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Abstract: In the present paper, we discuss spectral properties of a periodic
Schrόdinger operator which is perturbed by randomly distributed impurities; such
operators occur as simple models for crystals (or semi-conductors) with impurities.
While the spectrum itself is independent of the concentration p of impurities, for
0 < p < 1, we focus our attention on the limiting behavior of the integrated density
of states Pp of the random Schrδdinger operator, inside a spectral gap of the
periodic operator, as p -> 0. Denoting by l/0 the set of eigenvalues (in the gap) of
the reference problem having precisely one impurity (located at the origin, say), we
show that the integrated density of states concentrates around the points of Uθ9 in
the sense that pp(Uε) is of order p, for any fixed ε-neighborhood Uε of Uθ9 while
pp(K) ^ C p2, for any compact subset K of the gap which does not intersect Uε.

1. Introduction

We consider a simple model for a crystalline solid with impurities. In this model,
atoms of a pure crystal are replaced by atoms of a different species (impurities) in
a random way (i.e., at a lattice site there is an impurity with probability p indepen-
dent of the other sites). The spectrum Σ of the resulting alloy can be described
rather explicitly (see e.g. [KM1, EK, Kl]). For any subset / of the lattice Zv let us
denote by Σl the spectrum of the crystal with impurities (exactly) at the sites i e /.
Then Σ9 the spectrum of the random alloy, is (almost surely) given by:

Σ=\JΣI9 (1.1)

where the union is extended over all finite subsets / of V. Thus, Σ consists of the
spectrum of the pure crystal plus (the closure of) all the eigenvalues of systems with
finitely many impurities. The closure of these eigenvalues will form, as a rule, bands
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inside gaps of the pure material. These impurity bands are responsible for many
interesting physical phenomena, e.g., color and light absorption of ruby and
sapphire, and conductivity properties of semi-conductor devices (cf., e.g., [DH, H3,
KP] and the physics literature quoted in these papers).

It follows from (1.1) that the spectrum Σ of the crystal with impurities is
independent of the concentration p of the impurity atoms (for 0 < p < 1) (see [EK,
Kl]). Thus, the spectrum remains constant if p is changed, except possibly at p = 0
(where the impurity bands collapse) and at p = 1. While puzzling at a first glance,
this result merely tells us that the spectrum is a very rough property of the
disordered system.

More information can be obtained from the density of states measure p of the
system. Intuitively speaking p(M\ (M <= R), measures how many "states" per unit
cell of our system correspond to energies inside the set M. (We will give a precise
definition of p in the next section.) The support supp p of the density of states
measure agrees with the spectrum Σ.

It can be shown that the density of states measure pp of the system with
impurity concentration p depends continuously on the parameter p (in the sense of
vague convergence of measures) (see [Kl, K2]). Consequently, the density of states
of the impurity bands tends to zero as p goes to zero.1 So, while the impurity bands
still belong to the spectrum Σ( = supp ρp) they become less and less "densely filled".

In this paper we investigate more carefully, in which way the density of states
pp(B) = p(B) of an impurity band B tends to zero as p goes to zero. We prove that
Pp restricted to B concentrates around £/0, the set of eigenvalues of the crystal with
only one impurity. More precisely, we prove, that

pp(Uε) ^ Cp (1.2)

if Uε is an ε-neighborhood of the set U0 and that

Pp(K\Uε)^Cp2 (1.3)

if K is any closed interval, whose intersection with the spectrum of the pure crystal
is empty.

In Sect. 2 we give a precise statement of this result as well as an outline of the
proof. Section 3 contains the main technical ingredient of our proof. We analyze
the influence of a well separated impurity on the spectrum of Schrόdinger oper-
ators on large (compact) boxes. This part of our investigation relies on work by
Deift and Hempel [HI, DH] which contains exponential estimates on resolvent
kernels.

The paper closes with two appendices where we collect some analytic and some
probabilistic estimates.

We believe that the idea of our proof is quite lucid and, in fact, simple. To avoid
obscuring these arguments we made no attempt to reach high generality in our
assumptions.

1 The reader should be aware of the distinction between "alloys" on the one and "crystals with
impurities" on the other side; in 3-dim. physical reality, the latter case will roughly correspond to
p<l(Γ 3
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2. The Main Result

Let Fbe a ^-periodic potential; for simplicity, we assume that Fis bounded. We
denote by H = H0 + F, H0 = —A the Hamiltonian for the "pure crystal". By w we
denote the potential of a single impurity. We assume that w is a continuous
function with support inside the set {x e IRV | — 1/2 < xf < 1/2, for i = 1, . . . , v}.
Thus the system with random impurities is described by the stochastic potential

Vω(x) = V(x) + Σ 9/(ω)w(x - i) , (2.1)
ieZ v

where we assume q{ to be independent, identically distributed {0, l}-valued random
variables. We write Hω = H0 + Vω. By P we denote the underlying probability
measure and by IE its corresponding expectation. The number p = HPfa = 1) gives
the (relative) concentration of the impurity atoms.

We also define for any set A c ΊL"

WA(x) =Σ*(x- 0 (2 2)
ieA

as well as VA = V + WA9 HA = HQ + VA = H + WA.
To define the density of states measure for Hω we have to restrict these

operators to finite boxes. We denote by QN = {x e 1RV | — N — % ̂  xf ^ N + \ for
i = 1, . . . , v}, the hypercube of side length 2N + 1 around the origin. By H(£} we
mean the operator Hω restricted to L2(QN) with periodic boundary conditions at
5<2N; H(N\ H(

A

} etc. are defined accordingly. For any ω, the operator H(^ has
purely discrete spectrum bounded from below. We denote the (projection-valued)
spectral measure of a self-adjoint operator T by PM(T\ M a ]R any Borel-set, so
that dimPM(H(£}) is just the number of eigenvalues of H^ inside the set M,
counted according to their multiplicity.

The mapping M -> dimPM(H(^) is a point measure on R. The density of
states measure p for the operator Hω is then defined by

p(M) = lim I QN I - 1 dim PM(H^) , (2.3)
]V->oo

where | QN | denotes the volume of QN, and the limit is taken in the sense of vague
convergence of measures. It is well known that the above limit exists almost surely
(see, e.g., [Pas, KM2]) and is non-random. The measure p will, of course, depend
on the distribution of the random variables {gj, i.e., on the concentration p of the
impurity. To stress this dependence we sometimes write pp for p.

It is known that p can also be obtained from

pp( )= lim Iβ^Γ^dimP^OF/W)) (2.4)
ΛΓ-

(in the sense of vague topology) where Ep is the expectation with respect to the
underlying probability measure Fp. It follows that for bounded open sets G

pp(G) g liminf |βNΓ%(dim
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while for bounded closed sets F

pp(F) ^ lim sup I QN \~ 1 Ep(dim PF(H ™)) .
N^oo

For the rest of this paper we fix an interval [α, b~] inside a gap of the spectrum
Σφ = σ(H) and set K = \a, b~\. By l/0 we denote the (finite) set of eigenvalues of
H{0} = HO + V + w inside [α, b~\ and we set Ue = {λ e 1R| dist(l, C/0) < ε}. With-
out restriction, we may henceforth assume that a, b φ U0 and that ε0 > 0 is so small
that E/seo c fa b).

Now, we can formulate our main result:

Theorem I. For 0 < ε < ε0 fixed, there exist constants C^> 0 and C2 such that

(i)

(ϋ)

for 0 < p < 1/2, where Uε denotes any component ofUε.

Theorem I tells us that, as p tends to zero, the density of states inside a gap
[α, b~\ is more and more concentrated around the eigenvalues of H + w. Note that
our result also applies if the set of eigenvalues t/0 is empty. On the other hand, if we
introduce an additional coupling constant λ e R, then one can produce eigenvalues
of H — λw at any energy in the gap, by choosing suitable A's (cf., e.g., [ADH, DH,
OS]).

The idea of the proof is as follows: Take N very large and fix ω. An impurity at
i e QN (corresponding to ^fi(ω) =1) will produce an eigenvalue inside [a, b~\ close to
£/o, provided there are no other impurities near i. Indeed, in this case an eigenfunc-
tion of H + w( — ί) is almost an eigenfunction to H(£\ if N is large, because, by
assumption, these operators are very similar close to the point i and the eigenfunc-
tion will be concentrated around this point.

To be more precise, let us define for any ω and N9

the set of impurities in QN . We equip Rv with the metric | i \ = maxα =lt . . , v | iα | and
set dist(x, M) = infyeM \x - y\.

We define the set of L-isolated points in A(N) by:

AL = A(P = {ί e A(N) I distft ^(A°\{/}) > L and distft dQN) > L] .

In Sect. 3 we prove the following theorem:

Theorem ll.^For 0 < ε < ε0 fixed, there exists Lε such that, for any ω and any
component Uε of Uε

(i) dim

(ϋ) dim Pκ\Uε(H™) ^ C(#A™ -

for L ^ Lε and N large enough (here A(N) = A(N\ω\ etc), where the constant C is
independent of N, L and ω.

Next, we estimate the expected number of (isolated) impurities. The following
lemma will be proven in Appendix B:
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Lemma 2.1. (i) E(#4<">) = \QN\ p.

(ii) E(#Λf>) = |β*l P(1 - p)(2t+1>V + OCΛP-1) .

Given this lemma and Theorem II, we can now prove our main result:

Proof of Theorem I.

(l) PP(U<) ^ ϊϊm" I QN I - ' Ep(dim Pΰt(H<P))

= CL p,

where we took L ̂  Lε.

(U) P,(K\ t/.) ̂  lim N^ oo I QN I

(where we use (I — x)n ^ I — n x).

3. Eigenvalue Estimates

In this section we prove Theorem II, which is split into two pieces (Proposition 3.1
and 3.3). For the proofs we will need cutoff-functions ψL defined in the following
way: Let ψ e C^(W) with the property that 0 ̂  ψ ^ 1 and that ψ(x) = 1, if
\x\< 1/4, and ψ(x) = 0, if \x\ ̂  1/2. We then define

ψk(x) := ψ(χ/k)9 xεJ&\ k> 0 .

In our first proposition we show that any L-isolated point of A accounts for at least
one eigenvalue of H(A} in each component of ί/ε, provided L is sufficiently large.

Proposition 3.1. For any 0 < ε < ε0 ^ 1/2, there exists Lε e N such that the follow-
ing is true: for any A c= Έv n QN, the operator H^ has at least #A(*} eigenvalues
(counting multiplicities) in each component Uε ofUε, provided L ̂  Lε. In particular,
for any ω we have (cf. Theorem //, (i))

dim Pΰ

Remark. The proof shows that we may take Lε ~ In ε, for ε small.

Proof. Let EE U0 and let ue@(H) satisfy (H + w)u = Eu, \\u\\ = 1. With
as defined above, we let jL:= {xeJSίv; |x |^L/4}, so that, in particular,
supp VψL c= jL. To ensure ψLw = w, we'll only consider L ̂  2 in the sequel. From
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we may now conclude with the aid of Lemma 4.3, that

^ C e - ^ H w I L , (3.1)

for suitable constants C and α > 0; hence || \\ILU || > 1 — ε/2, for L sufficiently large.
On the other hand, we have for L ̂  2 that

(H + w- E)(ψLu) = - 2VψL Vu - AψLu ,

where Lemma 4.4 yields a constant d, which may be chosen to be independent of
L ̂  2, such that

II VψL VK || ^ d || u I supp ViK II ^ d II j^" II

Combined with (3.1) it easily follows that

and, finally, that

for L ^ Lε ̂  2. We now consider the translates (φLu) ( — α), α e AL, and define
M to be the subspace of &(H(N}] which is spanned by these translates. The
functions (ψLu) ( — α), α e ^4L, have mutually disjoint supports, and therefore it is
immediately clear that dim M = # AL and that || (H + WA - E)v \\ < ε \\v ||, v e M.
Now the spectral theorem implies that

dim P(E-s,E+e)(HT) ^ dimM = #AL ,

and we are done.

If all impurities in a given configuration A are L-isolated (so that A = A^), then
has no eigenvalues in K\ Uε, for L sufficiently large:

Proposition 3.2. For 0 < ε < ε0, there exists L'e e IN SMC/I ί/iαί H^} /ιαs no spectrum
in K\Uεfor all AaZvnQN which satisfy A = A($.

Proof. Let 0 < ε < ε0 be fixed, and suppose that A is a configuration such that
A = A<?\ for some L ̂  2.

Suppose EeK\Uε is an eigenvalue of //!f}, with eigenfunction u, \\u\\ = 1.
Choose a* eA such that || WAu\ β0(^*) II is maximal, in the sense that

||^u|ρ0(α*)||^||^W |βo(α)||, aεA;

here βr(fc) denotes the (standard) cube of sidelength 2r + 1, centered at the point
ft e Rv; in particular, supp w c β0(0)

We now apply the cut-off procedure from the proof of Proposition 3.1 around
the point α*. Letting

y := 3TL:= {x e Rv;L/4 < \χ - a*\ < L/2} , L ̂  2 ,

we first show that there exist c, α > 0 such that (χ* denoting the characteristic
function of the cube β0(0*))

\\χτu\\^ce-ΛL\\WAu\QQ(a^\\^ce-ΛL\\χ^u\\^\\^\\^ L^2. (3.2)

In fact, from u = - (H(N) - E)~ 1 WA w, we get
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Applying Lemma 4.3 (with R = 1/2, M = L/4) to the first term on the RHS, we
obtain a contribution smaller than ce~"L\\χ*u\\. Next, we consider the "layers"

where, for any s E N, the sth layer J£PS will contain at most sv — (s — l)v elements of
A (a very crude estimate!), so that

by the maximality property of #*. Since the region {x e Rv; 0 < | x — 0* | < L} is
free of points of A, Lemma 4.3 implies that the second term on the RHS can be
estimated by

2N

Σ
s = L

proving (3.2).
Now let ψL as above, and define ^L;α by

Then ψL.>a*u e @(H) and, for L ̂  Lε ^ 2,

w(. _ fl*) _

by (3.2) and Lemma 4.4, where C and α' > 0 are suitable constants. Now the
spectral theorem implies that H + w must have an eigenvalue in the interval
(E - Cβ~α'L, E + Cέ?~α/L) c (E - ε, £ + ε), for L ̂  Lε. This leads to the desired
contradiction, since E has distance at least ε from σ(H\ by assumption.

We finally show that clustered impurities can produce at worst C #(A\AL)
eigenvalues outside E72β.

Proposition 3.3. For 0 < ε < ε0, £/zere exists LI e N wifft the following property: for
any A c Zv n <2#> *Λe number of eigenvalues of H^ in K\U2ε is bounded by
C T^^X^^X/or L ^ Lg wzί/i α constant C = Cε wfeίc/i mα>; be chosen independent
of N, L and A. In particular, we have (cf. Theorem II (ii))

dim P^Jff g°) ̂  C

Proof. Let 0 < ε < ε0 be given, and let B : = A ( L } . By Proposition 3.2, the operator
H(N} + WB has no eigenvalues in K\Uε, for L ^ Lε. We now consider the self-
adjoint operator family

HW+WB + μWA\B9 μ e R , (3.3)

and apply the Birman-Schwinger principle in order to obtain a bound on the
number of eigenvalue branches crossing the levels dU2ε and dK9 while μ increases
from 0 to 1. Writing

a finite set, we note that any E e Sε satisfies dist(E, σ(H)) > ε, and, by Proposition
3.2, also dist(E, σ(Hg°)) > ε.



466 R. Hempel and W. Kirsch

Now suppose that an eigenvalue branch of H(N) + WB + μWA\B, μ ^ 0, crosses
a level E e Sε at some μ 6 (0, 1]. By the Birman-Schwinger principle, this implies
that μ""1 is an eigenvalue (of the same multiplicity) of the associated Birman-
Schwinger-kernel

KA,B(E):= W%B(H<n + WB-EΓ*\ WA\B\
1'2 ,

where, as usual, W^\B = (sign WA\B)\ WA\B\
112. We therefore see that the number

of eigenvalue branches which cross E e Sε (counting multiplicities), is bounded from
above by the number of real eigenvalues ^ 1 of the kernel KA.B(E). As a conse-
quence, the number of eigenvalues of H(N) + WA in K\U2ε is bounded by

Σ Σ / 4 = Σ

where Ak and μk denote the eigenvalues and singular values of KA.B(E\ respectively;
in the first inequality, we have used the Schur-Lelesco-Weyl theorem (cf. [SI],
[RS IV]). Below, we shall derive the estimate

II KA;B(E) I I ir £ CE(r)(#A -#B\ E e Sε , (3.4)

for r > v/2, and the desired result follows.
For a proof of (3.4), we use the second resolvent equation to obtain

WB-E)~l

+ I)'1 - (Hφ + 1)~1[F+ WB-E- 1](//(N) + WB - E)~l ,

where | |F+ β̂ - £ - 1 1| ^ || K| |«> + II wIL + E + 1, and ||(H(N) + WB - E)'1 1|
< 1/ε. Therefore, it is clearly enough to produce an estimate

+ 1)- 1 WΪ& ||ir ^ C' # μ\B) , (3.5)

where the constant C' depends on r only. We now fix some g e N such that
r := 2q > v/2, and employ Lemma 4.5 to obtain

By Lemma 4.1, the kernel of (Hff* + l)~r is uniformly bounded, and the desired
inequality (3.5) follows.

4. Appendix A: Auxiliary Analytic Results

In this appendix, we first discuss several basic properties of the integral kernels
associated with the operators H(Q*} and H(N\ Throughout this section, χn will
denote the characteristic function of the hypercube Qn.

Lemma 4.1. For m > v/2, the operator (/f(

0

ΛΓ) + l)~m has a continuous integral kernel
x, y\ and there exists a constant C such that 0 ̂  k(£*(x9 y) ^ C, for

Proof. Letting fm> denote the Fourier transform of (1 + \ξ\2)~m\ for m'eN, we
know that ( — A + l)~m ' i s just convolution with the function fm> and that the
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fm' decay rapidly away from 0. Proceeding as in Courant and Hubert [CH; Sect.
V.I 5], we now observe that the integral kernel of (H^ + I)"1 is given by

R(χ> y) = XN(X) Σ Mχ - y - a)%N(y) ,
aeΛN

where ΛN:= (2N + 1)ZV; this follows from the fact that, for φ e Cf(QN\

£ (- A + !)->(• -α)
aeΛN

defines a smooth function F on 1RV which is periodic with respect to the lattice
AN and which clearly satisfies ( — Δ + 1)F = φ on QN.

Hence, F belongs to the form domain (and even to the operator domain) of
H(<?\ and satisfies (H$> + l)F = φ. By the above, we have χNF = J R(x, y)φ(y)dy.
Therefore, the inverse of H^ + 1 and the integral operator generated by R co-
incide on C?(QN).

Now an easy calculation (using fp*fq =fp+q) shows that the integral kernel of
+ l)~m is given by

XN(X) Σ fm(* ~ y~ a)χN(y)
aeΛN

but, as remarked above, for m > v/2, the function fm is bounded, continuous and
decays rapidly away from the origin, and the desired result follows.

The following exponential decay estimate is basic for most of our analysis:

Lemma 4.2. Let V: R v -*• R be continuous and periodic with respect to the lattice
V and letH = - A + V. Then, for any E e R\σ(#) there exist constants C, α > 0,
such that

|| χR(H - E)'1^ ~ XM) II ̂  Ce-«*-*\ ΐ^R<M/2.

A proof of this basic lemma may be found, e.g., in Deift and Hempel [DH] or
Hempel [HI, H2].

Lemma 4.3. Let V: Rv -> R be continuous and periodic with respect to the lattice
Έ*. Let H(N) = — A(N) + V on QN, with periodic boundary conditions, and let
E e lR\σ(/ί). Then E φ σ(H(N}) and there exist constants C, η > 0, which are indepen-
dent of N, M and R, such that

Proof. As in the case of Lemma 4.1 we may write (τa denoting translation by the
vector α, i.e., (τβφ)(x):= φ(x — a))

(H^-EΓ^XN Σ (H-EΓ*τaχN'9
aeΛN

using Lemma 4.2 it is clear that the sum converges in operator norm and that the
desired estimate holds; note that for z E ΛN, z Φ 0, we have the trivial estimate

βN, QR) ^ (maxί=1 ..... V N) N - R.

We conclude this section with two simple but useful estimates.
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Lemma 4.4. (cf. [S2; Lemma C.2.1]) Let Ω be an open set in Rv, let U e L^(Ω) and
suppose that u is a distributional solution of ( — Δ -f U)u = 0 in Ω. Then, for any
ψ e CC°°(Ω)V, there exists a constant a, such that

where d depends on the sup-norms ofU, ψ and of Δ ( \ ψ \ 2 ) only.

Lemma 4.5. (cf. Hempel [H3; Lemma 1.2]) Let g e N and r = 2q. Let A, B be
bounded, symmetric operators on the Hilbert space ffl ana assume that the product
AB is compact. We then have

\\AB\\'Λr^\\B\\'-2 \\BA'B\\Λl = || B|Γ2 trace (Al'B).

5. Appendix B

Here we give the promised proof of Lemma 2.1 (where VN:= \QN\):

Lemma 2.1. (i) E(#Λ.(Λr)) = % p.

(ii) E(3Mf>) = ΌNp(ί - pΓ~l + 0(Nv~l) .

Proof, (i) #A(N) = Σ|ί| <jv#'(ω)> so E(#v4(JV)) = vN p, since the random variables
qt are independent and E^ ) = p.

(ii) Define

Π d-ί

Then ξi = 1 iff ^ = 1 and ^ = 0 for j φ ϊ, \j — i\ ̂  L, i.e. if / is an L-isolated
impurity,

since the ̂  are independent.
Now, # ̂ ^} is the number of L-isolated impurities with distance at least L from

dQN, so # A("] equals £ | f) ^ N ξt up to an error of the order Nv~1. In fact, the only
points that may be differently counted are those within a distance L of the
boundary of QN.

Thus,
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