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Abstract: We prove the stability of mildly decaying global strong solutions to the
Navier-Stokes equations in three space dimensions. Combined with previous results
on the global existence of large solutions with various symmetries, this gives the
first global existence theorem for large solutions with approximately symmetric
initial data. The stability of unforced 2D flow under 3D perturbations is also
obtained.

1. Introduction

It is well known that there are always global weak solutions to the three dimensional
Navier-Stokes system
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Here, as usual, u = u{t,xι,x2,x>i) = u(t,x) = (ul1u2)u3) is the velocity vector,
v > 0 is the viscosity, p = p(t, x) is the pressure, / = /(£, x) is the external force,
and uo(x) is the initial velocity. Equations (1.1)—(1.4) describe the motion of a viscous,
incompressible fluid in a domain Ω C IR3. Under minimal assumptions on the data
(uo,f), the existence of a weak solution is guaranteed by the results of Leray [9]
and Hopf [5]. The uniqueness of (u,p), up to an additive constant for the pressure p,
remains open in general and is only known for strong solutions which a priori exist
locally. The global existence of small strong solutions has been proved, but for large
data, strong global solutions are known to exist only under the assumption of certain
spatial symmetries.
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Here we shall show that for any global strong solution (u,p) of (1.1)—(1.4)
satisfying

oo

ί \\Vu(t)\\4dt<oo (1.5)

0

(where || || denotes the norm in L2(Ω), the space of square integrable vector fields on
Ω) there is a neighborhood of (w0, /) such that (1.1)—(1.4) has a global strong solution
for any data taken from this neighborhood. The condition (1.5) is a global version
of a regularity criterion that goes back to Leray [9]. The idea, roughly speaking, is
that if the reference solution decays to zero and another solution is sufficiently close
initially, then by local well posedness the perturbed solution should remain close to
the reference solution long enough to make small data arguments possible.

From the physical and mathematical point of view, the vorticity

ω{t,x) = Vx u(t,x),

is an important quantity. The vorticity evolves according to the equation

ωt + (u V)ω - vAω - (ω V)u = V x / .

The first terms ωt + (u V)CJ account for the transport of vorticity along particle
trajectories. The effect of the term vΔω is to introduce diffusion, and it is responsible
for dissipating the energy and entrophy. However, the term (ω V)u, the vorticity
stretching term, is the one responsible for instabilities and for changing the direction
and magnitude of the vorticity. This is the term that one has to control in order to
achieve global regularity in the solution.

Indeed, for the 2D Navier-Stokes equations there is no vorticity stretching term,
and for this case one has global regularity. (This is still the case for the 2D Euler
equation, v — 0.) In particular, one can think of the 2D Navier-Stokes equations as a
spatially symmetric solution of the 3D equations. Global strong solutions for the 3D
Navier-Stokes equations with large data also exist with axial, rotational, and helical
symmetry. Ladyzhenskaya [8] proved the global existence of rotationally symmetric
large strong solutions in domains Ω which are obtained by rotation about the x3-axis
of a planar domain D lying in the half plane x2 — 0, xx > 0 at a positive distance
from the x3-axis, assuming the angular components of the force / and the initial
data uQ do not depend on the angle of rotation φ about the x3-axis. Ukhovskii and
Iudovich [20] proved the global existence of large strong axially symmetric solutions
in the whole space. By axial symmetry is meant that the solution is rotationally
symmetric and its component in the φ direction is zero. Recently, Mahalov, Titi and
Leibovich [12] established the existence of unique global strong solutions for large
helically symmetric data. There, Ω is an infinite periodic pipe in the x3 -direction
with Dirichlet boundary conditions on the sides. Helical symmetry means that the
solution u = u(r,φ,x3) in cylindrical coordinates actually only depends on r and
nφ-hax3, where n eZ\ {0} and a > 0 are given parameters. As in 2D, the axially
symmetric flow has no vorticity stretching. Global existence and regularity follow
in these cases by estimating directly from the vorticity equation. On the other hand,
for the 3D Navier-Stokes with rotational or helical symmetry, the vorticity stretching
term is nontrivial. Here, one can take advantage of the symmetry to reduce the spatial
dimension of the problem and derive new Sobolev estimates.

One might argue that the symmetry constraint gives the term (ω V)u a special
form. It is physically significant that one can break the symmetry and still achieve
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global existence. The application of our stability result to the symmetric solutions
gives the first existence result for large data which are not symmetric and where the
vorticity stretching term can be arbitrarily large. It is worth mentioning that it is an
open question whether or not the 3D Euler equation (i.e. v = 0) has global regularity
in time, even in the presence of symmetry. There are few results in this direction but
all of them treat the cases when the vorticity stretching or its equivalent is identically
zero. For instance, see [20] which treats axi-symmetric flow. For Euler flow, vortex
stretching has been proposed as a mechanism for formation of singularities. For
example, in the inviscid case with rotational symmetry, numerical computations [3,
14] indicate the formation of singularities in finite time.

Throughout this paper we will always assume that Ω c M? is a domain with
boundary dΩ uniformly of class C 3 . This means that there exist constants r, M > 0
such that for any point x G dΩ, dΩ U Br(x) is the graph of a C3 function with
derivatives up to order 3 bounded by M.

Applying the Helmholtz projection P,

P : L2(Ω) ->H = {ueH^(Ω) : V u = 0} L (Ω)

to (1.1)—(1.4) we reformulate the problem as

ut + An + P((u V)u) = Pf , (1.6)

u = Pu, (1.7)

u\dΩ=0, (1.8)

u(0,.) = u0, (1.9)

where A = — vPA is the Stokes operator with domain

D(A) = H2(Ω) ΠV, V = Hl(Ω) Π H,

where H2(Ω) and HQ(Ω) denote the usual Sobolev spaces defined over Ω (see [1,
19, or 21].

Our results can be strengthened for domains Ω which satisfy the Poincare
inequality:

for all g G HQ(Ω). In particular, bounded domains and strips satisfy (1.10).
We can now state our stability result

Theorem 1. Let
v € Lj£([O oo) V) Π Lfoc(

be a strong solution <9/(l.l)-(1.4) with data v(0, •) = υ0 G V, Pfx{t, •) G H satisfying

v € Lj£([O, oo), V) Π Lfoc([0, oo), D(A))

/ \\Vv(t)fdt < oo. (1.11)

o

(i) Let Ω be a domain which satisfies (1.10), and let Pfx G L2([0, oo), H). There is a
δ > 0 such that ifuQ eV, Pf G L2([0, oo), H) with

(1.12)
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then there is a unique global strong solution u of (1.6)—(1.9) with data (uo,Pf).
Moreover, there is an M = M(δ) with M{6) —> 0 as δ —» 0 such that

sup II Vtx(ί) - Vυ(ί)|| < M(5),

and, if\\Vv{t)\\ and \\Pf(t)-Pfx(t)\\ decay to zero exponentially, then ||Vu(t)\\ decays
to zero exponentially as t —• oo.
(ii) Lei ί ] c l 3 k f l general domain, and let Pfx G Lι Π L2([0, oo), # ) .
<z £ > 0 such that ifuoeV and Pf G Lx Π L2([0, oo), jff) vwYA

- p/i(ί)iι + ι|p/ω - PΛωii2]* < s,

r^ /.s α unique global strong solution u o/(1.6)-(1.9) with data (n0, Pf), and
an M(δ) —> 0 αj δ —> 0 ŵc/z

A similar abstract stability result in W1 is given in [22], but no attempt is made
to identify reference solutions.

We remark that it is possible to allow domains Ω which rotate at constant speed,
since this results in a harmless linear term b x w o n the right-hand side of Eq. (1.1),
for some constant b G l 3 . Theorem 1 carries over to this situation as long as |b|/z/
is sufficiently small, i.e. slow rotations and/or sufficiently viscous fluids.

The crucial condition (1.11) is satisfied by all known examples of global strong
solutions with zero forces. See the examples in Theorem 3 below.

For strong solutions, (1.11) is equivalent to the condition

v G Lq([0, oo),Lp(Ω)), - + - = l , 3 < p < oo , (1.14)
v q

the local version of which describes a uniqueness and regularity class for weak
solutions, [11, 13, 16, 21, 2, 17]. The extremal case, p = oo , can also be included if
we replace L°° by the space of continuous functions vanishing at infinity. We have

Theorem 2. Suppose that Ω is R3 or a domain for which (1.10) holds, and that the
external force is zero. For global strong solutions o/(l.l)-(1.4) in the class described
in Theorem 1, conditions (1.11) and (1.14) are equivalent.

An application of Theorem 1 to some situations where global solutions are known
to exist gives the following:

Theorem 3. (i) Let Ω be obtained by rotation about the x3-axis of a planar domain
D lying in the half plane {x2 = 0, xx > 0} at a positive distance from the x3-axis.
Let Pfx = 0 and suppose that v0 G D(A) is rotationally symmetric, i.e. expressed in
cylindrical coordinates υ0 is independent of the angle of rotation φ about the x3-axis.
Then there is a δ > 0 such that for any u0 G V and Pf G L2([0, oo), H) satisfying

oo

\K-VQ\\HX+ I \\Pf(t)\\2dt<δ,

0

there is a unique, global, strong solution u o/(1.6)-(1.9).
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(ii) Let Ω = R3, let Pfx = 0, and suppose that v0 G D(A) Π H4(R3) is axially
symmetric, i.e. expressed in cylindrical coordinates v0 is independent of the angle of
rotation φ about the x3-axis and the component ofv0 in the φ direction is zero. Then
there is a δ > 0 such that for any u0 G V and Pf G L1 Π L2([0, oo), H) satisfying

oo

I k - <>ollHi + J[\\Pf(f)\\ + I|p/ωιι2]<ft < s,
0

there is a unique, global, strong solution u o/(1.6)-(1.9).

(iii) For a > 0 and 0 < R < oo , let

Ω = {(xux2,x3) : 0 < x3 < 2τr/α, r = \jx\ + x\ < R} .

Set (if R < oo) Γ = {x e Ω : r = R}. Let n G Z \ {0} Z?e g/v̂ λz αrcd υ 0 Z?e α helical
function, i.e. expressed in cylindrical coordinates υ0 depends only on r and nφ + 0^3,
w/ίΛ v0 G Hι(Ω), V v0 = 0, α«J satisfying the boundary condition

Then there is aδ > 0 S«C/J ίAαί '/-P/ ^ ^ 2([0, 00), H) anduQ G Hι{Ω) with V-u0 = 0,
satisfying the boundary conditions (1.15), and

0

then there is a unique, global, strong solution u of'(1.6), (1.7), (1.9), (1.15).

In the case of two space dimensions, the global existence of strong solutions for
arbitrary divergence free initial data was first established by Leray [10]. With a little
extra regularity on the inital data, the 2D solution decays in L°°(R2), see [6, 7, 15],
which permits 3D perturbations of the initial data.

Theorem 4. Let v0 = (%,%>) G Lι(R2) Π Hι(R2) with V v0 = 0. There is a
δ > 0 such that if w0 G V and | | W O | | H I ( R 3 ) < δ, then (1.1)—(1.4) has a unique
global strong solution with data (u0, f) = (v0 + wo,O), where vo(xl,x2,Xi)) =
(vm(xl,x2),vO2(xvx2),O).

Notice that condition (1.11) can not hold for the 2D flow v(t, •) since the iΛnorm
is understood to be in R3. Instead, we measure the decay of the reference solution
v(t, •) using (1.14) with (q,p) — (2, oo). The need for this decay explains the additional
requirement that υ0 G Lι(R2). In fact, v0 G Lp with 1 < p < 2 would suffice.

2. Proof of the Theorems

Proof of Theorem 1. Under the assumptions made on ^ 0 and Pf, there exists a
local strong solution u G L°°((0,T),V0 Π L2((0,T),D(A)) of (1.6)-(1.9) for some
T = Γ ( | | V Ϊ Z O | | ) > 0, (see for example [1, 19]). This observation shows that in order
to extend solutions globally it suffices to control ||Vit(£)|| uniformly on the interval
of local existence. For this purpose, let w := u — υ. Then w satisfies

wt
P[(w V)w + (w V)υ + (v V)w)] = Pf - Pfλ (2.1)
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with initial value w(0) = w0 = u0 — υ0. Observe that u does not appear explicitly in
(2.1). Multiplying (2.1) by Aw(t) and integrating over Ω, we obtain

- —||Vw||2 + \\Aw\\2 + / P((w - V)w) Aw+ P((w V)v) Aw
2 at J J

Ω Ω

•=1\ ~i7.

+ ί P((v • V)w) • Aw = f(Pf -Pfγ)- Aw (2.2)
Ω Ω

:=/ 3 : = / 4

In order to estimate /j—/4 we need to collect a few interpolation inequalities for
functions g e D(A). First, under the the assumption that dΩ is uniformly C 3 , it was
shown in Lemma 1 of [4] that

\\dlg\\<C(\\Ag\\

Since D(A) c PL2(Ω), we may integrate by parts and use Cauchy-Schwarz to get

= - Δgg = - ΔgPg
J J
Ω Ω

PAgPg<\\Ag\\\\g\\

Ω

<I I^ I I 2 + NI 2 (2.3)
Therefore, in general, we have the following inequality:

\\dlg\\<C{\Ag\\ + \\g\\). (2.4)

Now in the case where (1.10) holds, it is clear from the argument of (2.3) that

\\g\\ + \\Vg\\ < C\\Ag\\. (2.5)

So (2.4) can be improved when Ω satisfies (1.10) to

\\d2

ijg\\ < C\\Ag\\. (2.6)

This holds in M? as well, as can be seen from the Fourier transform.
Next, we have

Ugh* <c| |V0| |, (2.7)

which holds for any domain Ω. Now by the Gagliardo-Nirenberg inequality in M3,
(2.6), and (2.7), we have

IMILOO < CWgfjlWd^gfl1 < CWgW^WAgW1/2 < CHVpH1/2!!^!!1/2 . (2.8)

Hence, using the Calderόn extension theorem (see for example [18], Chapter 6,
Theorem 5) and then (2.4), we obtain for all of the domains under consideration

llσllroo <

(2.9)
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In the case when (1.10), and hence also (2.5), are true, we see that (2.8) holds.
Once again, turning first to the case Ω — M3, we obtain from Gagliardo-Nirenberg

and (2.6)
IIVs||L3 < c\\\?g\\l'2\\%j9\\1'2 < c\\v9\\ι'2\\Ag\\1'2. (2.10)

in the general case, we can apply the Calderόn extension theorem and (2.4) to get

(2.11)

which, exactly as above, improves to (2.30) in the case (1.10) where is available.
Now, we first consider case (i) where (1.10) is valid. Hence, Ω is such that (2.8)

and (2.10) hold. IX-IA are estimated as follows.

\h\<C\\W\\Le\\Vw\\L,\\Aw\\

<C\\w\\L6{\\Vwγ'2\\Aw\γ'2)\\Aw\\

(ε > 0 arbitrary), (2.12)

(2.13)

< Ce | |Vv||4 | |V«;||2 + ε||J4«;||2, (2.14)

\h\<CE\\Pf-Pfλf+ε\\Awt. (2-15)

Choosing ε sufficiently small, using (2.5), and defining h(t) := ||V^(ί)[|2, we have
proved with (2.2), (2.12)-(2.15) that

ti{t) + Coft(ί) < C[h\t) + \\Vv(t)\\4h(t) H- \\Pfit) - PfM\2] (2-16)

holds with positive constants Co, C. Let

s > 0

s

/' e c° r / 2 | |P/(τ) - Pfx(τ)\\2dτ .

J

Observe that λ < C J \\Pf(τ) - P}x{τ)\\2dτ holds. If now
o

llV^olP + λ - L _ ( ^ ) (2.17)

0

is true, then we infer that

(2.18)

holds for 0 < s < tι and some tx > 0. Thus, (2.16) implies for s < t v

h'(s) + ̂ h(s) < C[\\Vv(s)\\4h(s) + \\Pf(s) - P/,(s)||2] .
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Consequently, by a generalized Gronwall inequality, we obtain

h(s) ft(0)

exp ||Vυ(τ)||4dτ

0<s<t{. Hence

h{s)^2[2C)

1/2

holds for all s up to t{. We conclude that (2.18) holds on the domain of definition of
h, therefore

ί OO x

C J \\Vυ(τ)\\4dΛ
o J

is uniformly bounded by assumption (1.11). || Vυ(ί)|| is also uniformly bounded as can
be seen by multiplying the equation for υ by Aυ and using (2.12), f

o
oo. So we conclude that ||Vtt(ί)|| is uniformly bounded. Thus, u exists globally.
The remaining statements in Theorem 1, (i) are now obvious, δ in (1.12) is chosen
according to (2.17).

Now we turn to the general case (ii). Multiplying the differential equation for w
by w(t), integrating over Ω and using

P((w

Ω
- / •

w= P((υ V)w)

Ω

as well as

J P((W
Ω

w I (w - V)v • w

< C\\w\\2

LA \\Vv\\

<C\\w\\^2\\w\\%2\\Wv\\

< C\\w\\1'2 \\Vw\γ'2 ||Vυ

(2.19)

we obtain

^IKί)ll2 + c0l!
at

This implies that

lk(*)ll < (

for all t > 0.

\\Pf(t) -

J ||i7(τ)-.P/1(τ)||dτJ exp | cj || Vv(τ)\\4dτ I, (2.20)
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Observing that the estimates for Iχ-1^ in (2.12)—(2.15) literally carry over, except
for the addition (in the case when Ω φ IR3), of a term of the form C||u>||2 due to the
use of (2.9) and (2.11) instead of (2.8) and (2.10), we obtain

^ | | V u ; α ) | | 2 + C0\\Aw(t)\\2 <

Since
\\Vw(t)\\2<C(\\Aw(t)\\2 + \\w(t)\\2),

this implies

^||V«;(ί)||2 + C0\\Vw(t)\\2 < C[\\Vw(t)\\β + \\Vv(t)\\4\\Vw(t)\\2

+ \\w(t)f + \\Pf(t) - PfM2} • (2-21)

{ oo ^

C J \\Vv(τ)\\4dr } we have using (1.13),
o J

(2.20), and (2.21),
ti(t) + Coh(t) < C[h\t) + \\Vv(t)\\4h(t) + \\Pf(f) - Pfx(t)\\2 + tδM)2} . (2.22)

The boundedness of h{t) now follows by GronwalΓs inequality, for 8 sufficiently
small.

This completes the proof of Theorem 1.

Proof of Theorem 2. Now we turn to the proof of Theorem 2. Assume υ £
Lq([0, oo), LP(Ω)) for some p, q satisfying 2/q + 3/p=l,pe [3, oo].

A standard argument shows that for ε > 0,

^ V ? ; | | 2 + l l^ l l 2 < C\\(v V)v\\ \\Av\\ < Cε\\(v V)^||2 + ε | | ^ | | 2 .

Combining the estimates

\\(υ • VHI2 < C\\v\\2

LV \\Vv\\\r , 1/p + 1/r = 1/2,

\\Vυ\\Lr < Ciμt fllVt ll1-9 , θ = 3/p=l-2/q,

the second of which follows analogously to (2.10) since 2 < r < 6, with Young's
inequality it follows that

Now inserting this estimate in the above inequality we infer that

(
f \\v(r)\\lPdτ) .

o /
Hence

oo

Γ f
/ ||Vv(r)|| dr < sup||Vv(t)|| / ||Vi>(τ)|| dr < oo.

J t>o J
0 0
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Now we assume that

oo

ί\\Wv(t)\\4dt<oo.

0

The same argument used to estimate I{ shows that sup ||Vv(t)||2 < oo and conse-
ί>0

oo

quently J \\Av(τ)\\2dτ < oo. For p > 6 it follows that
o

oo

\\Vυ(τ)\\q(l/2+3/p)\\Aυ(τ)\\q(1/2'3/p)dτ

o

( oo v 1/α , oo v [/β

ί IIVυ(τ)\\aq(i/2+3/p)dr ) ( ί \\Aυ(r)\\2dr )
J / W /

with a = 4/q, therefore aq(l/2 + 3/p) > 2 which completes the proof for p > 6.
The proof of the case p < 6 combines the previous argument with the inequality

\WLP<C\\V\\°\\V\\1-6°,

where θ = 3/p- 1/2.

Proof of Theorem 3. Theorem 3 follows immediately from Theorem 1. Part (i) depends
on Theorem 6 of [8], p. 162, which guarantees the global existence of rotationally
symmetric strong solutions v with \7v G L2 Π L°°([0, oo), L2(Ω)) which implies
(1.11).

Part (ii) depends on the global existence result Theorem 3.1 for axially symmetric
solutions in [20]. Notice that υ0 G ί ί 4 (R 3 ) is sufficient to satisfy the hypotheses of
[20]. Equation (1.11) is verified by showing again that Vυ G L°°([0, oo),L2(i7)).
This follows by an energy estimate for the scalar vorticity equation (1.6) in [20],
using the bounds (1.5) and (1.12) of [20] as well as an inteφolation inequality for
cylindrically symmetric functions.

Part (iii) follows analogously from Theorem 1 (i) by using the global existence
results of [12] (for zero forces and no rotation 6 = 0) observing that Theorem 1
carries over to the boundary conditions (1.15). For the case where the domain Ω is
a periodic strip, i.e. Ω = { ( i j , ^ , ^ ) : 0 < x3 < 2τr/α}, with periodic boundary
conditions, we mention that the ideas of [12] can be also applied to construct a global
solution in the appropriate class to which part (ii) of Theorem 1 applies.
Proof of Theorem 4. Let υ = (υλ, υ2) be a strong solution of the 2D Navier-Stokes
equation with data v0 = (υ01, v02) e V(R2) Π Lι(R2). Thus, we have

v G L°°([0, oo), V) Π L2

OC([0, oo), D(A)).

By the smoothing properties of the Navier-Stokes equation, we know that

Δυ(t) G L2(IR2) for all t > 0,

and from the vorticity equation in two dimensions we also know that

oo

\\Δv(τ)\\2dτ < oo.

0

oo
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Moreover, using this estimate and the decay of solutions [15, 7, 6],

where d = min{l~, l/p' - l/p + j/2}, p e [2,oo], - + — = 1, and j = 0,1, it

follows that
oo

\\Vv(τ)\\LHR2)dτ < oo (2.23)

o

and
oo

(2.24)

We are going to construct a global solution of the form u = v + w9 where
v = (^j, υ2, 0) and w is small in F(IR3). The equation for w is again given by

wt + Aw + P[(ιw V)w + (to V)v + (v V)iϋ] = 0. (2.25)

We claim that for w{t) E F(M3) and v(t) as above, the terms v Vu> and w VΌ lie in
L2(R3) for positive times, and hence, it makes sense to apply the three-dimensional
Helmoltz projection to them. An application of Holder's inequality is enough to bound
the first term:

(2.26)

The second term is estimated by considering the variables xλ, x2 separately from x3:

\\W

Using the Gagliardo-Nirenberg inequality in two dimensions we have that

< l

so if we integrate with respect to x3 and use Cauchy-Schwarz, we obtain

inVυllwy (2.27)

With this observation, the equation for w can be solved locally in V(R3) in a
straightforward manner employing, for example, its equivalent formulation as an
integral equation and standard estimates for the linear heat equation. Thus, it is enough
to get an a priori bound for ||w(£)||#i. This will be done in a fashion similar to the
proof of Theorem 1 part (ii).

Multiplying (2.25) by w and using (2.19) again leads to

After an integration by parts and an application of Young's inequality, this last integral
is bounded by C||v||£oo||u>||2 + ε||Vu>||2. We obtain the differential inequality
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which immediately gives the bound

o

On the other hand, multiplication by Aw(t) yields

as in (2.2). Now

l^l < C\\Vw\\6 + ε\\Aw\\2

just as in (2.12). By (2.27), we get

J \\v(τ)\\2

LOOdτ\ < C\\w(0)\\2 . (2.28)

< C\\w\\2

and by (2.26),

|/3l<cH2

Loo||vHI2 + ε|μHI2

Therefore, we have deduced the inequality

jt\\Vw\\2 + C0\\Aw\\2

< C[\\Vw\\6 + (IMIloo + ||Vt;||4L4(E2))||V^||2 + |M| 2] . (2.29)

It follows from (2.23), (2.24), (2.28), and (2.29) that \\Vw(t)\\2 remains bounded if

ll^o||Hi is sufficiently small as in the proof of Theorem 1 (ii).
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