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Abstract: Given a family of Riemann surfaces and a holomorphic vector bundle
Beilinson and Schechtman construct a canonical connection on the associated
determinant bundle. We prove the conjecture which states that their connection
coincides with the Quillen connection. This is done by reducing to the case where

0 along fibers are invertible. Both connection forms become more accessible in this
case.

Introduction

Let n: X —» S be the parametrization of a family of compact Riemann surfaces,
E — X a holomorphic vector bundle, and 1z = det(R=, E) the determinant bundle
over S. Given C* connections on Ts and E, not necessarily arising from metrics,
Beilinson and Schechtman [BS, §5] construct a formal parametrix p(z, {) for 0,
(0 along the fibers) and using p they derive a (1, 0) connection Vgg on Ag. These are
given by local formulas in terms of Vr,, and Vy and fiber integrals. Local
calculations show that the (1, 1) curvature dg Vs is equal as a differential form to
the fiber integral prescribed by the Grothendieck Riemann Roch formula. The only
nonelementary part of the connection Vgg is in identifying it with splittings of
complexes on X, which depends on the relative duality theorem.

On Az ! of course there is the well known Quillen metric and the associated
Quillen connection Vq determined by metrics on Tx s and E. For locally Kahler
families of compact complex manifolds the form level Grothendieck Riemann Roch
for curvature of Vg is known [BF, BGS]. Beilinson-Schechtman remark in [BS,
5.6]: “It seems very probable” that when Vg, Vr,  arise from hermitian metrics on
E, Tys, then Vpg is just the connection associated to the Quillen metric for Ag.
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Since Vg determines uniquely a connection on Ay which we denote by — Vg,
Beilinson-Schechtman’s conjecture is the identification Vgs = — Vq. The Quillen
metric and Vg, being defined in terms of 0 torsion, are highly analytical in nature;
on the other hand Vgg acting through the Kodaira—Spencer class and formal
parametrics has a rather geometric and sheaf cohomological flavor. It is obviously
of interest then to unify the two seemingly disparate objects.

The purpose of this paper is to give such an identification. By adding to
E a vector bundle of the opposite index along fibers we may reduce to the case
where the index of E is zero. Under this hypothesis it is easy to further reduce to
families in which 0, is invertible over a dense open subset of S, this being so in the
moduli space. In this case there is a canonical holomorphic section of Az ! with
respect to which the connection one form of Vq has a striking interpretation as the
heat kernel renormalization of Tr,[D~*(VD)][Q, BF]:

lim Tr,[e ***D~1(VD)], (1)
t—0
where D = 0, + 0* and V is the connection on an infinite dimensional bundle
induced by Vy and V7, . In general Vas, » is represented by a cohomology class on
X. In the situation where 0, is invertible there exists a canonical integrable
connection V on Ag, and if the metric on T/ is locally Kéhler then the difference of
Ves and V is given by the fiber integral of a smooth form:

Ves,, — Vo= | (p7! = G)(0.D), )
X/S
where # € I is the horizontal lift of v € J5 with respect to the metric, so 0,0 is
a representative of the Kodaira—Spencer class of v, p~ 1(0,9) = (0,5(2))p(z, ) and
G is the kernel function of 7, *.

The formulas (1) and (2) readily reduce the identification problem Vs = — Vg
to proving the vanishing statement:
lim Tr[e *2p~1(5,9)] =0. 3)
t—>0

This is an analogue (extended to first derivatives) of the vanishing result of Quillen
[Q, §5]. This is the most technical part of the proof, and it relies on the expansion of
e ™ and p(z{) in local geodesic coordinates in Sect. 4. Having proved
Vps = — Vg for a locally Kdhler metric we use variation formulas to show
Vps = — Vg for any hermitian metric on T s. For two metrics g and g’ on Ty;s and
the associated connections Vg, Vg the difference Vo — Vg is given in terms of
Bott—Chern forms [BGS III]; we show by a direct calculation in Sect. 2 that we
have precisely Vgs — Vas = — (Vo — Vo).

We may interpret this identification as saying that the Quillen connection
which depends on data of metrics, has a canonical extension to a connection which
depends on data of connections. This leads to some natural questions which we
hope to address elsewhere. At present the construction of the Beilinson—Schecht-
man parametrix p is limited to families of Riemann surfaces. There is a Cech
cohomological construction of an analogous p in higher relative dimensions which
also yields a connection V, on Az and a form level Grothendieck Riemann Roch
without any Kéahler hypothesis [T]. However it will not be possible to identify V,
and Vg for the simple reason that the Chern forms appearing in the fiber integral in
[T] for 0,V, are the Atiyah-Chern forms which are different from the standard
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Chern forms defined from metrics. The Atiyah-Chern forms for example are
0 closed but in general not d closed. Thus the fiber integrals giving the curvatures of
V, and V, are different.

We thank J.M. Bismut, J.B. Bost, H. Donnelly, L. Lempert, and C. Soul¢ for
helpful discussions.

1. The Beilinson-Schechtman Connection

Let n: X — S be a proper smooth map of complex manifolds of relative dimension
one, E— X a holomorphic vector bundle and A = detRn, E the determinant
bundle associated to the direct image complex. The Atiyah algebra of A is the sheaf
of local connections of A which in this case is an extension of the tangent sheaf I
by the structure sheaf Os:

0> 0s—> A, —> Ts—>0.

In [BS] Beilinson and Schechtman construct a differential graded Lie super
algebra "o/ on X whose direct image cohomology R°r, ("*s/f) is canonically
isomorphic to <7, .

Let Cg be the sheaf of germs of C* functions on S then a C®(1, 0) connection on
Ag is a splitting of the exact sequence:

0-Cs—>CH;,» Ts—0. (1.1)

To represent (1.1) as cohomology of complexes on X let &/, = o/ be the
subalgebra whose image in the natural map ¢: o/ - Jx equals 7, the projectable
vector fields. Further let /s = g, . be the ideal which differentiates in the fiber
directions. C'* .o/ ;! is the push forward of .o/ ; ! by the map QY s— Q%s, where
Qs is the complex of holomorphic relative forms and Q" = Qs the complex of
bigraded C* relative forms. In local coordinates near 4 in X x g X the elements of
C" o/ ;! are given by:

RN

where a(z) and B(z) are holomorphic (B(z) takes value in E® E*) and ¢(z) is C*.
Taking residues along 4 defines a map R: C" o/ ;' — o5 and there arise maps of
complexes

Qb1 — Ql’l@ﬂE,n — g .

1 1 1
Q@R QM P CT A — Ay . (1.2)
T T
QO’O QO’O

The vertical complexes in (1.2) are assigned degree zero in their top degrees, and
R°n, applied to (1.2) is canonically isomorphic to (1.1).

Suppose given C* connections V and VE on T = Ty and E respectively, the
Beilinson—Schechtman connection Vgg = R%n, (p'), where p’ is a splitting of (1.2).
Namely V; and Vg determine a formal parametrix p(z, {)e CEX E'(4),
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= E*® Qks [BS, §5.3]. Thus p(z, {) is C*® in z, holomorphic in { with a first
order pole along 4, and RP = 1 € o/ g;5. For u € /g5, set

P~ =0, pux)p(z ) e ®C 5",

where f is tre 4* applied to nonsingular terms of u(z) p(z, {) and leaves singular
terms unchanged. dxp~! naturally extends to a sheaf map o/ , > Q%I ® Q%!
and

P°) = ((0:p 1)), v) € R4 ® S,z »

where 0, denotes 0 along the fibers.
In local coordinates suppose the (1, 0) components of V and Vi along the fiber
directions are

VTE=02+¢TdZ’ V 6—6 +¢EdZ

62

The components of curvature forms valued in Q! are denoted by C(Vy) and
C(Vg), and their projections into Q% X/S are denoted C (VT) = 0,Prdz and

C(Vg) = 0, ®zdz. Furthermore, ¢, (V) = tr C(Vg), ¢,(Vg) = tr C(Vg) and
similarly for Vr. w = wys is the relative canomcal bundle and V mduces V., with
Vw’ % = 0, — ®rdz. To write down p’ in local coordinates let u = aa—az + BeAgs
and define ny,: o/ ., — End(E)® Q%° by

Ty, (V) = v — Vg 20 -

We now have

1 1
G c>=5;{€——+'§oA(z>(c-z>} i,
Ao(e) = 3 01(2) + B5(2)
A1(2) = £04 () — S BHE) — 301 B@) + 3 P~ 503C) (13)

and

27

P (u )—_{(C az)2 +CTBz+tr[BA0 +aA1]}dC >

1
p°(v) = { - Vm,e(v)(%gl (Vr) + 551 (VE)>

—tr|:nvE(v)< C(VT)+C(VE)):| } (14)

(the minus signs in p°(v) come from shifting i to i in definition of ¢, ).
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To calculate the action R%n, (p) we consider first resolutions of (1.2) by Cech
complexes. Let % be an acyclic covering of 7 ~1(U), where U < S is a sufficiently
small open set and p a partition of 1 subordinate to . We have

0 — A (" 1(VU))— C°%, ﬂa,n)—(s* C' (U, Ag,n)— . . .
1 Ti 1i 1i .
0 — Aps(n™1(U)) —> C°(%, JZ{E/s)—é’ C' (U, A gs)— . ..
(15)
R°n, (o7 £)(U) is represented by
(v, u) e CO(U, A5, ) ® C (U, Ays), — 0v + iu= 0, u = 0}

modulo the coboundaries (i, §) C° (%, o/ gs). Let

p: CO(U, A, 2) > CAp,o(n” ' (U)):= (AE,.®2%%)(n "1 (U)),

p: CH (U, Agjs) = Ags @ QO (n™ 1 (U))
be given by

p(c®) =3 pacd, pc') =Y pp0pacas . (1.6)
« a, B

Then p defines a quasi-isomorphism on total complexes which at degree zero is:
p:Co(U, Ap,2)®C (U, Aygjs) > (CHp, . ® Ags®Q> 1) (™1 (U)) .

Let v e I5(U) be a vector field and {v} € C°(#%, o, ,) be local lifts, then {6v} €
C'(U, o gs) and it is easy to see that if § = p {v} (cf. [TT, §1])

p({v} @ {0)) = 5@3,5 (17)
We may similarly form Cech resolutions of
Qb1 @ &(E, n
1 (1.8)

QO,I@CtrﬂEI ,

and (1.6) defines quasi-isomorphisms on the corresponding total complexes. Now
the advantage of Cech complexes is that the sheaf level splitting (1.4) extends
immediately to a chain map of the bicomplex in (1.5) to that of (1.8). We thus have
a chain map of the total complexes (associated to Cech complexes) and via
p a splitting of the following diagram of complexes (of sections over n~(U)):

10
00
0 R

CdE,n@Ql’l(@"dE_l@Qo’l —_— CJZ{E,nG‘)»‘Zﬁ:/S®-Qo’1

09, 0 i =
Mrw -2) Te -2

(»)
Qosl@"d};I@QO'O_—R_» dE/S®_QO,O , (1.9)
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where ¢:" A ;1@ Q%! - Q11 is the projection given by g=1—p 1R It is
straightforward to check that the splitting of (1.9) is given by the maps

_ 1p° 0
©,p~ ') and <0 0 p_1>.
Applying the splitting to the element in (1.7) one obtains
&+ p°(®) + p~1(0,9) .

The cohomology class of this element in the left column of (1.9) represents the
action of the Beilinson-Schechtman connection:

Vis,o =[5+ p~*(3.5) + p°(9)] - (1.10)!

2. Comparison of Variation Formulas

Let g be a hermitian matrix on Ty, and h a hermitian metric on E. In the present
case of relative dimension one g induces a Kahler metric on the fibers. These
determine a Quillen metric || ||q on Az ' and the corresponding Quillen connection
Vqo. The metrics g and h also determine (1, 0) hermitian connections Vr and Vg, and
from Sect. 1 we obtain the connection Vgg on Ag. In this section we compare the
variation formulas for Vg and Vgs when g is changed to a metric g, .

Let g, = e?g, where ¢ is a C*® function on X and let V} be the Quillen
connection associated to (g, k). By [BGS III, Th. 1.23].

V(lz - VQ = - as|: j Td(ga gl)Ch(h)]o

X/S

I

— [ a[Td(g,g1)ch(h)]s,

X/S

where [ ]; denotes the component of degree (i, i). Let g, = e'®g be the family
connecting g to g, then

dlogg, = dlogg + td¢ ,

d
E(Ologgt) =09,

i = i =
ﬂaalogg, =c(Vr) + t2—7;66¢ . (2.2)
In the present case

[Td(g)ch(W)], = 156 (Ve )* + 3eu(Va)er (Ve) + cha(V)

! Added in proof: There is a simpler justification that (1.10) represents the action of a connection
This will be discussed elsewhere.
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where m = rk(E). Then using the Bott—Chern formulas [Bt C, 3.15, BGSI, Th.
1.27], one gets readily

1 _ m m i- 1
Vo—Vo= _x"ss{6a¢ Ac(Vr)+ 126(1) A2n80¢+28¢ /\cl(VE)}. (2.3)

To compute the variation formula for the Beilinson-Schechtman connection let p{,
pi ! denote the maps (1.4) computed with respect to the connections Vi = V5 + 0¢
and Vg. Then by (1.10)

Vis,o — Vas,o = [p1 1 (0.8) — p~*(9.9) + p(3) — p°()] -

This is a cohomology class of a smooth form in Q5 and hence the class is uniquely
determined by the fiber integral of the form. Therefore,

Viso— Veso= | (pi' = p~1)(0.9) + (P} — p°)(P) . 24)
X/S
Proposition 2.1. Vs — Vgs = — (V§ — Vo).
Proof. The integral (2.4) is independent of the choice of & which lifts v. In local

0 0 0
coordinates let v = — be a germ of I and let vy = — + aa— be a lift to C* (7).
z

ds Js
We then set
5 0 0
i=Vgpw==+a—+BeCsg,. (2.5)
0s 0z
With this choice
TEVE(ﬁ) =7 — VE,E(E) =0. (26)

We also have
6_zvo = (a_za)g’ a_zl7 = (a_za)ﬁ + a_zB
0z 0z

and differentiating (2.6): ( | denotes contraction)
0.0 — Vg 5., = — o |C(E). (2.7)
We now expand by (1.4)

_ 1 - (1
(b7t = p~)E0) = %tr{w@’)
0, Ly 12<I> Vo' ltI) ") hd
+ 0,a gd’ _E( r+¢)¢*§ E¢> z

i m .
= E{ - ng,ﬁ_zvo(az(p) o (1)
+ 53(8.v0 J09)0. - i)

- %tr(a—zﬁ - VE,a_,vO)(asz)} Co (i) - 2.8)
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Next using (2.6) we have

(r? —p°)() = _(Vw 00C1(V1) = Vi, 0¢1(V1))
(Vw vo Vw,vo)El (VE)

m i = .
= —ng,vo<£azaz¢> o (l)

+ 200 ] 96)E (V) - ()

+’Z(uo_|6¢< aa¢>> - (iii)

+ 3000 |09V (E) - ). 29

From (2.3), using the commutation relation ijX s jX s Vo |, the integrand for
(VQ » — Vp,») can be expanded as (note that we only want the component in

‘QX/S)

(0 139)1(V2) = 0.6 A vo Je1(Ve) - ()
+ 1200 109)3-0.0:6 — 1200 A v | 5-0.06 - G

+ %(vo |0¢)¢1(Vg) — %6,({) Avg | ey (Vg) - - - (i) . (2.10)
We can now prove Proposition 2.1 through the following scheme of equalities. We
denote by “ = ” equality modulo 9, exact forms in Q})4. First
(2.10)() = (2.9)G1) + (2.8)() + (2.9)0) ,
where we have used the identity
0:(Va,00(0:0)) = Vi, 5,,(9:) — (0 ] ¢1(V))(0:8) + Vo, 05(0:0:9) -

Next
(2.10)(ii) = (2.8)(i1) + (2.9)(iii) ,

and here one uses
0. {(vo | 0)0.¢} = (0.v0 | 0)0.¢ — (vo | 0.09)0.¢ + (vo |0¢)0.0.6 .
Finally,
(2.10)(iii) = (2.8)(iii) + (2.9)(iv)
by using (2.7).
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3. Identification of the Connections

Let m: X — S be a proper smooth map of relative dimension one, then it is always
locally Kéhler [Bing]. This means that on sufficiently small open sets U < S,
7~ 1(U) has a Kéhler metric. However we assume 7Ty;s is given a hermitian metric
g which needs not be the restriction of a Kéhler metric on = ~* U. Let h be a hermitian
metric on E, Vo and Vg are the associated connections on Az ' and Az. The next
proposition reduces the problem of showing Vo = — Vpg to a simpler context.

Proposition 3.1. It suffices to check Vo = — Vs for families where y (X, E|x,) =
and 0,: C*(X,, Ely,) = C°°(XS,E®Q° !x,) is invertible.

Proof. By taking the direct sum of E with a suitable F, e.g. F = E* ® w we have
x(Xs, E® Flx,) = 0. Assume that we can prove VE®F = — VE®F when the her-
mitian metric on E @ F is direct sum of 4 and any hermman metric h; on F, then
since Apgr = Ax @ Ar, VE®F = VE + VE and likewise for Vy. Since h and h, are
arbitrary we must have V§= — VEs, V§ = — VL. Thus we are reduced to
showing Vo = — Vps for bundles E with index zero along fibers. Next we reduce to
the case where 0, is invertible. The problem is local in S; it suffices to show
Vq = — Vps in the neighborhood of a given point s¢ € S.

Let A4 be the (infinite dimensional) affine space which parametrizes the complex
structures on a vector bundle over a Riemann surface (cf. [Q]). Over the moduli

space of Riemann surfaces of genus g let e M , be the fiber space with fibers
isomorphic to A and whose local sections over .#, parametrize holomorphic
vector bundles over families of Riemann surfaces. The family E - X, se U
corresponds to a holomorphic map f: U — & Pf(s) = {X, }. We want to extend E to
a vector bundle E over the family X x D, - U x D,, where D, = C is a disc of
radius ¢ around O such that E|y, o = E and 0, acting on E|y, ., is invertible for
t * 0. This corresponds to_extending f to a holomorphic map f- UxD,— &,
f(s,0) =f(s) and such that f(s, t) satisfies the above requirement. The condition
E|x, has index zero implies there is an open dense set in A where 0, is invertible,
thus we can find such extensions f. B

Now consider such a family over U x D,. The set where 0, is invertible is an
open dense subset. Let the metrics be extended to this family. If we know
Vo = — Vgs on the open set where 0, is invertible then by continuity we conclude
that Vo = — Vgs on U. This finishes the proof.

From now on we assume E — X satisfies the conditions in Proposition 3.1. Let
G(z, {) be the Schwartz kernel of the inverse 0, . Then the condition 9,9, ' = 11is
equivalent to

6—(,,4)G(z, {) = 4 as distributions. (3.1

We may consider G(z, {) as a parametrix and (3.1) implies that 6_(,,0 G(z,{)=0as
a smooth form extended across 4. Let #; = E X E’(24) be the subsheaf with pole
along 4 of order 2 or less and which by residue map R has image in /5. There is
an exact sequence

0 g A, x 0

7 T 7 (3:2)
0——EXE’ B ol s — 0
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and given u € g5, G(u) = u, G(z, {) € B gives a splitting of (3.2). There is a natu-
ral projection %y, 2 of ;1. We can use (B°G, 0) in place of (p~*, p®) in Sect. 1 to

get a splitting of (1.2).

Lemma 3.2. The connection on Ag corresponding to the splitting (B°G,0) is
integrable.

Proof. Under the hypothesis R°n E = R'n E =0 we have R°n, (B — A%, ,)

~ J and by [BS 2.3.2(iii)], V = R%n,(B°G) is the integrable connection.
Using (1.10) and Lemma 3.2 we express the difference of the Beilinson—Schecht-

man connection and the integrable connection as fiber integral of C* forms,

Veso — Vo= [ (07! — G)(3.9) + p°(D) - (33)
X/s
Lemma 3.3. Suppose g, is a hermitian metric on Tx;s which is the restriction of
a Kahler metric on Ty|n~*(U). Let v, be the lift of v to Ty which is orthogonal to
Tys for the Kahler metric, and ¥ = Vg ,,, then

[ p°@=0.
X/S
Proof. With the choice & = Vg ,,, 1y, (vo) = 0. So by (1.4),
o M ~ (Ul 1 ~
[ p @)= ) Voo (€1(V2)) +5 [ Vo001 (Ve)) - (34)
X/S X/S X/S

Let w, be the Kdhler form along the fibers arising from g, then by [BFI, (1.8), BGS
II, Th. 1.14]

v j 51(VE)=U _f <51(VE)’ wz>wz

X/S X/S

= [ {{Vo,0081(VE), 0. + <& (VE), Vo, 000> J 0 (3.5)

X/S

jx/s ¢1(Vg)isconstantin sand V,, ,, w, = 0. Hence by (3.5) Lr/s Vo, 0€1(VE) = 0.In
the same way the other integral in right hand-side of (3.4) vanishes.

We consider next the connection form for Vg, computed with respect to the
metrics g, and h. v, will denote the horizontal lift prescribed in Lemma 3.3. Az ! has
a canonical holomorphic section T(d) nonzero over the points where 0, is inver-
tible. With respect to the section 7°(9), Vo has connection 1 form which is the (1, 0)
component of (cf. [BGS 111, (1.43), (1.48), (1.63)])

S0 = }OTrS [exp( — uD?)(VD)D]du , (3.6)
1]

where D = d, + 0¥ and 60 = Vg, + Vr is considered as a connection on an
infinite dimensional bundle. By [BFI, Th. 1.15] this may be expressed as

8o = lim Tr,[exp( — tD*)D~Y(VD)] . (3.7)

t—0
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Since 0¥°d; ! = 0 we have
D(0;1eV3d,)=Va,.

Hence d; 1oV3, = D~'V4,, and since V,5* = 0 by [BGS II, (1.51)] we have
D' (V,0)=05;"(V,3,). (38)
Next from [B, Th. 2.5] V3, = Vod, + d,°V, hence
V,0,=V,20, — 8,oV, = — 8,7 . (3.9)

We now have

do(v) = — lim Tr,[exp( — tD?)D~1(V,D)]

t—0

= lim Tr,[exp( — tD?)0; *°(d,7)]

t—0

= lim Tr,[exp( — tD?)(3; * — p~1)(3,)]

t—0

+ lim Tr,[exp( — tD?)p~1(6,)] . (3.10)

t—0
In Sect. 4 we shall prove

Proposition 3.4.

lim Tr,[exp(— tD?)p~1(3,5)]=0.

t—0
Given this proposition and the fact that ;! — p~! has a smooth kernel it follows
from (3.3), (3.10) and Lemma 3.3 that Vo = — Vpg when the connections are
defined in terms of the metrics g; and h. But then by Proposition 2.1 Vo = — Vg

for any hermitian metrics g and h.

Theorem 3.5. Let n: X — S be a proper smooth map of relative dimension one. Let g,
h be hermitian metrics on Ty;s and E and let Vo and Vyg be the connections on
Ag ' and Ag respectively. Then Vgs = — V.

4. Calculations Involving the Heat Kernel

We can restate Proposition 3.4 as

lim Tr[e ~“p~1(6,5)] =0, 4.1)

t—0

where 4 = 0% J,. Reecall that in local coordinates
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Lemma 4.1. The kernel function of e ~*4op~1(0,5) is given by

%(fiaf e " (x,y)p(y, Z)dvy> + (I e " (x,y)p(y, Z)dvy)a_zB(Z) -

Proof. Let ¢ be a smooth section of E with compact support. Recall by (1.3) that
p(y,z)is a 1 form in dz,

(e™"op™120,5)p(x)

dop
—5# ”uywuxﬁaa (5M¢@}@y
= §5<0_zaj e "(x, y)p(y, Z)dvy><p(2)

+ I(Ie‘“‘(x, »)p(y z)dvy>(5;B)¢(z) .

Clearly then (4.1) will follow by showing:

@) lim — Ie “x, )Py, 2)dvyl, - =0,

t—*O

(i) lim [ e =" (x, y)p(y, z)dv,|, - = 0. 4.2)

t=0y
We shall first prove (4.2) (i). Consider the asymptotic expansion of e ~* (cf. [P]),

dz2

1
e“" —2—te 2‘(U0+IU1+ ),

where d is the distance function. We set in local coordinates x = 0, and make the
change of variable y — z = re®. Note that since lim,oe ~*(x, y) is the delta
function at x we need only consider the integrals of (4.2) for y in coordinate

neighborhoods around x. Using (1.3) and the substitution for y, the limit in (4.2) (i)
breaks up into a sum of the following types (omitting some constant factors):

1 efo i
(l) lim t—ze 2t a—z‘d (Uo+tU1+ -'~)dey‘z=05

t-0

S 1 290 1
(i) lim j%e ZtE(UO +tU; + ... )de”zzo ,

=0

N ,.

(iii) hmE e Y. Ay)(z — y)dvyl.=o - 4.3)
=0 i=0

Lemma 4.2. (i) There exist complex geodesic coordinates y at 0 satisfying

09,5(0) _ 09,5(0) _ °9,5(0) _ 8°,5(0)
dy ay (0y)? (07)

=0.
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(ii) For any complex coordinate y at 0, there exists a local frame {e,, . .., ey} of
E near 0 such that

Ohj(0) _ 0hy(0)  *h;(0) 9*hi(0)

dy 9y (0y)* ©5)*

Proof. Although the proofs are similar, the statements here are slightly more than
what is available in standard references (cf. [W, p. 83)]. We will thus prove (ii); the
same argument works for (i). It is standard that there exists a frame {e;, . . . , e, } at
0 such that h;(0) = 6,7 and dh(0) = 0. Consider

é,’ =e; + Zaijzzej .
i

=0.

Then

~

hij = <éi7 é)> = <ei + Zaiazzea, €; + Zajﬂzzeﬁ>
a B
= hij_+ Z ai,,zzhaj‘+ Z (ijpz_zh,'ﬁ'i' 0(|Z|4) .
4 B

By using h;(0) = é;7 and dh(0) = 0 we have
hi0) = 67 and dh(0) =

aZh -
Further U(O) (0) + a;;. Hence to make U{O) 0 it is equivalent to
62h -
2 (0).
Using Lemma 4.2 and the expansion formula for the distance function [D,

22)7:

choosing a;; =

d*0,z + re®) = |z + re®®|? + const|z + re®|* + O(r%) . 4.4)
It follows that

aid2 l,=0 =re™® + constrie ™ + O(r*) . 4.5)
4
Also it follows from [P, (4.9)] that

Uo(©,y)=1+ M|z +re”|> + O(?), (4.6)

where M is a constant matrix.

420 4
Lemma 4.3. llm,_,oj 3¢ rg“’) v,=0.

Proof. Use polar coordinates dv, = g,srdrdf and change variable r = \/Er”,
d= \ﬁd; the above integral becomes

%f e_%a"t22i5f4)<\/i>dfd0 = 0/,

which proves the lemma.
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By (4.5) and Lemma 4.3 we can reduce (4.3) (i) to

1 & . . 1
lim J7e’2t(re"9 +cr?e™ ) (Ug + tU, ) —5dv, , 4.7
t—0 t re
where t2U, + ... isdropped by the same argument as in Lemma 4.3. We consider

the most singular term in (4.7), the other terms can be treated in the same way,

N I .
lim e Uoe **dv,

t—0

1 2 )
= lim fpe'Zt(I + Mr? + O(r®))e 2 g,rdrdd

t—=0

1 1 %2 ~4 3 ~5 i .
= lim J—ze —REHEABOEN 4 Mt7? + 20(73)) e 20 t7dF doO 4.8)

t—0
where we made the change of variable r = \ﬁf in the last integral.

1 Lo ~4 3 :
Lemma 4.4. lim 2 Je 2T NI + Mt7? + 20(7%))e 2 t7dFdf = 0 .

t—0
Proof. The term involving O(7*) vanishes as in Lemma 4.3. The remaining terms
vanish when we integrate in 6.
E 3

Expanding ¢°) = 1 4+ 2O (7%) + O(¢?) the last integral in (4.8) is reduced
to
1 Loy ey 3 .
hn;t—zje“i(’ TP ZOF) + OE)I + M + t72 + ... )e 29 FdFdd = 0(4.9)
t—
This proves the vanishing of (4.3) (i). Similarly using (4.6) instead of (4.5) one can
show the vanishing of (4.3) (ii). Finally to evaluate (4.3) (iii) we do not make the

substitution y = z + re”. Differentiating — in the integrand of (4.3) (iii) we have
0z &

lim fe ~*(0, y)(41(y) + O(Iy]))dv, . (4.10)

t—0
By (1.3) and Lemma (4.2)
A1(y)=A4,0)+ O(lyl) =0+ O(lyl) -
Hence (4.10) reduces to
lim [e~"(0, y)O(|y|)dv, =0 .

t—0
This finishes the proof of (4.2) (i). Finally note that the proof of (4.2) (ii) is much
simpler, e.g. expanding p(y, z) in two parts the vanishings are already covered in the
vanishings of (4.3) (ii) and (iii). We have therefore proved (4.1).
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