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Abstract: We provide a duality between subfactors with finite index, or finite dimen-
sional semisimple Hopf algebras, and a class of C* -categories of endomorphisms.

1. Introduction

The aim of this work is to provide a duality between subfactors with finite index of
an infinite factor M or finite-dimensional (semisimple, complex) Hopf algebras and
a class of C*-categories.

Hereafter we shall restrict ourselves to the case of concrete C* -categories that are
realized by endomorphisms of M [6] and we will provide a general construction of
a crossed product algebra. In the sequel of this paper our duality will be formulated
in terms of abstract C* -categories.

Our main technique is index theory for infinite factors [13, 7, 14], sector theory
in particular, and we rely on the following ideas. Suppose that a subfactor N c M
has been constructed, then M becomes equipped with a distinguished sector (an
endomorphism up to inner automorphisms) λ, the canonical endomorphism of M
into N [17]. The sectors in the irreducible decomposition of X\N then provide the
dual C*-category.

To give insight to this structure let us recall the simple example of a faithful action
a of a finite group G on an infinite factor M with irreducible fixed-point subfactor
N. In this case the sectors in the irreducible decomposition of λ furnish the group G

geG

while the restriction of λ to JV corresponds to the dual G of G
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where the sectors p π of N are naturally associated with the irreducible representations
7Γ of G (cf. Corollary 3.5 or [9, 11]). In this case λ has a meaning of a regular
representation.

A subfactor with finite index gives rise to a family of irreducible sectors and we are
faced with the reverse problem of deciding when a family of irreducible sectors arises
in this way. In other words our problem is to characterize when an endomorphism
λ of M is canonical with respect to a subfactor. Note that this would symmetrically
characterize the situation where λ is the restriction of a canonical endomorphism
λ:M—*M providing a crossed product factor M.

Such a characterization is indeed the core of our analysis and will be dealt with at
three stages. Starting with an infinite factor M and a finite index endomorphism λ of
M we shall give necessary and sufficient conditions on two intertwiners between λ
and Λ2 to ensure λ to be the canonical endomorphism with respect to an irreducible
subfactor N of M, that we construct canonically. More specifically there should exist
an isometry T £ (id, λ) (unique up to a phase for TV to be irreducible) and an isometry
S e (λ, Λ2) such that

(b2) S*λ(T) e C\{0}, T*S e C\{0}.

We arrive therefore at the notion of an irreducible Q-system: a triple (M, λ, 5),
where M is an infinite factor, λ is an endomorphism of M that contains the identity
with multiplicity one (as a sector) and S G (λ, λ2) is an isometry that satisfies the
equations (bx) and (b2) with T the unique (up to a phase) non-zero intertwiner in
(id, λ). By our results, an irreducible Q-system corresponds to an irreducible subfactor.

The two basic intertwiners T and S exist because, by results in [15], they
correspond to conditional expectations. The final projections of T and S are the
Jones projections and the second equations (b2) are essentially equivalent to the Jones
projection relations [13].

Concerning the first line of equations (bj), they are related to the pentagon relations
defining a multiplicative unitary V in the sense of Baaj and Skandalis

Vl2VuV23 = V23Vn

that is associated and determines a Hopf algebra [1].
Indeed equations (bγ) generalize for T and S the notions of fixed and cofixed vector

for a multiplicative unitary, reducing to the latter in the special case of the crossed
product inclusions by a Hopf algebra. Fixed and cofixed vectors thus appear as more
fundamental objects than the multiplicative unitary itself (in the finite-dimensional
case) inasmuch as they are present in a widely more general setting where the Hopf
structure disappears.

We shall characterize the case where the Q-system actually arises by a Hopf algebra
action by the distinguished property of the regular representation

λ2 ^ d - λ,

\2namely λ2 is a multiple of λ, a property related to the Ocneanu characterization (see
the Appendix), that will provide a duality for Hopf algebras.

A starting point in our analysis is the model of Cuntz for regular actions of Hopf
algebras on the C*-algebras (9d [3]. There is a bijective correspondence between uni-
taries of (Ψd and endomorphisms of (9d. Since a multiplicative unitary V corresponds
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to a Hopf algebra [1], Cuntz has analyzed the corresponding endomoφhism of @d,
more precisely the endomoφhism λR associated with the product R — VF of V
with the flip F. Our initial results consist in the inteφretation of this model in terms
of index theory for infinite factors, inspired by the appearance of our formulas for
the conditional expectations [14] in this context. In a suitable GNS representation,
λR will become in fact the canonical endomoφhism with respect to the fixed-point
algebra.

In the case of a compact group, an abstract duality has been obtained by Doplicher
and Roberts [6]; their duality and our duality, both based on C* -categories of
endomoφhisms, rely nevertheless on different viewpoints and methods. Restricted
to the common case of a finite group, they provide different descriptions of the dual
objects and a direct equivalence between them remains an interesting problem.

2. Index of Endomorphisms of @n

Let (9H be the Cuntz algebra [4] generated by the Hubert space H of dimension
d < oo. If {T%, i = 1, . . . , d} is an orthonormal basis of H, the Ti are isometries and

defines the canonical inner endomoφhism of (9H.
If λ, η G End(^ )

i ί) we denote by

^ , η(x)S = S\(x), xe^H} (2.1)

the linear space of their intertwiners (see [6]).
In particular we put

mn = (γ?n, φn) = (iT\ Hn) = HnHn* ,

then Wln is a dn x dn matrix algebra.
If u is a unitary of (9H

XU(T) = uT, T eH

determines an endomoφhism of ΘH and all endomoφhisms of 0H arise in this way
[3].

Let r be the unique tracial state of the UHF algebra

and
ω = T ε

be the state obtained by composition with the conditional expectation of (9H onto 9Jt,

ε —

τ

We set
MΞd^f, M =•
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where πω is the associated faithful GNS representation and we shall omit the symbol
πω for shortness.

Then ω is a KMS state for λ t, t e T, M is a ///i factor and Mω is a IIλ factor
(cf. [2, 4]). *

Lemma 2.1. IfuEUJlisa unitary then ω - \u = ω.

Proof. \ u and λ ί ? t G T, commute because u G 9Λ, therefore λ n commutes with ε.
Now

\UW) c α«

(see Lemma 2.2) hence r λ n = r on 971 by the unicity of the trace and

ω λ u = τ ' ε - λ u = τ - λ u ' ε = τ - ε = ω . D

Lemma 2.2. IfuE Wln is a unitary, then

λuWk) c OTn+fc_!.

Proof. By [3], if x G SUl̂  then

λu(x) = uy>(u)... y ) * 5 " 1 ^ ) ^ " 1 ^ * ) ...u*. (2.2)

Since (p acts as a shift on QJl, we have φk(UKn) C OT^+fc, thus all elements in (2.2)
belong to Tln+k^v D

Lemma 2.3. If u ζ $Jl is a unitary, Xu extends to a normal endomorphism of M.

Proof. Since ω is a KMS state for λ t, ω is faithful on M, hence \ u extends to M
by its cj-invariance. D

We still denote by Xu G End(M) the extension of λu to M given by Lemma 2.3.

Propositon 2.4. IfuG 9Jln is a unitary, then

d(λu) <dn'1, (2.3)

where d denotes the dimension of λu (i.e. d(Xu) = Ind(λn)1 / / 2 with Ind ί/ze minimal
index). The bound (2.3) w optimal.

Proof. Since λn commutes with \t, it follows that λt leaves λ u (M) invariant and by
the Takesaki theorem [24] there exists a normal conditional expection E:M —> λ u (M)
leaving ω invariant.

We first show that d(λu\Mω) < dn~ι. Note that E\Mω is the r-preserving
conditional expectation of Mω onto λu(Mω).

Fix k e N and let Ek denote the trace preserving expectation Tln+k__l onto
\umn) (Lemma 2.2).

a : | | 2 < | | 2 / - α ; | | 2 , Vy E X

because E is an orthogonal projection in L2{N, r), hence

\\E(x) - x\\l < \\Ek(x) - x\\l

or
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If moreover x > 0, the Pimsner-Popa inequality [22] yields

\\E(x)\\2>\\Ek(x)\\2>μ\\x\\2,

where

thus, since k is arbitrary,

We shall now show that
(2.4)

Since \u(Mω) C Mω is the fixed point of λu(M) C M with respect to λt, t G T,
Eq. (2.4) would follow if {λ t,t G T} restricted to a dominant action on λu(M) [14];
this is not true because M ω is a finite factor, but {λ t,t G T} has eigen-isometries
for all positive integers by definition, hence if 3? is type 1^ factor, λ t ® id defines
a dominant action on λ n (M) (8) J^" and

d(λ«lMω) = d(K ® id |M ω®jr) - d(λu 0 id) = d(λ t t).

To see that the bound is optimal, note that d{φn) — dn and

φn = λu with u = φn(F)φn-\F)...F emn+ι. D

Remark. It is a natural problem to understand the condition for Xu to admit a conjugate
endomorphism within the C* -algebra ^ ^ and to check when the Watatani index
occurs [25]. A related problem is to find a formula for the index

Ind(λ J - F(u)

in terms of an explicit function F for a general unitary u G &H. Examples with
irrational index are given in [12].

We conclude this section with the following proposition.

Proposition 2.5. Ifue <9H, then

λu(M)' ΠM = {x G M, φ(x) = u*xu] (2.5)

ifmorevoer u G Wln, then XU{M)' Π Mω C Tln_ι.

Proof. ifxeM then x G \u{M)r iff

xλu(T) = λu(T)x) TeH,

namely xuT = wTx = uφ(x)T, that holds iff x?i = uφ(x), namely iff

φ(x) = x , (2.6)

where ^ = ad(tt) y?, proving (2.5).

Concerning the second statement, let u G OTn and Ψ be the completely positive
map

Ψ = Φ ad(w*),
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where Φ is the minimal left inverse of φ,

1 d

Then Ψ is the minimal left inverse of ψ and preserves ω because u belongs to the
centralizer Mω of ω [2] and ω Φ = Φ.

Since Φ:fΰlk -> SDrlfc_1, ifc G N, and w G 9Λn,

Ψ(UΆk) = Φ(βJlk) C 9Jΐ/c_1 , k > n. (2.7)

By the mean ergodic theorem, the weak limit

k

lim - Y^ Ψι(x) = P(x), x G M ,
fc->oo fc ^—'

1=1

where P is a normal conditional expectation onto the fixed-points Mψ of Ψ.
By (2.7) P(U9ttfe) C OTn_!, thus P(M ω ) C OTn_1? and we have

λu(M)f ΠMωcMφΠMωC P(MJ C OTn_1 ,

where the first inclusion is checked evaluating Ψ on both sides of (2.6). •

Remark. If E (or equivalently E\Mω [14]) is minimal, then \U(M)'ΉM = λu(M)'Π
Mω. Indeed in this case E\XuiM),nM is a trace, thus \u(M)f Π M is contained in the
fixed-point algebra Mω of the modular group λ t of M. This case will occur in the
next section.

3. On the Cuntz Model

Baaj and Skandalis [1] have in particular described a finite-dimensional Hopf algebra
in terms of a multiplicative unitary. Let again H be a Hubert space of dimension
d < oo and V a multiplicative unitary on H <g> H. By definition V satisfies the
pentagon equality

Following J. Cuntz, we consider the unitary R = VF, where F is the flip symmetry
ofH®H and the endomorphism λR of &H associated with R G 9Jl2. The pentagon
equality is then equivalent to the following property for λR [3],

Proposition 3.1. d(\R) = d.

Proof. By Eq. (3.1) and the multiplicativity of the dimension [8,16J

and the proposition follows because d(λR) is finite by Proposition 2.4. D

The fixed point algebra (9y is defined by

&v = {χe0H, φ(χ) = λβ(χ)}.

We put TV = όy. The argument showing (9V Π &H = C [3] can be extended to the
following
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Proposition3.2. Nf ΠM = C.

Proof By Proposition 2.5, since λR(M) C TV, we have

J ϊ ' n M ω C λ Λ (M)' n M ω C 2 ^

let 5 be a unit cofixed vector for V [1], i.e. 5 G &v Π H\ if x G TV' Π Mω, then x
commutes with 5, hence x = S*xS and x eC because x G SDtj.

Now NfΠMω = C is the fixed-point algebra of N'ΠM with respect to {λt, ί G T}
and Λ̂ ' Π M is finite-dimensional because d(\R) < oc, therefore {λt, £ G T} is inner
and ergodic on N' Γ) M and this is possible only if N' Π M = C. D

Corollary 3.3. λR(NY nM = mv

Proof We have \R(N)' ΠM = φ(N)' ΓΊ M that contains ffl{. Let x e M commute
with φ(N),

xφ(y) = φ(y)x, y^N,

then multiplying by 5* on the left and by Sj on the right the above equation we have

hence S*xSj = α^ € C by Proposition 3.2.
It follows that

ι,3 i,3

Since H is finite-dimensional, V is automatically irreducible up to multiplicity [1].
We now assume that V is irreducible.

Proposition 3.4. \R{M)' Π N — C, provided V is irreducible.

Proof Let x G \R(M)' Π N. By Corollary 3.3 x G ^ . Now φ(x) = λβ(x) because
x £ N, hence

* (3.2)

or equivalently
FVFx = xFVF, (3.3)

namely x commutes with W = FV*F.

On the other hand φ(x) = R*xR by Proposition 2.5, hence

FxF = <p(z) = β*xi?

or
x F = y χ . (3.4)

Since V is irreducible, (3.3) and (3.4) imply x G C. D

Corollary 3.5. There is a natural correspondence between subsectors of λR fresp. of
λR\N) and subrepresentations ofW = FV*F fresp. ofV).

In particular the subsectors of λR have integral dimension and

λR =

Proof. If e G \R(M)r Π M is a projection, e commutes with W because Eq. (3.3)
holds as above and e G (H, H) by Corollary 3.3, hence e defines a subrepresentation
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of W. Conversely, if a projection e G (H, H) commutes with W, then (3.3) and (3.2)
hold, hence e G \R(M)' (Ί M by Proposition 2.5. The rest is a consequence of the
Frobenius reciprocity theorem, see Sect. 6. D

Remark. Given a finite-dimensional Hopf algebra 21 and an irreducible representation
πk of 21, Corollary 3.5 provides an irreducible sector ρk (hence an irreducible subfac-
tor) associated with πk. The corresponding invariants (fusion rules and connection)
are the ones inherited from πk, in particular the subfactor has finite depth.

We note that the above construction provides a model for prime actions of any
finite-dimensional Hopf algebras on a AFD factor, see [20, 23] for the unicity of such
actions.

4. A Characterization of the Canonical Endomorphism I.
First consequences

In this section we give a characterization of the canonical endomorphism that we
shall need for our analysis. Recall [17, 18] that if iV C M is a inclusion of properly
infinite von Neumann algebras the canonical endomorphism 7: M —• TV is defined by

η(x) = ΓxΓ* , xe M ,

where Γ = J^JM *S m e product of the modular conjugations of TV and M. Then 7
maps M into TV and it is well defined up to inner automorphisms of TV.

Proposition 4.1. Let TV c M be an irreducible inclusion of factors with finite index
and λ an endomorphism of M with λ(M) C TV. Then X is a canonical endomorphism
of M into TV if and only if
a) λ(M)' n TV = C,
b) λ ^ i d .

Proof The only if part was shown in [14, 15]. For the if part, we first assume that
N is isomorphic to M, namely N = ρ(M) for some ρ e End(M). Then

is an endomorphism of M and it is irreducible because

η(M)f Π M = ρ~ι(X(M)f Π ρ(M)) = C.

Since ρη = λ >~ id, η is a conjugate of ρ, namely λ = ρρ and therefore λ is a
canonical endomorphism of M into TV = ρ(M) [15].

In case N is not isomorphic with M we choose a factor X such that MQ = M®X
is isomorphic to iV0 = TV 0 X [16] then λ 0 id is the canonical endomorphism of M o

and 7V0 by the above argument, hence if 7: M —>• N is a canonical endomorphism,
then λ 0 id is conjugate to 7 0 id by a unitary in iV0, therefore λ is conjugate to 7
by a unitary in N and this entails that λ: M —> N is a canonical endomorphism by
the Radon-Nikodym property of the canonical endomorphism [18]. D

Note that if condition a) is dropped in Proposition 4.1, then λ still contains the
canonical endomorphism of M into TV.

The case of a reducible inclusion of factors in the above proposition can be handled
as follows.

Proposition 4.2. Let N c M be an inclusion of infinite factors and λ G End(M) with
λ(M) C TV.
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There exist isometries T G M, S G TV with

λ(x)T = Tx, xeM, (4.1)

X(x)S = Sx, xeN, (4.2)

and

T*5 G C\{0} , S*λ(T) G C\{0}

if and only if X w α canonical endomorphism of M in N and N C M has finite index.

Proof As before we may assume that N = ρ(M) for some ρ G End(M). If Eqs. (4.1)
and (4.2) hold, setting η = ρ~ι X we have

ρη(x)T = λ(x)T = Tx , Ϊ E M ,

= Q~\Sλ(ρ(x)) = ρ-\S)ηρ(x),

and £ and 77 are conjugate because the conditon in [15, Theorem 5.2] characterize the
conjugate sector, see [10]. The converse follows by reversing the argument. D

Remark. Proposition 4.2 extends to the case N is a von Neumann subalgebra of M
with non-trivial center: the conditions on the intertwiners in the statement still entail
that λ is the canonical endomorphism of M into iV, essentially by the same proof
[10]; also in this case the index is a scalar.

Coming back to the context of last section with M — &*# and N = θy we have:

Corollary 4.3. The extension of X of XR to M is a canonical endomorphism of M
into N.

Therefore the inclusions

M D N D λ(M) D φ(N) D ...

provide a Jones tunnel.

Proof. We may apply Proposition 4.1 because a fixed vector T G H for V belongs
to (id, λ); moreover the irreducibility requirements are fulfilled because of Proposi-
tions 3.2 and 3.4. The rest follows because the Jones tunnel and the tunnel associated
with the canonical endomorphism coincide, see [14]. D

We now derive some consequences of the above corollary. We keep the notations
of the previous Sects. 2 and 3.

Let T G H and S G H be a fixed and cofixed vector for V respectively. Then T
and 5 satisfies (4.1) and (4.2). Because of corollary 4.3 we may rely on the analysis
made in [15]. In particular T and S are the unqiue isometries (up to a phase factor)
obeying the relations (4.1) and (4.2) and we may choose the phase so that (compare
with Proposition 4.2) we have the relations

Γ*5=^-, S*\(T) = -Ί (4.3)
a a

because d is the dimension d(λ) of λ. The Jones projections for the tunnel in
Corollary 4.3 are

e = Γ Γ * , f = SS*
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and Λ(e), λ(/), Λ2(e)... and so on. The Jones relation efe = — e is

TT*SS*TT* = -ί TΓ* (4.4)
β

that follows by (4.3), but
T*SS*T= \(S,T)\2 , (4.5)

where (S,T) is the scalar product in H, hence (4.4) and (4.5) gives | (5,T) | = - .

Corollary 4.4. Lei V be an irreducible multiplicative unitary on a Hilbert space
with άim(H) — d < oo.

There exist a unique (up to a phase) fixed unit vector T and a unique cofixed unit
vector S. Their scalar product satisfies

\(S,T)\=1-. (4.6)

Proof. We have just seen that (4.6) holds if S is a cofixed unit vector and T is a
fixed vector. On the other hand (co-)fixed vectors form a linear space that must be
one-dimensional for (4.6) to be satisfied for all norm one elements.

Alternatively, the unicity of the (co-)fixed vectors follows from the multiplicity
one in [15, Theorem 4.1]. D

Corollary 4.5. M is the crossed product of N by a finite-dimensional Hopf algebra.

Proof By a result of Ocneanu [21] (see the appendix for its extension to the infinite
factor case), the statement is equivalent to the fact that TV C M has depth 2, namely
\(N)' Π M is a factor. But λ(TV)' Π M = Wlγ, by Corollary 3.3. D

Lemma 4.6. (9H Π TV = &y.

Proof. The inclusion @v c (9>

H Π TV is obvious. To check the reverse inclusion let
x £ (9H Π N. The conditional expectation E of M onto TV

maps ΘH onto @v (compare the formulas for the conditional expectations in [14, 15]
and in [3]), hence x = E(x) e Θv. D

Denote now
M 2 n = λ n ( M ) , M 2 n + 1 = λ n C Λ 0 .

Proposition 4.7. An = M'n Π M C @H and Bn = M'n Π TV c @v.

Proof. We have

A2n+\ = χn(N) r\M = φn(N)' ΠM = mn

= (Hn,Hn)d&H, (4.7)

where φn{N)f Π M = 9Jίn as in Corollary 3.3.
On the other hand i?n C An+ι hence

5 n c ΘH n iv = ^

by the above lemma. D
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Let A — UA~ (uniform closure). Then by (4.7)

A = U97ί- = SDt

and &H is generated by A and Γ, more precisely (9H is the crossed product of Wl by
the shift φ, see [4J.

If we denote
J5 = UJ3- ,

then

because the conditonal expectations ε = j λt of 6H onto 9Jί and E = S*λ( )ί> of
d ^ onto < /̂ commute.

Moreover ^ is generated by B and S, for example because any x e (9V can be
written as

x = -ΊE(xS*)S
a

by [15], where E is the dual expectation of @H onto λ(^%), or by [3, Proposition 3.4].
The following corollary extends a result in [5] concerning the case of a group

action. Our proof was inspired by a conversation with Izumi on his model [12],
where this isomorphism is realized from the start.

Corollary 4.8. Sy is isomorphic to &u.

Proof. With the above premises, it is sufficient to show that B is a UHF algebra of
type d°° and S implements the shift on B.

We shall show that B2n is isomorphic to Wln_{; since S implements λ and λ acts
as a shift on 9Jt, the proof will be complete.

Let Γ = JNJM implement λ by Corollary 4.3. We have

B2n = λ n (M) ' Π TV

= rnM'r-n n N
^ M' Π Γ~nNΓn

<* JMM'JM Π JMΓ-nJNNfJNΓnJM

= M Π rn-ιNfΓn~ι = \n-ι(N)' ΠM = Wln_ι ,

where the first = means isomorphic, the second = means anti-isomorphic and we
made use of the relation JMΓ~nJN = Γn'x. D

It follows that (0y, A β |^ ) is isomorphic with (<^#, Aβ*).

5. A Characterization of the Canonical Endomorphism II

In this section we shall give a characterization of the canonical endomorphism of an
infinite factor M without reference to the subfactor TV, that will appear as an output
of our construction.

Note that, if AT is isomorphic to M (one can always reduce to this case by a
tensoring trick), our result may be reformulated as a condition for an endomorphism
λ to admit a "square root"

λ = ρρ.
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Theorem 5.1. Let M be an infinite factor and λ G End(M) an endomorphism of
M with finite index. The following are equivalent:
(i) There exists an irreducible subfactor N C M such that λ is the canonical

endomorphism of M into N.
(ii) a) λ >- id with multiplicity 1, i.e. there exists a unique isometry T G (id, λ) (up
to a phase).

b) There exists an isometry S G (λ, λ2) such that

(b2) S*λ(T) G C\{0} , T*S G C\{0} .

Moreover if (ii) holds then the subfactor N is canonically constructed from λ and
S. In fact N is the unique subfactor of M such that Eqs. (4.1) and (4.2) hold.

The implication (i) =4> (ii) has been shown in Proposition 4.2. We now assume that
(ii) hold. To obtain (i) we need a few lemmas. Let us define

then E is a completely positive normal unital map of M into M.

Lemma 5.2. E is a faithful normal conditional expectation of M onto a von Neumann
subalgebra N of M.

Proof. We have to show the relation

E(E(x)y) = E(x)E(y), x,y G M, (5.1)

in fact this implies E2 = E and that the range of M

N = E(M)

is an algebra, hence a von Neumann subalgebra because E is involutive and normal.
To check (5.1) we use the relations (bj) as follows:

E(E(x)y) = S*\(S*\(x)Sy)S

= S*λ(S*)λ2(x)λ(S)λ(y)S

= S*S*λ2(x)λ(S)\(y)S

= S*λ(x)SS*λ(y)S = E(x)E(y).

It remains to show that E is faithful. But if x G M and E{x*x) = 0 then

5* \(x*x)S = E(x*x) = 0

thus x = 0 because T*S G C\{0}. D

Notice that λ(M) c iV because

E(λ(x)) = Sf*λ2(x) S = λ(x), x G M ,

hence λ restricts to an endomorphism of N.

Lemma5.3. 5 e (λl^i
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Proof. First of all S e N because

E(S) = S*λ(S)S = S*S2 = S,

moreover if y G N we may write y — E(x) for some x G M, therefore

λ(y)S = λ(E(x))S

= λ(S*λ(x)S)S = \(S*)\2(x)λ(S)S

= λ(S*)X2(x)SS = λ(S*)S\(x)S

= SS*λ(x)S = SE(x) = Sy,

and the proof is complete. D

Lemma 5.4. λ is the canonical endomorphism of M into N.

Proof. The condition (b2) implies the statement by the Proposition 4.2 and the
previous lemmas. D

Lemma 5.5. N is an irreducible subf actor of M.

Proof. Since A ^ id with multiplicity 1, there exists a unique normal faithful
conditional expectation of N' of onto M' [15, Proposition 4.3]. Then Nf Π M C
Z(M) = C [2], namely N is an irreducible subfactor of M. D

Proof of Theorem 5.1. The proof now follows by Proposition 5.5 and Lemma 5.4. D

Remark. The multiplicity 1 assumption for λ y id in Theorem 5.1 is only needed
for iV to be an irreducible factor. If we drop it, the theorem remains true with iV a
von Neumann subalgebra with finite index and T a given isometry in (id, λ).

6. Q-systems, Crossed Product and Hopf Algebras

We begin with a reformulation of the results in the previous section. We define
a (irreducible) Q-system to be a set (M, λ, 5), where M is an infinite factor,
λ G End(M) contains the identity (with multiplicity one), and S G (λ, λ2) obeys
the assumptions (b^ and (b2) of Theorem 5.1 (in the reducible case we should also
fix T, see last remark).

There is an obvious notion of isomorphism between Q-systems (M^A^Sj) and
(M 2,A 2,5 2); in the irreducible case it is an isomorphism of M1 with M2 that
interchanges λ{ and A2 and maps S{ to S2\ there is also a notion of cocycle
equivalence: (Mλ,\x,Sγ) is cocycle equivalent to (M2,A2,S f

2) if there is a unitary
u G M 2 such that (M l 5 λ1? Sγ) is isomorphic with (M2, ad(-u) A2, uλ(u)S2u*).

Theorem 6.1. Given an infinite factor M, there is a natural bijective correspondence
between irreducible subfactors of M with finite index and irreducible Q-systems based
on M. Conjugate subfactors correspond to cocycle equivalent Q-systems.

Proof. Beside Theorem 5.1 we have only to observe that conjugate subfactors
correspond to cocycle equivalent Q-systems, that is an elementary consequence of
the Radon-Nikodym property for the canonical endomorphism [15]. D

Let (M, A, 5) be a Q-system and iV c M the corresponding subfactor of M. Then
A is the associated canonical endomorphism, namely

λ(x) = ΓxΓ* , x G M,
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where Γ = JNJM.We define

(6.1)

the crossed product of M by λ, S. By Proposition 6.1, M is well defined up to
isomorphisms of M C M, moreover the dual Q-system (M, λ, 5), where λ = ad(Γ")

on M and 5 Ξ Γ is the isometry in (id, λ) with T*S = - e M+, is also well defined
within cocycle equivalence.

We also remark that Takesaki duality is immediate in this context and states that the

bi-dual Q - s v s t e m (M, λ, S) is isomorphic to (M, λ, 5); the isomorphism is realized

by 1
In the following we shall characterize the Q-systems arising from Hopf algebra

actions.

Theorem 6.2. Let (M, λ, S) be an irreducible Q-system. The following are equivalent:
(i) λ2 = d λ, namely λ2 is equivalent to λ Θ λ 0 . . . θ λfor some d e N.

(ii) there exists a Hopf algebra 21, such that M is the crossed product of M by a
(faithful) action of%l on M.

Moreover if (i) holds, then 21 is unique up to isomorphism.

Proof. It is possible to give a direct proof of this theorem following the analysis made
in the previous sections. However these arguments also provide a proof of Ocneanu's
characterization (in our setting) that we isolate in the Appendix. By Theorem 5.1, we
may then reduce to this case because of Lemma 6.3. D

Lemma 6.3. Let N C M be an irreducible inclusion of infinite factors with finite
index and \\M —* N the canonical enodmorphism. The following are equivalent:

(i) N C M has depth 2.
(ii) λ2 ^ d- λfor some de N.

(iii) Let λ = Θdτρi be the irreducible decomposition of λ. Then d(ρτ) — dit in
particular d(ρt) is an integer, and the *-semiring generated by { ρ j does not contain
further irreducible sectors.

Proof. (i)<£>(ii): We may assume N = ρ(M) for some ρ e End(M) [16]. Then
condition (i) means that

ρρρ^d ρ (6.2)

and condition (ii) that
Ϋ = d-ρρ, (6.3)

where d = d(ρ)2 by the multiplicativity of the dimension either by (6.2) or by (6.3).
Clearly by multiplying on the right by ρ Eq. (6.2) implies Eq. (6.3). Conversely if

(6.3) holds then
ρρρρ >~ d id . (6.4)

By Frobenius reciprocity (Proposition 6.4), Eq. (6.4) implies

ρρρ y d ρ . (6.5)

Moreover the dimension of both sides of (6.5) is d(ρ)3, hence

ρρρ = d ρ.

(iii): Clearly the completeness requirement on the family {£•} is equivalent
to the fact that λ2 is quasi-equivalent to λ, since λ is selfconjugate, and we may
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therefore assume this property. Thus we have to show that (ii) is equivalent to the
equality d(ρτ) = dτ.

It follows by Proposition 6.4 that X = Σ d(Qτ) Qι satisfies the equation (ii) and
therefore

Σd(ρ%f = d. (6.6)

Moreover, evaluating the dimension on λ = 0 d ^ , we have

Σdid(ρi) = d. (6.7)

By Proposition 6.4, Λ = ρρ y di ρi is equivalent to ρiρ y dτ ρ. Now (ii) holds
iff (6.2) holds, namely iff ]Γ di ρ{ρ — d ρ, thus only if

] = d, (6.8)

but since (6.6) and (6.7) hold, Eq. (6.8) is possible iff d(ρτ) = d{. D

The following proposition expresses the Frobenius reciprocity. In this form it is
implicit in [8]; cf. [6] for the case of C*-categories with permutation symmetry and
[20, 23] for the //j-factor case.

Proposition 6.4. Let M be an infinite factor and ρ, η £ Sect(M) irreducible sectors
with finite index. If a, β are a sum of finite index sectors then

aρβ y η 4Φ άηβ y ρ,

and the multiplicites of the containment are equal.

Proof. By considering irreducible subsectors of a and β we may assume that a and
β are irreducible. Then

aρβ y η <=Φ> aρβή >- id

Φ> ρβή y ά

<£> ρβήa >- id

<̂> βήa y ρ

^ άηβ y ρ

by a repeated use of the characterization of the conjugate sector. The multiplicity is
preserved in all these equivalences. D

We conclude this section with a brief categorical formulation of our duality for
Hopf algebras.

An irreducible Q-system may be described in this case as a tensor (or monoidal)
C* -category of endomorphisms in the sense of [6], stable under composition
(the monoidal operation), equivalence of objects, sub-objects, with finitely many
inequivalent irreducible objects {ρ, = id, ρ2l . . , ρn}, with d{ρi) £ N and a
distinguished intertwiner S G (λ, λ^), where λ = 0 d ( ^ ) ρ i ? satisfying the basic

i

equations (b^ and (b2). We shall say that two C*-categories of this kind are equivalent
if there is a monoidal linear invertible *-functor between them interchanging the
distinguished object and intertwiner. Note that this notion does not require the Q-
systems to be isomorphic. It is not difficult show the following corollary that we shall
consider in more generality somewhere else.
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Corollary 6.5. There is a bijective correspondence between finite-dimensional Hopf
algebras, up to isomorphism, and C* -categories of endomorphisms as above, up to
equivalence.

Appendix. A Proof of the Ocneanu Characterization

The purpose of this appendix is to give a proof of Ocneanu's characterization [21] of
inclusions of factors arising from a crossed product by Hopf algebra, that is suitable
for our analysis.

Our proof, based on sector analysis and the arguments in this paper, works also
for inclusions of infinite factors. The same proof has been noticed on this basis by
Izumi and is implicit in [12].

Let TV c M be an irreducible inclusion of infinite factors with finite index. We
take as a definition for JV c M to have depth 2 that \(N)' Π M is a factor, where
λ: M —• N is a canonical endomorphism.

Theorem A.I. Let N C M be an irreducible inclusion of factors with finite index.
The following are equivalent:
(i) M is the crossed product of N by a Hopf algebra.

(ii) N C M has depth 2.

Proof. The implication (i)=>(ii) is known by duality, cf. [19].
To show that (ii) => (i) we may assume that N and M are infinite (tensoring by a

type loo factor).
Let λ : M —> N be the canonical endomorphism of M into T. There exists a

unique isometry (up to a phase) T with

λ(x)T = Tx, xeM.

Let
H={LeM, X(x)L = Lx VxeN}.

Then H will be a Hubert space of isometries of M, provided we show that the left
support G of H is 1. But G G I J Ξ \(N)r Π M and uGu* = G for all unitaries u
of UJlι because uH — H, hence G belongs to the center of UJlx and G — 1 since <%RX

is a factor.
Clearly

\(x) r= φ(χ) x G TV ,

where φ is the inner endomorphism of M implemented by H.
In particular

\2(x) = φ . \(χ) χ£M, (A.I)

and by the multiplicativity of the dimension this implies d(λ) = d(φ) = d, where
d = dim(ϋΓ). By (A.I) we have (cf. the argument in Corollary 3.3)

λ(M)' Π M C X(N)f ΠM = φ(N)' ΠM = φ(M)' Π M,

that is to say (λ, λ) C (φ,φ). Let S = d E(T), where E1 is the expectation of M
onto iV; by [15] S G iV is an isometry and

\ ( x ) S = S x , x e N
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and

5*T - -Ί, 5*λ(T) = 3 . (A.2)
a a

The projection / = SS* G λ{N)r Γ) N c UJlγ is a Jones projection, hence a minimal
projection of SDtj.

Choose an isometry f e H with TT* = /, then i; = f*S is a unitary in

N' Π M = C, hence 5 = f v G if, in particular since H = 27^ T, we have

5G(λ(iV r ) / ΠM)Γ. (A.3)

Now λ(M) C iV has still depth 2 (see Lemma 6.3) and formula (A.3) applied to
λ(M) C iV gives, with J& the expectation of N onto λ(M),

dE(S) G \2{M)f Π TV c A2(JV)' Π M = φ\N)f Γ)M = (iJ2, H2)S,

but λ(T) = dE(S) because both intertwine λ | λ ( M ) and i d | λ ( M ) , and by formulas
(A.2), hence

X(T)e(H2,H2)S.

It follows that

2 = 1

where {Tz, i = 1, . . . , d} is an orthonormal basis of H.
Then λ restricts to the endomorphism \ R of ^ and since (A.I) holds R = VF,

where V is a multiplicative unitary of H ® H and F is the flip on H ® H [3].
Moreover

is a Hopf algebra (see [3]). The coaction δ of 21 on M is given by λ that maps M
into φ(M) 21 ̂  M (g) 21 because

λ(M) = λ({iV,T}/7) - { (^(^^(T)} ' 7 C {^(M),λ(T)} ; /

and λ(T) = Σ (^(Tί)(^(T;*)λ(T) G y?(M) 21.

The fixed point algebra for δ is by definition

Mδ = {x G M, <5(x) = x 0 1} = {x G M, λ(x) = φ(x)} .

Clearly N C Mδ. The expectation E:M -± N is given by the formula [15]

J5 = 5*λ( ) 5 ,

hence E(x) = x if x G M δ , i.e. Â  = M*5. •
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