z}_{p}, \quad p^{-m} \beta \in \mathbb{Z}_{p}
$$

For the case of $m \geq 0$ the last conditions on α and β are equivalent to the following:

$$
\alpha \in \mathbb{Z}_{p}, \quad \beta \in\left(p^{-m-\operatorname{ord}_{p}(\mu)} \mathbb{Z}_{p}\right) \cap\left(p^{m} \mathbb{Z}_{p}\right)
$$

Taking into account the last formula and the formula (2) we get (6). For the case of $m<0$ we choose a new symplectic basis $\{\tilde{e}, \tilde{f}\}: \tilde{e}=p^{m} e, \tilde{f}=p^{-m} f+\mu p^{m} e$. It is easy to see that in the basis $\{\tilde{e}, \tilde{f}\}$ the lattices \mathscr{L}_{0} and \mathscr{L} have coordinates $\left(-m, p^{2 m} \mu\right)$ and $(0,0)$ respectively. Further proof is obvious.

Corollary. Coordinates of all lattices from Λ placed at distance 1 from the reference point are given in the following table.

m	-1	0	1	1	1
μ	0	μ_{0} / p	0	μ_{0} / p	$\left(\mu_{0}+\mu_{1} p\right) / p^{2}$

where $\mu_{0}=1,2, \ldots, p-1$ and $\mu_{1}=0,1,2, \ldots, p-1$.
According to Proposition 3 coordinate μ should be considered up to a p-adic integer, for the same reason we consider either $\mu=0$ or $\operatorname{ord}_{p}(\mu)<0$. By virtue of the condition $d\left(\mathscr{L}_{0}, \mathscr{L}\right)=1$ and the formula (6) the pair $\left(m, \operatorname{ord}_{p}(\mu)\right)$ can take values $(-1,+\infty),(0,-1),(1,+\infty),(1,-1)$, and $(1,-2)$. In the above table all possible lattices for which the pair $\left(m, \operatorname{ord}_{p}(\mu)\right)$ takes mentioned values are given. It is easy to see that the number of these lattices is equal to $p(p+1)$.

3. p-Adic Maslov Index

Let $(\mathscr{V}, \mathscr{B})$ be as before a two-dimensional symplectic space over $\mathbb{Q}_{p}(p \neq 2)$ and $\tilde{\mathscr{V}}$ denotes the Heisenberg group of this space, that is

$$
\begin{gathered}
\tilde{\mathscr{V}}=\{(\alpha, x), \alpha \in \mathbb{T}, x \in \mathscr{V}\} \\
(\alpha, x)(\beta, y)=(\alpha \beta \chi(1 / \mathscr{\mathscr { O }}(x, y)), x+y)
\end{gathered}
$$

Here \mathbb{T} is a unit circle in the field \mathbb{C} of complex numbers and $\chi: \mathbb{Q}_{p} \rightarrow \mathbb{T}$ is a standard additive character of the field \mathbb{Q}_{p} of rank 0 (that is $\chi(x)=1 \Leftrightarrow x \in \mathbb{Z}_{p}$).

For any lattice $\mathscr{L} \in \Lambda$ one constructs a unitary irreducible representation of the group $\tilde{\mathscr{T}}$ (so-called \mathscr{L}-representation). Let us recall its definition. The space $H(\mathscr{L})$ of the \mathscr{L}-representation consists of complex valued functions on \mathscr{V} which satisfies the following properties for all $x \in \mathscr{V}$ and $u \in \mathscr{L}$:

$$
\begin{gather*}
f(x+u)=\chi(1 / 2 \mathscr{B}(x, u)) f(x), \\
\|f\|^{2}=\sum_{\alpha \in \mathscr{Y} / \mathscr{C}}|f(\alpha)|^{2}<\infty . \tag{7}
\end{gather*}
$$

The space $H(\mathscr{C})$ is a separable Hilbert space with respect to the scalar product

$$
\begin{equation*}
(f, g)=\sum_{\alpha \in \mathscr{Y} / \mathscr{G}} f(\alpha) \bar{g}(\alpha) . \tag{9}
\end{equation*}
$$

[Taking into account formula (7) it is easy to see that expressions under sum symbols in formulas (8) and (9) don't depend on a choice of an element in a coset $\alpha \in \mathscr{T} / \mathscr{C}$ and in these expressions α denotes an arbitrary representative of a coset α.]

Operators $\tilde{W}_{\mathscr{L}}(\alpha, x),(\alpha, x) \in \tilde{\mathscr{V}}$ of the \mathscr{L}-representation are defined as follows:

$$
\tilde{W}(\alpha, x) f(u)=\alpha W_{\mathscr{E}}(x) f(u)=\alpha \chi(1 / 2 \mathscr{P}(x, u)) f(u-x) .
$$

\mathscr{L}-representation is irreducible and for any two lattices $\mathscr{L}_{1}, \mathscr{L}_{2} \in \Lambda \mathscr{L}_{1}$ - and \mathscr{L}_{2} - representations are unitary equivalent. Therefore there is a unitary intertwining operator $F_{\mathscr{L}_{2}, \mathscr{C}_{1}}: H\left(\mathscr{L}_{1}\right) \rightarrow H\left(\mathscr{L}_{2}\right)$ which satisfies the properties

$$
\begin{gather*}
F_{\mathscr{C}_{2}, \mathscr{L}_{1}} W_{\mathscr{U}_{1}}(x) F_{\mathscr{L}_{2}, \mathscr{U}_{1}}^{-1}=W_{\mathscr{L}_{2}}(x), \\
F_{\mathscr{L}_{2}, \mathscr{L}_{1}}^{-1}=F_{\mathscr{C}_{1}, \mathscr{L}_{2}} \tag{10}
\end{gather*}
$$

for all $x \in \mathscr{T}$. By virtue of (10) for any three lattices $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{E}_{3} \in \Lambda$ the operator $F=F_{\mathscr{C}_{1}, \mathscr{C}_{3}} F_{\mathscr{C}_{3}, \mathscr{C}_{2}} F_{\mathscr{C}_{2}, \mathscr{C}_{1}}$ commutes with all operators $W_{\mathscr{C}_{1}}(x), x \in \mathscr{V}$ and therefore it is proportional to an identity operator:

$$
F=\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \mathrm{Id}
$$

The complex number $\mathfrak{m}=\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \in \mathbb{T}$ is the p-adic Maslov index of a triple of selfdual lattices. The following simple proposition is presented without proof (for the proof see $[\mathrm{Z}]$):

Proposition 5. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4} \in \Lambda$ The following statements are valid.
(i) $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=\mathfrak{m}\left(g \mathscr{L}_{1}, g \mathscr{L}_{2}, g \mathscr{B}_{3}\right)$ for all $g \in \operatorname{Sp}(\mathscr{V})$;
(ii) $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=1$ if at least two lattices in the triple coincide,
(iii) $\mathfrak{m}\left(\mathscr{S}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ remains the same under an even permutation of lattices in the triple and transfers to a conjugate expression under an odd one;
(iv) the following cocycle relation holds.

$$
\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right) \mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{4}\right)=\mathfrak{m}\left(\mathscr{B}_{2}, \mathscr{L}_{3}, \mathscr{L}_{4}\right) \mathfrak{m}\left(\mathscr{L}_{2}, \mathscr{L}_{4}, \mathscr{L}_{1}\right)
$$

Now we present without proof an expression of the p-adic Maslov index in coordinates defined in Sect. 2.3 (for the proof see [Z]). For this according to [VV] we define a function $\lambda_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{T}$ by the formula

$$
\begin{gathered}
\lambda_{p}(0)=1 \\
\lambda_{p}(x)=\left\{\begin{array}{l}
1, \operatorname{ord}_{p}(x)=2 k, k \in \mathbb{Z} \\
\left(\frac{\varepsilon(x)}{p}\right), \operatorname{ord}_{p}(x)=2 k+1, k \in \mathbb{Z}, p \equiv 1(\bmod 4) \\
i\left(\frac{\varepsilon(x)}{p}\right), \operatorname{ord}_{p}(x)=2 k+1, k \in \mathbb{Z}, p \equiv 3(\bmod 4)
\end{array}\right.
\end{gathered}
$$

where $\left(\frac{\varepsilon(x)}{p}\right)$ is the Legendre symbol of a p-adic unit $\varepsilon(x) \in \mathbb{Z}_{p}^{*}$.
Proposition 6. Let $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$ have in a symplectic basis $\{e, f\}$ coordinates $(0,0),(m, \mu)$, and (n, ν) respectively. The following statements are valid
(i) $\mathfrak{m}=\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=1$ for $\mu, \nu \in \mathbb{Z}_{p}$ and all $m, n \in \mathbb{Z}$;
(ii) $\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{B}_{3}\right)= \begin{cases}1, & m \geq 0 \text { or } \nu \in \mathbb{Z}_{p}, \\ \lambda_{p}(-\nu), & m<0,1<|\nu|_{p}<p^{-2 m}, \\ 1, & m<0, p^{-2 m} \leq|\nu|_{p},\end{cases}$
for $\mu \in \mathbb{Z}_{p}$ and $n=0$;
(iii) $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)= \begin{cases}1, & \mu \in \mathbb{Z}_{p} \text { or } \nu \in \mathbb{Z}_{p} \text { or } \mu-\nu \in \mathbb{Z}_{p}, \\ \lambda_{p}(\mu \nu(\mu-\nu)) & \text { in other cases, }\end{cases}$ for $n=m=0$.

4. Geometrical Interpretation of the \boldsymbol{p}-Adic Maslov Index

As noted above a group $\operatorname{Sp}(\mathscr{V})$ acts transitively on sets of vertices and links of the graph Γ. Let lattices $\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3} \in \Lambda$ form a cycle of length three of the graph Γ, that is $d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=d\left(\mathscr{L}_{2}, \mathscr{L}_{3}\right)=d\left(\mathscr{L}_{3}, \mathscr{L}_{1}\right)=1$ and $\left[\mathscr{B}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right]$ denotes this cycle. (As usual cycle means oriented cycle, that is cycles $\left[\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right]$ and $\left[\mathscr{L}_{1}, \mathscr{L}_{3}, \mathscr{L}_{2}\right]$ are different). Any cycle [$\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}$] of length three can be provided with the Maslov index $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)$ which is called the index of a cycle $\left[\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right]$. The following theorem gives a connection between the p-adic Maslov index and the action of $\operatorname{Sp}(\mathscr{V})$ on a set of cycles of length three of the graph Γ.
Theorem. For any two cycles $\left[\mathscr{L}_{1}, \mathscr{D}_{2}, \mathscr{L}_{3}\right]$ and $\left[\mathscr{L}_{1}^{\prime}, \mathscr{B}_{2}^{\prime}, \mathscr{L}_{3}^{\prime}\right]$ of length three of the graph Γ there exists a symplectic transformation $g \in \operatorname{Sp}(\mathscr{V})$ which maps one of these cycles to another (that is $g \mathscr{L}_{1}=\mathscr{B}_{1}^{\prime}, g \mathscr{L}_{2}=\mathscr{L}_{2}^{\prime}, g \mathscr{L}_{3}=\mathscr{L}_{3}^{\prime}$) if and only if the Maslov indices of these cycles coincide: $\mathfrak{m}\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \mathscr{L}_{3}\right)=\mathfrak{m}\left(\mathscr{B}_{1}^{\prime}, \mathscr{L}_{2}^{\prime}, \mathscr{L}_{3}^{\prime}\right)$.

Let \mathscr{C} and \mathscr{L}^{\prime} have coordinates $(0,0)$ and $(-1,0)$ in some symplectic basis $\{e, f\}$ respectively. It follows from Proposition 4 that these lattices form a link $\left[\mathscr{B}, \mathscr{C}^{\prime}\right]=[(0,0),(-1,0)]$ of the graph Γ. At first we find a stabilizer $\operatorname{Sp}\left(\mathscr{C}, \mathscr{B}^{\prime}\right)=$ $\operatorname{Sp}(\mathscr{C}) \cap \operatorname{Sp}\left(\mathscr{L}^{\prime}\right)$ of this link in $\operatorname{Sp}(\mathscr{V})$. In the basis $\{e, f\}$ we have the following matrix realizations for $\operatorname{Sp}(\mathscr{L})$ and $\operatorname{Sp}\left(\mathscr{L}^{\prime}\right)$:

$$
\begin{gathered}
\operatorname{Sp}(\mathscr{L}) \simeq S L\left(2, \mathbb{Z}_{p}\right), \\
\operatorname{Sp}\left(\mathscr{L}^{\prime}\right) \simeq\left(\begin{array}{cc}
p & 0 \\
0 & 1 / p
\end{array}\right) S L\left(2, \mathbb{Z}_{p}\right)\left(\begin{array}{cc}
1 / p & 0 \\
0 & p
\end{array}\right) .
\end{gathered}
$$

From the last formula we easily get

$$
\operatorname{Sp}\left(\mathscr{L}, \mathscr{L}^{\prime}\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L\left(2, \mathbb{Z}_{p}\right): c \equiv 0\left(\bmod p^{2}\right)\right\}
$$

Notice that from the conditions $c \equiv 0\left(\bmod p^{2}\right)$ and $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=1$ it follows that $a d \equiv 1(\bmod p)$.

As $\operatorname{Sp}(\mathscr{V})$ acts transitively on the set of links of the graph Γ then for further proof of the theorem it is sufficient to consider an action of the group $\operatorname{Sp}\left(\mathscr{L}, \mathscr{L}^{\prime}\right)$ on the set of cycles of length three which contain the link $\left[\mathscr{L}, \mathscr{L}^{\prime}\right]$. From Proposition 4 we see that in coordates $\{e, f\}$ all these cycles have the form $[(0,0),(-1,0),(0, \mu / p)]$ for $\mu=1,2, \ldots, p-1$. Let $\mathscr{L}(\mu)$ denote the lattice with coordinates $(0, \mu / p)$. For an arbitrary $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=g \in \operatorname{Sp}\left(\mathscr{L}, \mathscr{L}^{\prime}\right)$ we have $g \mathscr{L}(\mu)=\mathscr{L}(\tilde{\mu})$ for some $\tilde{\mu}=1,2, \ldots, p-1$, because $\operatorname{Sp}(\mathscr{V})$ acts on Λ isometrically. By virtue of the relation $\mathscr{L}(\mu)=\left(\begin{array}{cc}1 & \mu / p \\ 0 & 1\end{array}\right) \mathscr{L}$ the condition

$$
\left(\begin{array}{ll}
a & b \tag{11}\\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & \mu / p \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \tilde{\mu} / p \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

is valid for some $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L\left(2, \mathbb{Z}_{p}\right)$. From the relation (11) we get $\mathbb{Z}_{p} \ni b=$ $\beta+\mu \tilde{\mu} / p^{2} c+(\tilde{\mu} d-\mu a) / p$, and therefore $\tilde{\mu} d-\mu a \equiv 0(\bmod p)$. Taking into account the condition $a d \equiv 1(\bmod p)$ in the residue class field $\mathbb{F}_{p} \simeq \mathbb{Z}_{p} / p \mathbb{Z}_{p}$, we get the relation $\tilde{\mu}=\mu a_{0}^{2}$, where $a_{0} \in \mathbb{F}_{p}^{*}$ is a class of $a \in \mathbb{Z}_{p}$ in \mathbb{F}_{p}.

From the above discussion it follows that if there is a symplectic transformation $g \in \operatorname{Sp}\left(\mathscr{L}, \mathscr{L}^{\prime}\right)$ which transforms $\mathscr{L}(\mu)$ to $\mathscr{L}(\tilde{\mu})$ then μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_{p}^{*} / \mathbb{F}_{p}^{* 2}$.

Let now μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_{p}^{*} / \mathbb{F}_{p}^{* 2}$. By direct calculations it is easy to show that the matrix

$$
g=\left(\begin{array}{cc}
(\tilde{\mu} / \mu)^{1 / 2} & 0 \\
0 & (\mu / \tilde{\mu})^{1 / 2}
\end{array}\right) \in \operatorname{Sp}\left(\mathscr{L}, \mathscr{C}^{\prime}\right)
$$

satisfies the following condition:

$$
g\left(\begin{array}{cc}
1 & \mu / p \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \tilde{\mu} / p \\
0 & 1
\end{array}\right) g
$$

and therefore $g \mathscr{L}(\mu)=\mathscr{L}(\tilde{\mu})$.
From the above discussion we see that for the cycles [$\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{C}(\mu)$] and [$\left.\mathscr{B}, \mathscr{B}^{\prime}, \mathscr{B}(\tilde{\mu})\right]$ there is a symplectic transformation that maps one cycle to another if and only if μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_{p}^{*} / \mathbb{F}_{p}^{* 2}$. From Proposition 6 and properties of the Legendre symbol we see that corresponding Maslov indices have the same properties: $\mathfrak{m}\left(\mathscr{L}, \mathscr{B}^{\prime}, \mathscr{L}(\mu)\right)=\mathfrak{m}\left(\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}(\tilde{\mu})\right)$ if and only if μ and $\tilde{\mu}$ are in the same class in $\mathbb{F}_{p}^{*} / \mathbb{F}_{p}^{* 2}$. This finishes the proof.

References

[GP] Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Lect Notes in Math 817. Berlin, Heidelberg, New York: Springer 1980
[L] Lang, S.: Algebra Reading, MA: Addison-Wesley 1965
[MH] Milnor, J., Husemoller, D : Symmetric bilinear forms. Berlin, Heidelberg, New York: Springer 1973
[M] Mumford, D.: An analytic construction of degenerating curves over complete local fields Composito Math. 24, 129 (1972)
[S] Serre, J.-P.: Abres, amalgames, $S L_{2}$. Asterisque 46 (1977)
[VV] Vladimirov, V.S., Volovich, I.V.: p-Adic quantum mechanics. Commun. Math. Phys 123, 659-676 (1989)
[W] Weil, A.: Basic number theory Berlin, Heidelberg, New York: Springer 1967
[Z] Zelenov, E.I.: p-Adic Heisenberg group and the Maslov index. Commun. Math. Phys. 155, 489-502 (1993)

Communicated by H Araki

[^0]: * e-mail: zelenov@mph.mian.su

