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Abstract: We introduce a Poisson structure on a Grassmannian Gΐk(V) on which
the Poisson-Lie group GL(F) acts in a Poisson-Lie way. We discuss the analytic
complications connected with the infinite-dimensional case V = C°°(IR) and show
that an open subset of Gΐk(V) with this Poisson structure is isomorphic to the
Gelfand-Dickey manifold of differential operators of order k with the second
Gelfand-Dickey bracket. In fact we introduce as a consequence a Poisson-Lie
action of an enormous group on the Gelfand-Dickey manifold generalizing (on the
semiclassical level) the Sugavara inclusion.
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94 I. Zakharevich

0. Introduction

In this paper we consider the manifold of differential operators of order n with the
leading term dn. There is a remarkable Poisson structure on this manifold, intro-
duced by Adler [1] (the proof that this structure satisfies the Jacobi relation is due
to Gelfand and Dickey [5]). This Poisson bracket on this manifold is usually called
the second Gelfand-Dickey structure.1 The usual geometrical interpretation comes
from identification of this Poisson manifold with the Hamiltonian reduction from
the dual space of an aίfine Lie coalgebra [3].

A new topic in the theory of this Poisson manifold was introduced by Radul,
who invented an action of the Lie algebra of differential operators on this manifold.
This action does not preserve the Poisson structure on this manifold, however, it
changes it in a quite regular way. This kind of action was introduced first in the
theory of quantum groups (on the semiclassical level) and is called a Poίsson-Lie
action. For this notion to be correct, we should first determine a structure of
bialgebra on this Lie algebra, or, what is the same, a compatible structure of Lie
algebra on the dual space to this Lie algebra.

However, the dual space to the Lie algebra of differential operators is the space
of pseudodifferential operators and this space carries a natural structure of Lie
algebra. In fact this structure is compatible with the Lie bracket on the algebra.
That means that we can correctly define a notion of a Poisson-Lie action of this
algebra on a Poisson manifold.

It was a great surprise when (inspired by A. Givental) Radul discovered that the
specified above action is indeed a Poisson-Lie action. It seems that it is not easy to
explain this fact using the Poisson reduction from the dual space to affine coalgebra.

In this paper we introduce another geometrical interpretation of the second
Gelfand-Dickey structure. We introduce an enormous group GL(CGO(1R)), consider
the usual GL-type Poisson-Lie structure on this group and consider a homogene-
ous space for this group, the Grassmannian of rc-dimensional subspaces in C°°(IR).
The Poisson structure on the group induces some Poisson structure on this
quotient by a parabolic subgroup.

After that it is a good idea to try to write down this Poisson structure in some
coordinate system on this Grassmannian. We use the following coordinate system:
we identify a differential operator of order n with leading term dn with the (n-
dimensional) space of its solutions in CGO(1R). It is easy to see that this correspond-
ence is 1-1 on an open subset of a Grassmannian (some Wronskian should be
non-zero everywhere for a given n-dimensional subspace to be a space of solutions
of a differential equation). We compute the Poisson structure in this coordinate
system (indeed, the space of differential operators with the leading term dn is an
affine space, so we can consider this identification as a coordinate system). What we
get is the second Gelfand-Dickey structure!

Therefore we got the following fact: there is a Poisson-Lie action of an enormous
group GL(C°°(IR)) on the second Gelfand-Dickey structured Now to explain the

1 The first Gelfand-Dickey structure is another topic
2 As it often happens with actions of Poisson-Lie groups, it is a local action: the action of "big"
elements of the group can force a point "to get out of the manifold it lives on." Say, we identify the
Gelfand-Dickey manifold with an open subset of the Grassmannian GrίC^ίlR)), but this open
subset is not stable with respect to the action of GL(C°°(IR))
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Radul action we should only note that the Lie algebra of differential operators is in
fact a Poisson-Lie subalgebra of the Lie bialgebra gI(C°°(IR)). Therefore the
restriction of the action on this subalgebra is (essentially by definition!) also
a Poisson-Lie action.

The last fact is in fact not very obvious. At first sight the bialgebra structure on
the space of differential operators has nothing to do with the decomposition of an
operator into a sum of a raising and a lowering Volterra operator, that is used in the
definition of the Poisson-Lie structure on GL(CGO(IR)). However, the former
structure is indeed a restriction of the latter, and the proof of this fact is given in
Sect. 2.2.

In fact what is announced here is just a simple calculation. The main inspiration
for this calculation was the Radul action. To go from the Radul result to the results
discussed here, we should only note that the Radul action can be extended from the
Lie algebra of differential operators to the Lie algebra of all operators in C°°(R) if
we introduce the identification of the Grassmannian with the set of differential
operators. After that we noted that this action is evidently (if the calculation in the
Sect. 2.1 can be called a calculation in two rows, and it is, if we drop all the
preliminary definitions) a Poisson-Lie action, and the Lie subalgebra of differential
operators is a Poisson-Lie subalgebra.

Another point of view on the identification of the Grassmannian with the set of
differential operators is given in the paper [6]. It is shown there that this mapping
is just a nonlinear momentum mapping for the action of the bialgebra of differential
operators. Let us recall that the usual momentum mapping is defined in the case
when the action of the Lie algebra preserves the symplectic structure. It sends
a manifold into the dual space of some central extension of the Lie algebra. In the
case of the Poisson-Lie action such construction is possible at least in some cases;
however, this mapping sends the manifold to the dual Lie group to some central
extension. We do not want to discuss this notion now, and want only to note that in
the case of Lie algebra of differential operators this dual group is an extension of
the group corresponding to the Lie algebra of integral operators by one-parametric
group ds = es'log(\ s e IR. Therefore an element of this group looks like

(1 + u^'1 + u2d~2 + • •) ds .

The main result of the paper [6] is that the momentum mapping sends an element
of the Grassmannian into the corresponding differential operator, i.e., s = k and
Uι = 0 for I > k. Therefore the above identification is just a momentum mapping.

This construction explains in particular why we can choose a coordinate system
on the Grassmannian Grfe(C°°(IR)) in such a way that the Poisson bracket becomes
quadratic. Indeed, such a coordinate system is given by the nonlinear momentum
mapping, at least if it is "almost surjective."

I am indebted to a lot of people for fruitful discussions and inestimable help,
among them I.M. Gelfand, A. Givental, A. Goncharov, D. Kazhdan, B. Khesin, M.
Kontsevich, O. Kravchenko, J.-H. Lu, H. McKean, A. Radul, N. Reshetikhin. This
article couldn't appear without the hospitality of the Harvard University, the
MSRI and the MIT during the (extended) period of preparation of this paper.

The structure of this paper is the following: in Sect. 1 we discuss the usual
notions from the theory of Poisson-Lie group. This discussion is superseded by any
text on the theory of Poisson-Lie group and affine Poisson-Lie groups (such as
[2,9,10,7]). In Sect. 2.0 we introduce the notion of pseudodifferential symbols. In
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Sect. 2.1 we prove the main formula that identifies the Poisson Grassmannian with
the second Gelfand-Dickey structure. In Sect. 2.2 we prove the fact that the Lie
algebra of differential operators is a Poisson-Lie subalgebra and find the corres-
ponding bialgebra structure. In two following sections we discuss the periodical
and matrix cases of this construction. In Sect. 2.5 we formulate a conjecture on
quantization of the described action in the simplest possible case, when differential
operators are of order 1, and in Sect. 2.6 we give some hints what could be the
rigorous topological justification of what we do here.

In this paper we are concerned with two different questions. Therefore all the
discussion is divided in two parts: the first part is purely algebraic, the second part
is concerned with the "topologizations" of these results in the infinite-dimensional
case. A reader interested only in the purely algebraic picture can skip any dis-
cussion of the topology on the manifolds in question. Moreover, we fully under-
stand that the discussion of topology is only sketchy here and hope to continue it
elsewhere. The only reason we include the topological discussions into this (other-
wise purely algebraic) paper is our thinking that the topological mechanisms we
use are quite simple, and they help to add some sense to the formulae we write.

We should note now that one of the interpretations of the results obtained here
is that the enormous Lie group GL(CCO(1R)) acts on the Gelfand-Dickey Poisson
manifold in a Poisson-Lie way. From this point of view this is a generalization of
the fact that was observed first by M. Semenov: the dressing action of Volterra
operators is of Poisson-Lie nature [10]. Indeed, Volterra operators form
a Poisson-Lie subgroup in GL(C°°(IR)), therefore the action of this subgroup is
also a Poisson-Lie action.

1. Classical r-Matrices and Poisson-Lie Structures

1.1. The Classical Yang-Baxter Equation. Let us recall what is the classical Yang-
Baxter equation. Let reg(χ)g, where g is a Lie algebra. We call r a classical
r-matrix if r satisfies the equation

[ r 1 2 , r 1 3 ] + [ r 1 2 , r 2 3 ] + [ r 1 3 , r 2 3 ] - 0 . (1.1)

Here for a tensor xeg(x)g we denote by xij the tensor σ ^ x φ i d e
U§ ® UQ£\]) e (53 being any transmutation of three elements sending 1 to z,

^ band 2 to j , σ being the standard action of ©„ on vF(g) V® ' ' ' ® K a n ^ ^9 being the
n times

universal enveloping algebra. The bracket [, ] denotes the Lie bracket in the Lie
algebra l/g (x) Uq (x) ί/g (of course, the image of this bracket in the above formula
lies in g (x) g (x) g).

There are several different objects called by the name Yang-Baxter equation.
We use this name for Eq. (1.1) and call a solution of this equation a classical
r-matrix. However, in what follows the r-matrices with a particular symmetry
property will play a special role , so we need to study the symmetry properties for
the left-hand side of the Yang-Baxter equation. Let YB(r) denote the left-hand side
of the Yang-Baxter equation. This is a quadratic form in an argument r; let us
denote the corresponding symmetric bilinear form as [r,s~],

[ , ] : (fl ® 9) <8> (9 ® fl) -» 9 ® 9 ® 9,
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Claim 1.1. // r is skew symmetric (re/L2g), then YB(r) is also skewsymmetric
(YB(r)eΛ3Q).

Proof. First of all, we can note that if σ ( 1 2)^ = air, σ (12)S — α25> (here α 1 2 ^ { + 1})
then σ ( 1 3 )[r,s] = — α 1 α 2 [r,5]. Really, σ ( 1 3 ) changes the first and the last sum-
mand of the formula (1.1) (this, of course, does not change any signs), changes
the order of terms inside brackets [,] (this changes the sign of the bracket),
and changes the order of indices for r (this multiplies one term by α 1 ? another
by α2).

Second, the action of σ ( 1 2 ) on [r,r^\ can be described in the similar way: on
the first two summands it acts by interchanging them and interchanging the
indices for the first occurrence of r; on the last summand it acts by interchanging
the arguments of the bracket. Both these descriptions result in the change of the
sign.

Hence two generators of (δ3 act on YB(r) in the same way as they act on Λ3Q.
Hence YB(r)eΛ3a>. D

Now we can compare the Yang-Baxter equation with another quadratic
equation on an element of /l2g, the Jacobi equation on Poisson brackets.

1.2. Poisson Manifolds. Let η be a 2-vector field on a manifold X, i.e., a section of
Λ2TX. Then we can define a skewsymmetric bracket on functions on the manifold
X:

Here <, > denotes the pairing between Λ2TXX and A2T%X. Now we can consider
the mapping

Alt
f,9,h

here Alt denotes the alternation operation. This mapping measures the degree of
non-Jacobi-property for the bracket {,}.

It is easy to see that Jac(^) (/, g, h) depends only on 1-jet of the function/and
vanishes if/is a constant function. Hence Jac(f/)|x is, in fact, a mapping

therefore Jac(τ/) corresponds to some section SN(η) of Λ3TX:

JacfaK/, g, h)\x = <SN(η\ df\x A dg\x A dh\x) .

Therefore we have defined a quadratic mapping

SN: Γ(Λ2TX)^ Γ(Λ3TX): η

This mapping3 is called the Schouten-Nijenhuis bracket. It is quadratic in η and is
a differential operator of the first order in η (we mean that the value of SN(η) in
x depends only on 1-jet of η in x).

More explicitly, the symmetrical bilinear mapping that corresponds to this quadratic mapping
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Remark 1.1. Let us extend the commutator operator from vector fields to the
multi-vector fields in a term-by-term way

[V1 A V2 Λ ' ' ' Λ D ( , , W 1 Λ W 2 Λ ' * * Λ W m ]

= X ( — l)l+J[vi,Wj'] ΛUJ Λ * Λ Vt A ' A Vn A Wi A

A Wj A • A Wm .

In fact it is a supercommutator if we define the degree of Vι A V2 A Λ vn as
n — 1. The commutator of a vector field and a multivector field is the usual Lie
derivative action, it is a generalization of this notion. Now it is easy to see that the
Schouten-Nijenhuis bracket is a square of a bivector field:

SN(η)=lη,ηl.

In a local coordinate frame we can express SN(η) as

SN(η)ίjk = Alt niιnj\ . (1.3)
ijk

We use here the tensor notation: t^ for a component £ of a tensor denotes the
derivative of this component in the direction of the index i.

Definition 1.1. A Poisson manifold is a pair of a manifold X and a bivector field η on
X such that the corresponding bracket {,} on functions satisfies the Jacobi identity.

Further in this paper we often describe Poisson brackets by the corresponding
Hamiltonian mappings T*X -> TXX. This is just the image of the bivector under the
identification Λ2TXX with a subspace in Hom(Γ*X-> TXX).

1.3. Skewsymmetric r-Matrices. Let η e Λ2q. Then η determines a left-invariant
section ή of A2TG, G being the group corresponding to the Lie algebra cj. The
3-vector SN(ή) is, evidently, left-invariant, hence it corresponds to an element
SN(fy) e Λ3§. A question arises naturally to compare two elements of A2% YB(η)
and SN(τ/). For this we can use Eq. (1.3) in the exponential coordinate system. It is
easy to see that the derivative (in this coordinate system) at the unity of a left-
invariant tensor t in the direction of vector X e g is proportional to ad X t. Let
c)k be the structure constants for g:

Then we can describe SN(^) up to a multiplicative constant as

Alt η"η{ϊ = Alt (ηilcimηmk + η"c>ίmηjm) • (1.4)
ijk ijk

Now it is easy to see that the first summand in parentheses coincides with the term
[r 1 2 , r 2 3 ] , the second coincides with the term [ r 1 3 , r 2 3 ] from the formula (1.1),
if r = η.4 Hence the alternation of the expression (1.1) is proportional to the
expression (1.4). However, the expression (1.1) is already skewsymmetric if η is

Unfortunately, the indices denote two different operations in (1.4) and (1.1)
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skewsymmetric. Therefore Eq. (1.1) is equivalent to the bivector η being a Poisson
bracket.

Now we can seen that skewsymmetric classical r-matrices for Lie algebra g are
"the same" as left-invariant Poisson brackets on the corresponding group G. Let us
consider one such bracket η. The action of the group G by left multiplication g^+Lg

preserves the tensor field ή. However, the action of the group G by right multiplica-
tions g\-^Rg does not preserve this tensor field. We want to describe the change of
this bivector field under the action of the right multiplication.

Let us consider the bivector field ή9 = η — Rg*fj on G, where g e G is fixed. Of
course, one possible description is as of a left-invariant bivector field corresponding
to a bivector η — Ad(g~γ) ndXeeG. However, we can look on this field in another
way. A left-invariant vector field on G corresponds to the right action of the Lie
algebra g. Therefore the left-invariant bivector field corresponds to the "action" of
a bivector on G. From the other side, the bivector field we consider is the result of
an action of the element g e G. This can motivate a consideration of the bivector at
g e G that is a value of this bivector field.

Therefore let us identify the Lie algebra with a tangent space to G at g (let us
recall that g is fixed) in a left invariant way. As before, we can consider a value
η(g) E A2TgG of the field η9. Now we claim the compatibility condition between the
right action of g e G and the bivector ηi9):

Here we consider Rg: hv^hg as a function of two variables. The mapping

Λ: 2ldRg

dg
sends Λ2T,G to A2ThqG, since ( —-1

h,g

sends X e TaG to
h,g

dε

Now we can describe the identity

-h(g + εX)eThgG.

j I Ί Ί Ί ""g* Ί V # W V

as saying that the map m: GxG -+ G: (g,h)h^gh is a Poisson map with respect to
the bivector fields ή on the first and the third occurrence of G and the bivector field
g\-+η{9) e A2TgG on the second. That means that the inverse image ra* is in
accordance with the Poisson brackets on the image and the preimage, i.e.,

{m*fm*g}1 = m*{fg}2 .

Here the bracket {,} x on G x G is a sum of brackets on the components (the
bracket η on the first and the bracket η{9) on the second), and the bracket {, }2 is
a bracket ή on G.

This is usually expressed by the words the group G acts in a Lie-Poisson way by
right multiplication. These words mean that there is a remarkable relation on the
bivector field η{9) itself (that it determines the structure of a Poisson-Lie group),
and the above compatibility condition between η{9) and a change of η.

Definition 1.2. A group G with a Poisson structure η is called a Poisson-Lie group, if
the multiplication map G x G —• G is compatible with the Poisson brackets and the
inversion map G -> G multiplies the Poisson bracket by — 1.
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Definition 1.3. A Poίsson-Lίe group G acts on a Poisson manifold X in a Poisson-
Lie way if the action map X x G -• X preserves the Poisson brackets.

Remark 1.2. An example of such objects can be found in Sect. 2.1.

Formally, to use this expression we should show first that the bivector field
g^,η(9) e Λ2TgG on G determines a Poisson structure on G that is odd with respect
to inversion on the group and that the map G x G -> G is a Poisson map with
respect to structures ηi9) on any occurrence of G. As above, we can rewrite the last
condition as the condition of the right action of G on itself being a Poisson-Lie
action, or that the change of the bivector field with respect to the right action is
compatible with the bivector field. But this is a trivial consequence of what is
already proven. Really,

η^ = (Λ2Lg) η - (Λ2Rg) η9 Lg9 Rg. TeG -> TgG . (1.6)

However, the first summand is nothing else as the bivector field ή. On the other
hand, the action by right multiplication preserves the second summand. Therefore
a change of the vector field g\-^η{9) under the right multiplication coincides with
the change of the first summand. However, this change is already computed and
coincides with the term coming from the second component of G x G.

To prove that the bracket corresponding to g i—• η{9) is a Poisson bracket, we
can note that this bracket is a difference of two Poisson brackets by (1.6).5 So it is
sufficient to show that

l(Λ2Lg)η,(Λ2Rβ)ri] = 0 or [}/,InvίJ] = 0 ,

here Inv being the inversion map on the group, and this is easy. Indeed, since the
commutator of a left-invariant and a right-invariant vector fields on G is 0 and the
Schouten-Nijenhuis bracket is an extension of the commutator on vector fields, the
Schouten-Nijenhuis bracket of a left-invariant and a right-invariant bivector fields
is also 0.

1.4. The Modified Yang-Baxter Equation. As we have already seen, the skewsym-
metric r-matrix makes it possible to construct a Poisson-Lie bracket on the group
G and a left-invariant Poisson structure on G that is a Poisson torsor6 with respect
to the action by right multiplication. However, if we are ready to drop some of
these properties we can weaken the restrictions on a r-matrix. As we will see in the
end of Sect. 1.5 the amount we need to drop is quite small.

Let r = η + t be a decomposition of a (non-skewsymmetric) matrix from g (x) cj
into skewsymmetric and symmetric components. Then

and decomposition of 3-tensor with respect to the action of σ ( 1 3 ) is, as we have
shown in Sect. 1.3, ([η, n~\ + [ί, ί]) -f- 2[//, ί ] , where the second summand is invari-
ant and the first is multiplied on — 1.

5 The second summand is symmetrical to the first under the mapping g\—>g ι, so should be also
Poisson
6 I.e., the principal homogeneous space
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The restriction we want to impose is the ad G-invariance of the 2-vector t. In
this case

] = [ V 2 , ί 1 3 ] + [^ 1 2,ί 2 3] + [^ 1 3,ί 2 3] + [ί1 2,*?1 3] + [ ί 1 2 , ^ 2 3 ]

The invariance of t implies that \_ηij,tjk~\ + \_ηik,tjk~\ = 0 for any ij,k. Hence the
sum of the second and the third summands, as well as the sum of the fourth and the
fifth summands, is 0. However,

[>?1 2,ί1 3] + [ί 1 V 3 ] = - [i? 2 1 ,ί 1 3 ] - [>?2 3,ί1 3] = 0 .

Hence in this case the 3-tensor is also skewsymmetric with respect to σ ( 1 3 ):

[r,r] = [>/,*/]+ [ί,ί] .

The same considerations as above show that [ί, ί] is skewsymmetric, hence [r, r] is
skewsymmetric. If r is an r-matrix, then \_η,η] = — [ί , ί ] .

Definition 1.4. The equation

ίη,ηl= - [ ί , ί ] (1.7)

on a skewsymmetric matrix η e Λ2§for a fixed invariant symmetric matrix t e S2Q is
called the modified Yang-Baxter equation. Usually, slightly abusing notation, a solu-
tion of this equation is also called an r-matrix.

We conclude that the Schouten-Nijenhuis bracket SN(ή) for ή can be com-
puted based on the invariant symmetric bilinear form t. Though the bivector field
ή does not determine the Poisson bracket, the discussion above concerning the
compatibility of brackets with the map of multiplication remains applicable to this
case. Moreover:

Claim 1.2. The bivector field g \—> η{9) on the group G determines a Poisson-Lie
structure on G.

Remark 1.3. We can note here that for bivector field of the form (1.6) to be
a Poisson structure, the Schouten-Nijenhuis brackets SN((y42L^)?/) and
SN((Λ2Rg)η) should coincide. Since one is left-invariant and another is right-
invariant, they should be both Ad G-invariant. That means that \_η,η~\ should be
ad G-invariant. If all ad G-invariant elements of v43g can be expressed as [ί, ί] for
some invariant symmetric element t e S2g, then the modified Yang-Baxter equa-
tion is equivalent to the definition of the Poisson-Lie group with the restriction
(1.6).

As a result for a given solution of the modified Yang-Baxter equation we got
the Poisson-Lie structure on the group G and a compatibility left-invariant
bivector field on the torsor for G with respect to right multiplication. The
Schouten-Nijenhuis bracket of this bivector with itself is a left-invariant (and
right-invariant) 3-vector field determined by the given symmetric bilinear form.

The usual way to construct such a solution is to consider a decomposition of
a Lie-algebra with an invariant non-degenerated symmetric pairing t* into a direct
sum of two Lie subalgebras that are both isotropic with respect to this form,
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g = α © b. Since the skew pairing

r*(( t f i ,M,(α 2 A)) d = ((-aub1)M2,b2)) (1.8)

(where outer parenthesis in the right-hand side denote the scalar multiplication) is
skewsymmetric, it defines (by ί*-duality) a skewsymmetric r-matrix.

A very similar way to do it is to consider a decomposition of a semi-simple Lie
algebra

and a bracket

\ (a2,c2)) . (1.9)

1.5. Homogeneous Spaces with Poisson-Lie Action. Let us return first to the
situation in Sect. 1.3. There we had a Poisson structure on a torsor for G with
a Poisson-Lie action. Since this Poisson structure is left-invariant, we can push it
back to a structure on any factor-space H\G with respect to the action by left

multiplication. Really, consider the projection G -> H\G. If / and g are two
functions on H\G, then their pull-backs to G are //-invariant with respect to the
left action. Therefore this Poisson bracket is also //-invariant, i.e., is a push-back of
a function on H\G. Hence we can define a bracket ηH\G on H\G, that is, evidently,
a Poisson bracket.

The same considerations applied to the right action show that the action of
G on H\G by right multiplication remains the Poisson-Lie action: the map

is a map of Poisson manifolds.
Hence on any right homogeneous space X for G we can construct a Poisson

structure on which this Poisson-Lie group acts in a Poisson-Lie way. (It is easy to
see that this Poisson structure does not depend on the choice of the basic point on
X used for the identification of X and H\G. In the point x e X the bivector η\x is
the image of r under the map

where gx = Stabx c g.)
Let us return now to the situation in Sect. 1.4. Let r be a solution of the modified

Yang-Baxter equation. Then we can, as above, define on any right G-homogeneous
space a bivector field satisfying the condition of compatibility with the action of the
Poisson-Lie group. However, this bivector field should not necessarily correspond
to a Poisson structure.

Nevertheless, in many important cases this form is a Poisson structure. To
investigate these cases, we can note that consideration of the space H\G results in
restriction of the 3-vector [η, η] e /t3g to a quotient space τl3(g/ί)). Hence if a Lie
subalgebra ί) cz g satisfies the condition

I m ( [ ί , ί ] ) i n Λ 3 ( 9 / I ) ) i s 0 ,
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then any r-matrix associated with t results in the true Poisson structure on the
corresponding homogeneous space H\G that is compatible with the Poisson-Lie
action of G.

In particular, if G is semi-simple, then any homogeneous space with a parabolic
stabilizer of a point has a Poisson structure associated with any solution of the
modified Yang-Baxter equation. In fact it is sufficient that a stabilizer contains
a maximal nilpotent subgroup.

Example 1.1. (A Grassmannian Manifold). Let us consider a Grassmannian mani-
fold Grk(V) considered as GL(F)/M, where M = Stab Wo, Wo a V We can ident-
ify the tangent space 7VGrfc(C") (here Wa <£n) with Hom(fl^ V/W) and
cotangent space T%r Grfc((C") with Hom(K/^, W), if we consider a pairing

(α,j8)h->Trα°j8, α e Hom(K/^, W\ βeRom(W,V/W) .

Under these identifications the Poisson structure ηGr associated with an r-
matrix r e Λ2Q\(V) can be expressed via the corresponding Hamiltonian mapping

ηGΐ: TfrGτk(<Cn)^ TwGτk{<Cn): ,

ήGr: oc\-+r(ac)\w/weHom{W, V/W\ oce Rom (V/W, W) .

Here r is the image of r under the standard identification gί(F)® 2 => Λ2gI(K) with
End(gl(K)), for β e End V we denote the corresponding mapping W^> V/W as
β\w/w

Proof. Consider a tangent vector X at e e GL(F). We can pull the corresponding
right-invariant vector field to Gΐk(V). It is easy to see that the corresponding
tangent vector at WeGrk(V) is X\W/W' W-+ V/W. (Hence we consider X as
a mapping V-> V.)

Now we can consider α.e H o m ( F / ^ , W) = T^Grk((Cn) = T^GL(V)/M and
the corresponding mapping α': F-> V. The above argument shows that the right
translation R*-1 π*α of the corresponding cotangent vector π*a e T* GL(F) (here
gW0 = W) is exactly α' (if we identify gl* with gl).

Now the Hamiltonian mapping on the GL sends the corresponding to α right-
invariant covector field to the corresponding to f(α) right-invariant vector
field. D

A different approach to a definition of a Poisson structure on a parabolic factor
can be found in paper [7]. We should note that approach results in a different
Poisson structure.

Remark 1.4. As parabolic quotients go, the Poisson Grassmannians satisfy a re-
markable property. A choice of r-matrix for gί(F) of standard form (1.9) is given by
a Cartan subgroup H, i.e., a basis in V, and an ordering of this basis (that gives us
two opposite Borel subgroups). It is easy to check that the Poisson structure on,
say, the flag variety essentially depends on the choice of this ordering. However, the
Poisson structures on the Grassmannians are the same for two cyclically permuted
orderings.

Proof Indeed, if we consider an r-matrix for gl as a mapping r: gl -> gί, two
r-matrices corresponding to two cyclically permuted orderings differ by a commu-
tation mapping
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for an appropriate z e End V. Therefore if α, β e Horn (K/ W, W) are two covectors
on Gvk(V) at We GrΛ(K), the difference of values of two Poisson structures on the
Grassmannian can be expressed as

<ί?Gr,i -ΆGX,!^ A β} = Trβ°[z,oc] = Tr[α,β]z .

However, [α,/?] = 0 (this means, in fact, that the radical of the stabilizer is
commutative), since already aβ = βa = 0.

This shows as well that the other parabolic spaces with the same properties
could be isotropic Grassmannians of middle dimension in the symplectic or
even-dimensional orthogonal space or the isotropic conic in a projectivization of
an orthogonal space (dropping some exceptional examples). However, we do not
know exact results in these cases. D

1.5.1. Poίsson-Lie subgroups. A notion of a Poisson-Lie group is so tightly
connected with a notion of a Poisson-Lie action that the usual notion of
a Lie subgroup and Lie subalgebras are useless in this context: the restriction
of a Poisson-Lie action on a subgroup usually is not a Poisson-Lie action. To
define the additional condition on a subalgebra we need the definition of the Lie
algebra structure on the dual space to a Poisson-Lie algebra (i.e., a tangent space to
a Poisson-Lie group at e e G).

Definition 1.5. Consider a Poisson-Lie group {G,η). A Poisson bracket {/, g} of any
two functions on G vanishes at e, and the linear part of this bracket in e is uniquely
determined by linear parts off and g at e, iff(e) = g(e) = 0. This determines a Lie
algebra structure on g*.

Definition 1.6. A Lie subalgebra ί) cz g is called a Poisson-Lie subalgebra if its
orthogonal complement ϊ) 1 cz g* is an ideal in§*.A connected Lie subgroup H cz Gis
called a Poisson-Lie subgroup if its Lie algebra is a Poisson-Lie subalgebra.

Lemma 1.1. A Poisson-Lie subgroup is a Poisson submanifold (i.e., a union of
symplectic leaves). The restricted Poisson structure makes it a Poisson-Lie group.

Claim 1.3. A restriction of a Poisson-Lie action on a Poisson-Lie subgroup is
a Poisson-Lie action.

2. Gelfand-Dickey Brackets

The topics of this section are inspired by the paper [8] where an action of the Lie
algebra 3) of differential operators of an arbitrary order on the space S)n of

dn

differential operators of degree n with the leading term -— (i.e., on the Gelfand-

Dickey space) is defined.

Definition 2.1. Denote by Q) the Lie algebra of differential operators

on the line.
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Definition 2.2. Let Q)n denote the set of differential operators of order n with the
leading coefficient 1:

dx

In the above definitions we did not specify restrictions on the coefficient of
differential operators. In what follows we will consider two important cases: in the
first (the case of a line) we allow any (smooth) coefficients, in the second (the case of
a circle) we consider only periodic coefficients.

As it was shown by Radul, the mentioned action is a Poisson-Lie action, if we
consider the second Gelfand-Dickey Poisson structure on the space &)n, and the
standard bialgebra structure on the Lie algebra Sf. This bialgebra structure is
associated with the structure of the Lie algebra on the linear space £^* arising from
the isomorphism of this space and the space of pseudodifferential symbols of
negative order.

2.0. The Second Gelfand-Dickey Bracket on the Set of Differential Operators. To
define the isomorphism above let us define the space of pseudodifferential symbols
(ΨDS) as an algebra of formal sums

with the composition rule

and a function Tr on 1-periodical pseudodifferential symbols as

Σ
fc=-oo

The definition of Tr has sense in the periodical case (where the integral is taken
along the period) or if the coefficients of the pseudodifferential operator are rapidly
decreasing. The basic property of Tr,

is the main reason for the notation we use.7

It is easy to see that the mapping — i—• ξ extends to the mapping from the
dx

algebra of differential operators into the algebra of pseudodifferential symbols.
Hence we can change the letter ξ in the notation of a pseudodifferential symbol to

— without a risk of misinterpretation.
dx

Now the formula

Another connection between the usual trace and the function Tr is given by (2.7)
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defines a symmetric bilinear form on the vector space of pseudodifferential sym-
bols. It is easy to see that this form is nondegenerate. Using this form we can
identify the dual space to the space of differential operators with a space of
pseudodifferential operators of degree ^ — 1. Here again there is no problem in
the periodical case, and in the case of a line we define a pairing between the vector
space of all ΨDS and the vector space of ΨDS with compact support.

However, in a usual sense the dual space to a space of smooth functions is the
space of generalized functions. Therefore the above formula identifies the dual
space to differential operators with the space of ΨDS of negative order with
generalized functions as coefficients. We are going to give a sketch of an explana-
tion of how "to put this difficulty under the carpet" later, in Sect. 2.6. Here we
consider only the linear functionals that correspond to ΨDS with smooth coeffic-
ients. Moreover, we pretend that any linear function on the space of ΨDS
corresponds to such a functional. This a usual difficulty in trying to define an
infinite-dimensional smooth manifold.

Now consider a cotangent vector to <2)n c <3). The dual space to a subspace is
a quotient of the space dual to the ambient space, and we can easily see that this
covector corresponds to an element of Ψ D S ^ _ 1 / Ψ D S ^ _ n _ 1 . Below we abuse our
notations and call this element of the quotient a symbol too.

Let L e ^ n , A and B be two cotangent to Q)n in the point L covectors,
represented by pseudodifferential symbols of negative order. Then the formula

(A, B) h- Ύr(A((LB)+ L - L(BL) + )) , (2.1)

(where the subscript + denotes taking the purely differential part of a ΨDS)
determines a bivector field on Q)n that induces (as a very cumbersome calculation
shows) a Poisson structure on the manifold 3)n. In fact in what follows we will
anyway give another description of this bivector field that will prove that the
defined structure is indeed Poisson.

In the periodic case the existence of the right-hand side is clear, in the case of all
functions on a line we can note that the symbols A and B are of finite support (since
they represent covectors), hence the right-hand side is of finite support.

Remark 2.1. Let us note that the structure (2.1) can be easily rewritten as

(A, B)\->- Ύτ(A((LB)-L - L{BL)J)) , (2.2)

where M_ = M — M+ is an "integral" part of a pseudodifferential operator M. In
fact to define the second Gelfand-Dickey structure we need both these descriptions:
the first one shows that the Hamiltonian mapping is given by the formula

L- L(BL)+ ,

therefore the image is a differential operator, the second gives that it is

β π - ((LB)-L - L(BL)-) ,

therefore it is a pseudodifferential operator of order < n. (And therefore a tangent
vector to 2n)

In fact in what follows we use only the following property of this Hamiltonian
mapping: it sends B to a differential operator of order < n of the form

)^ — something oL

(i.e., it is a remainder of L(BL)^ in right division by L).
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Our task here is to give a description of this Poisson structure based on classical
r-matrices.

2.1. The Identification with a Grassmannian. Here we define some Poisson struc-
ture on a Grassmannian Gr/C(CGO(1R)) and show the relation between this Poisson
structure and the Gelfand-Dickey structure. In turn, to define a Poisson structure
on the Grassmannian we need to define an r-matrix for the Lie algebra gI(C°°(IR)).
Let us recall that an r-matrix for g is an element of g (x) g, therefore we need
a definition of tensor square of an infinite-dimensional vector space. As usual in
topology, there are some immanent difficulties in such a definition. We postpone
the discussion how we can deal with it until Sect. 2.6, and use meanwhile some
ad hoc definitions of the objects in question.

So let Fbe a space of smooth functions on 1R. We will "take" as K* the space of
smooth 1-forms on IR with a compact support. Hence as gl(F) we "can" consider
a space of smooth forms f(x, y) dy, such that

V M 3 N f(x,y) = 0 if \x\ ^ M,\y\^ N .

As gl(K)* we "consider" a space of smooth forms g(x,y)dx, such that
3Mf(x, y) = 0 for |x | ^ M. The pairing between these two spaces is

(f(x,y)dy,g(x9y)dx)i-+ J f(x, y)g(x, y)dxdy .
RxIR

As in (1.9) in Sect. 2.2, we can define a symmetric invariant bilinear form on
Q\(V)* as

(*) (gί{x,y)dy,g2(x,y)dy)hU J Ql(χ9 y)g2{y, x)dxdy ,
R x l

and a skewsymmetric bilinear form on gl(F)* as

(9i(x,y)dy,g2{x,y)dy) A j g1{x,y)g2{y,x)sgn{x -y)dxdy . (2.3)
RxR

The same calculation as in the finite-dimensional case shows that t + r is a solution
of the classical Yang-Baxter equation. Now the form (2.3) (being an r-matrix)
determines a Poisson structure on the space Gΐk(V) and a Poisson-Lie structure
on the corresponding group of invertible operators.

Let us emphasize that the above conditions on the supports are absolutely
natural and arise from the operators being continuous in the corresponding spaces.
The only tricks we did are tricks with smoothness conditions on the kernels.

Remark 2.2. Now, when we have defined the r-matrix, we can explain why it
cannot be defined as an element of the tensor square of some Lie algebra. Indeed,
let us try to extend the definition (2.3) to gι,g2 being elements of the space dual to
some algebra. Here we consider two cases: the algebras of continuous operators in
two spaces of functions on the line, C°°(IR) and C~°°(IR). (The definitions of these
topological vector space can be found in Sect. 2.6.)

The Lie algebra gx = glίC^IR)) consists of operators with a kernel f(x,y)dy
such that the wavefront of / is non-vertical on the (x, y)-plane and with the same
condition on the kernel as above. Therefore the dual space contains operators with
kernels g(x, y)dy such that the wavefront of g is vertical and with the same
condition on the support as above. Now in the formula (*) we have a product g1 g2,
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and the first factor has vertical wavefront, and the second has a horizontal one.
Therefore the product is well-defined as a generalized function and has a compact
support, therefore the integral (*) and, hence, tensor t is correctly defined. How-
ever, in the case of the formula (2.3) we cannot pair this product with sgn(x — y),
since sgn(x — y) is not a smooth function on a plane!

In the same way if we consider g2 — ̂ ( ^ " ^ ( R ) ) , t h e n w e get th e same with
a change of vertical and horizontal directions. However, if we consider g* n g*, as
in Sect. 2.6, then the wavefront should be both horizontal and vertical, therefore
any operator from this set has a smooth kernel, and the product with sgn(x — y) in
formula (2.3) is well-defined.

Theorem 2.1. The defined on Grk(V) Poisson structure coincides (on an open subset
ofGvk(V)) with two times the second Gelfand-Dickey Poisson structure on the set

( d Y
Θk of differential operators of degree k with the leading term I — I under thedx
identification

^ 3 J L A W= {/ |L/=0} . (2.4)

Proof The two Poisson structures we want to equate are both given by their
Hamiltonian mappings. However, these Hamiltonian mappings are described in
different languages. In the ΨDS description we use identification of the tangent
space with the set of differential operators and of the cotangent space with
pseudodifferential operators, in the Grassmannian description we identify them
with the space of linear mappings Wr-> F/JFand V/W-+ ^correspondingly. So
the first step is to relate these two pairs of identifications. This step takes the longest
part of the proof.

First of all we describe which mapping W'-> V/W corresponds to a variation δL
of a differential operator L, W= Ker L.

Lemma 2.1. Consider the identification of Ί2)k with the subset of the Grassmannian
Gxk(V). Consider a tangent vector to <2>k at Le@k. Let KerL = W. We have two
different representations of this vector: a differential operator δL and a mapping
M: W-+ V/W. Then

M = — π°L~ γ δL\ W ,

where π is the projection V'-> V/W.

Proof Let us consider the equation

(L + δL)(f+δf) = Q.

It means that

δf=-L~1δL'f. (2.5)

Hence the corresponding to δL map W-^ V/Wis — πoL~ιδL\W, where π is the
projection F-> V/W. In fact, the map L1 is, of course, undefined, since the map
L has a kernel. However, in our case this kernel is exactly W\ Hence the composi-
tion πoL~ι is correctly defined. (The map L is obviously a surjection.) Without
abusing the notations we can denote πo L'1 as L~1. Now we can interpret (2.5) as
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two descriptions of the tangent space being connected by

δL H-> — L~1δ

Here for a mapping B: V'-> V we denote by B\W/W the corresponding mapping
W-> V/W. D

Second, let us describe the relations on the cotangent space.

Lemma 2.2. Consider the identification of Q)k with the subset of the Grassmannian
Grfc(K). Consider a cotangent vector to 2ιkat Le2)k. Let KerL = W. We have two
different representations of this covector: a pseudodifferential symbol A and a map-
ping A': V/W^ W. Consider A' as a finite-dimensional mapping V-* V. Then

A = the symbol of — -r(A' ° L" 1 ) ,

where π is the projection F-> V/W.

Proof The identification above shows that

TrAoδL= -ΊvAΌL~1δL (2.6)

for any δL. We are going to use this equation to express A in terms of A'\ therefore
we need here a relation between functions Tr and Tr. However, this relation is very
simple:

Tr K{x, y) dy = ΐ ί Qsgn(x - y)K{x, y) dy) (2.7)

for a smooth kernel K(x, y) dy. Several words about what is in the right-hand side.
We defined so while only the notion of a pseudodifϊerential symbol However, in

a similar way we could define a notion of a pseudodifferential operator. It is a sum
of a differential operator and of an operator of negative order. In turn an operator
of negative order is an operator with a piecewise-smooth kernel L(x, y) dy with the
only jump (of the first kind) on the diagonal x = y (as the operator in the
right-hand side of (2.7)). It is easy to construct a homomorphism from operators to
symbols (this homomorphism is uniquely determined by the fact that it sends the
set of operators with smooth kernels to 0).

Now it is easy to see that the corresponding to the kernel isgn(x — y)K(x, y) dy
symbol is K(x, y)d~x + 0{d~2\ that proves the above formula. Indeed, if
K(x,y)dy is a kernel of a finite-dimensional operator K: F-> V, we can write

ΎrK =f Ύr(K\ιmK) as \K(x,x)dx. This formula extends naturally to operators
with smooth kernel and satisfies any natural relation that is valid in the finite-
dimensional case. In fact we can rewrite (2.7) as

ΎrK = -Ύτr(K) .

In what follows we use formula (2.7) not only for smooth K, but also for operators
of finite rank. The only difference in the proof of this modification is the reference to
the wavefront of K being horizontal.
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Hence we can rewrite (2.6) as

ΊrAoδL= --ΎτriΛΌL-^L) .

(Since the operator A' is of finite rank, the operator in brackets also is of finite rank,
therefore we can apply the formula (2.7) to it.)

I claim that A is the symbol of the operator — \f{A oL" 1 ) . Indeed, if B is an
operator with a smooth kernel and M is a differential operator, we can note that
kernels of r(BoM) and r(B)oM coincide outside of the diagonal, therefore the
former is an integral part of the latter:

f(BoM) = (f(£)oM)_. (28)

Therefore values of Tr on f(B o M) and on r(B) o M are the same. We obtain

ΊrAoδL= --Ίrr{AΌL~ι)oδL ,

which proves the assertion. Now we can write the second translation formula
connecting two descriptions of the cotangent space: let a cotangent vector to
Q)n correspond both to a pseudodifferential symbol A of negative order to an
operator Ά:V/W-+W. Then8

A = the symbol o f- -r(Ά oL~γ) . D

Now we can begin the comparison of the Hamiltonian mappings themselves,
since we know the translation formulae between languages they are defined in. The
Hamiltonian mapping defined in terms of Grassmannian sends a cotangent vector
represented by A': V/JY-* W to the tangent vector to the Grassmannian repre-
sented by r{A')\Wfw: W-> V/W. From the other side, the pseudodifferential symbol
A corresponding to the cotangent vector is already expressed in terms of the
pseudodifferential operator A = r(A'oL^oL"1). Therefore we can write r{A') in
terms of A:

f(Af) = r{A'oL~ιoL) = (f(AfoL~*)oL)_ = - 2(A°L)_

(we used (2.8)). Therefore to find the differential operator δL corresponding to
r(A')\WiW we need to solve the equation

It is equivalent to

δL\W = 2Lo(AoL)-1w .

Therefore to find δL we need to find a differential operator of order < n that
coincides with 2L o (A o L)_ when considered on W. Now the same argument as in
Remark 2.1 shows that the operator

- 2 ( ( L A ) _ L - L ( A L ) _ )

8 In fact we cannot claim that two sides of this formula are exactly equal. They are equal mod
ΨDS<_ n _ 1 ? since a cotangent vector to 9n is an element
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is a differential operator of order < n and that it coincides with 2L o (A o L)_ when
restricted on W = Ker L. Moreover, we can change operators to symbols in this
formula, since the result is a differential operator anyway. Therefore the Hamil-
tonian mapping associated with the Poisson structure on the Grassmannian is
indeed a multiple of Hamiltonian mapping for the second Gelfand-Dickey struc-
ture under the above identification. D

Remark 2.3. It is easy to see that the identification of the theorem sends the space
3)k of differential operators to an open subset of the Grassmannian. In fact we have
extended the second Gelfand-Dickey structure to a "compactification" of the space

Corollary 2.1. On the space Q)k of differential operators with the second Gelfand-
Dickey Poisson structure a (local) action of a Poisson-Lie group GL(C°°(]R)) is
defined.

Corollary 2.2. The bracket (2.1) satisfies the Jacobi identity.

Proof Indeed, it coincides with the Poisson bracket on the Grassmannian. D

2.2. A Poisson-Lie Algebra of Differential Operators as a Poisson-Lie Subalgebra of
gl: The previous corollary shows that there is a Poisson-Lie action of an enor-
mous group GL (functions on IR) on (an extension of) the second Gelfand-Dickey
structure. However, as we have already said, A. Radul defined a Poisson-Lie action
of a Lie algebra of differential operators on the same space. Since these two actions
are compatible, the natural conjecture is that the latter algebra is a Poisson-Lie
subalgebra of the Lie algebra of GL (functions on IR).

Theorem 2.2. The subspace 3) of differential operators is a Lie-Poisson subalgebra of
the Poisson-Lie algebra gl (functions on IR). The Poisson-Lie structure on this space
coincides with the structure defined in Sect. 2.0.

Proof We want to prove that the Lie algebra Si of differential operators is
a Lie-Poisson subalgebra (in the sense of Sect. 1.5.1) of the Lie algebra of continu-
ous operators in the space of functions on IR. It is easy to see that 3)L c
gϊ (functions on IR)* = {/(x, y) dy} coincides with the space of forms f(x, y) dy that
vanish together with any derivative on the diagonal x = y.

On the other hand, it is easy to see that the Lie-algebraic structure on the
coalgebra gl(functions on IR)* is connected with a decomposition of an element
/ of this coalgebra into a sum of "increasing" and "decreasing" Volterra operators:

(sgn(x-y) + l) ( - S gn(x-j/) + l)
fix, y) dy = /(x, y) dy + /(x, y) dy

= f+(x,y)dy+f-(x,y)dy.

Using this decomposition we can describe the commutator of two elements
/, g e gl (functions on IR)* as

and to determine the bracket on the spaces of increasing (and decreasing) Volterra
operators as a usual Lie bracket:

= (l(f±(x,z)g±(z,y)-g±(x,z)f±(z9y))dz)dy .
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A simple calculation shows that these two formulae indeed determine a bracket
with values in smooth functions on IR x IR:

Lemma 2.3. The form [/, g~] is smooth.

Proof. It is obvious that the forms [/+,# + ] and [ / - , # - ] are smooth outside of
the diagonal and up to it as compositions of Volterra operators with smooth
kernels. Hence the form [/, g~] can have a jump of the first kind on the diagonal
maximum. To prove that it has no jump let us consider a symbol of this kernel
considered as a pseudodifferential operator. It is sufficient to show that this symbol
is 0.

Again, for this it is sufficient to show that the operators [/+,# + ] and [ / - , # - ]
= [— /_, —g-"] have equal symbols. However, the kernels of operators /+ and
—/_ differ on a smooth function /, hence have equal symbols. Therefore the

commutators in question also have equal symbols. D

Now it is almost clear that the space of forms f(x, y) dy that have a zero oo-jet
on the diagonal form an ideal with respect to this bracket. Indeed, it is sufficient to
show that the bracket with, say, a lowering Volterra operator g~ is such. Now the
corresponding kernels /+ are smooth on the whole IR x IR including diagonal,
hence have zero symbol, hence their brackets with an arbitrary Volterra operator
(of the same direction) also have zero symbols, hence are smooth on the whole
IR x IR including the diagonal. Moreover, [ / + , # - ] = 0, and the kernel [ / - , # - ] is
again Volterra, therefore the symbol corresponds to the jet on the diagonal.
Therefore the kernel of [/ ,#-] has a vanishing oo-jet on the diagonal.

Therefore the Lie subalgebra 3) of differential operators is indeed a Poisson-Lie
subalgebra. To determine the corresponding Poisson bracket on the dual space we
should consider a structure of quotient-algebra on

^ * = gϊ(functions on R ) * / ^ 1 .

The latter space is a space of oo-jets of functions along the diagonal, and the
corresponding Lie-algebraic structure is the quotient-structure of the Lie algebra of
(say, increasing) Volterra operators with a smooth up to the diagonal kernel by the
ideal of Volterra operators with a smooth everywhere kernel. However, this is
nothing else but the algebra of pseudodifferential symbols of an order ^ — 1. D

Proposition 2.1. The action of differential operator X eD on the differential operator
LeQ)k is given by the left remainder of LX modulo L:

X-L= -LX + YL,

where Ye@ is chosen in the way that the right-hand side is of degree < k:

Y=(LXL~ί)+ .

Here the subscript + denotes taking the differential part.

Proof. By definition, if Lf= 0, then (L + εX L)(/ + εXf) = O(ε2). This means
that X L + LX is 0 on any function / such that Lf= 0. Therefore
X L + LX= YL for some Y. D

2.3. The Periodical Case. We have considered a Poisson structure on the Gelfand-
Dickey manifold in the case of operators on the whole line. However, it is known
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that the absolutely parallel theory exists in the case of periodical differential
operators. Here we discuss the changes we should include in the definition of the
Grassmannian and the group GL(C°°(IR)) to use the natural identification of the
set of periodical differential operators with a subset of the Grassmannian. Such an
identification obviously exists, since the periodical differential operator is auto-
matically a differential operator on a line. We get a natural subset of the Grassman-
nian corresponding to operators with periodic coefficients, that consists of
invariant subspaces with respect to the action of TL by translations on the line.
However, we want to consider this space as a space with an action of some
analogue of GL(C°°(1R)).

It is easy to see that in this way we can generalize the construction above to the
periodical case. The main difficulty is to define the corresponding variant of the
group of matrices GL(C°°(1R)). However, consider a natural action of the group
Έ on C°°(R) by translations. Denote by GL(C°°(R))Z the subgroup of operators
that commute with TL. Now if f(x) is a function satisfying the condition
f(x + 1) = λf(χl H O , then Λf also satisfies this relation if AeGLiC^iWiψ.
Denote by G r ^ C ^ I R ) ) 2 the subspace of Grfc(C°°(R)) consisting of Z-in variant
subspaces in C°°(1R). Say, the Grassmannian Gv1 consists of spaces spanned by
functions / satisfying the above condition with an arbitrary λ. If FeGr k(C c 0(lR)) z,
then the operator of translation can be restricted to V. This determines an
"invariant" of Fthat is the conjugacy class of this restriction. In the case of Grj this
invariant is equal to λ.

Now the group GL(C°°(R))Z acts on the space Gr^(C°°(IR))z and this action
preserves the above "invariant." It is clear that the orbits of this action are
numerated by this invariant.

The dual space to the Lie algebra (gl(C°°(IR))z)* (almost - see above) has
a natural decomposition into the sum of the space of upper-triangular (lowering
Volterra) operators and lower-triangular (raising Volterra) operators. The corres-
ponding r-matrix is nevertheless correctly defined, therefore we can define a struc-
ture of the Poisson-Lie group on GL(CCO(IR))Z and the corresponding Poisson
structures on the homogeneous spaces for this group, say, on orbits of action on

Taking the union of these structures, we get a Poisson structure on the whole
manifold Grk(C°°(IR))z. Consider now the differential operator that corresponds to
a subspace FGGrfc(C°°(IR))z. It is easy to see that this operator is periodical,
therefore we can consider the (periodical case of the) second Gelfand-Dickey
Poisson structure on this set. The one-to-one repetition of the above arguments
proves the

Theorem 2.3. The Poisson structure on the Έ-invariant Grassmannian coincides with
the second Gelfand-Dickey Poisson structure on the set of periodical differential
operators. There is a (local) Poisson-Lie action of the group GL(C°°(1R))Z on the
latter Poisson manifold.

Corollary 2.3. The differential operators with periodic coefficients form a Poisson-
Lie subalgebra in the bialgebra gI(Cco(]R))z. The action on the periodic Grassmannian
is a Poisson-Lie action.

We gained a lot because we considered not the operators in the space of
functions on a circle, but the Z-invariant operators on the line. Indeed, the kernel of
the operator of the former type is a "function" on S1 x S1 and there is no



114 I. Zakharevich

decomposition on the upper- and lower-triangular operators. However, in the case
considered above the kernel is a function K(x,y)dy such that

and the decomposition exists.

2.4. The Matrix Case. Here we want to make a little remark that what we have
done can be generalized to the case of matrix operators without any problem.
Instead of GL(CG0(IR)) we should consider GL(C°°(IR, Rn)), where C°°(R, R") is
the space of vector-functions on R. Instead of Grfc(C°°(R)) we should consider the
Grassmannian Grπfc(C°°(R, R")). Then instead of the set <2)k of differential oper-
ators of order k we get the set of differential operators of order k with matrix
coefficients of the size nxn.

In the same way as above we get the identification of the second Gelfand-
Dickey Poisson structure on the set of matrix differential operators (it is given by
the same formula (2.1)) of order k with the Poisson structure on the Grassmannian
Gr fa(C»(lR, R")).

In contrast with the scalar case already the case k = 1 is very interesting. The set
of differential operators in question is

{d + A(x)} ,

where A is a matrix function of x. Let us consider the periodical case. In this case
this set is nothing else but a hyperplane c = 1 in the dual space to a central
extension of the algebra of currents with values in glπ. The Poisson structure of
Kirillov-Lie on this leaf coincides with the second Gelfand-Dickey Poisson struc-
ture, hence on the hyperplane c = 2 the Kirillov-Lie Poisson structure coincides
with two times this structure. Therefore we get a

Corollary 2.4. There is a natural (local) Poisson-Lie action of the Poisson-Lie group
GL(CG0(R, R ) ) z on a hyperplane c = 2 of the Kirillov-Lie Poisson structure on the
dual space to the matrix current algebra.

Let us consider this action slightly more carefully. We can consider the sub-
group of currents in GL(C°°(R, R)) z , i.e., of operators of multiplication by a peri-
odic matrix-function. It is easy to check that this action coincides with the
coadjoint action of this group on the dual space to the Lie algebra. (It is clear that
the central extension acts in a trivial way, so we can consider the coadjoint action
of the non-extended group.)

In fact this subgroup is a Poisson-Lie subgroup with the trivial Poisson
structure. This is compatible with the fact that the coadjoint action preserves the
Kirillov-Lie Poisson structure. Moreover, we can consider the momentum map-
ping for the action of this subgroup on {d + A] considered as an abstract Poisson
manifold. It is easy to check that this mapping is identical on this manifold.
Therefore the action of GL(C°°(R, R n ) ) z on this (Poisson) manifold makes it
possible to reconstruct the inclusion of this manifold into the dual space to the Lie
algebra.

Moreover, we can also consider the Lie subalgebra of periodic vector fields on
the line

Vect



Second Gelfand-Dickey Bracket as a Poisson-Lie Grassmannian 115

This Lie subalgebra is a Poisson-Lie subalgebra of the Lie algebra of periodic
differential operators, moreover, the corresponding Lie algebra bracket on the dual
space is 0. (So the situation is similar to the above action of currents.) Therefore the
action of this subalgebra is a trivial case of Poisson-Lie action: it preserves the
Poisson structure on the Grassmannian.

2.5. A Conjecture on Quantization: The Kac-Moody Case. Let us consider
a would-be quantization of Corollary 2.4. The quantization of the hyperplane in
the dual space to the Lie algebra is something like the enveloping algebra with
a fixed central charge. The quantization of the action of Vect on this hyperplane is
a Sugavara inclusion, that gives us an (adjoint) action of the Virasoro algebra on
the enveloping algebra of the central extension of the currents algebra. In what
follows we consider the Sugavara inclusion as an inclusion into the space of (inner)
derivatives of this universal enveloping algebra.

Let us look on a possible quantization of the action of gϊ(C°°(IR, JR"))Z. This
should be an action of some big algebra on the enveloping algebra, but not by
differentials, as in the case of Sugavara inclusion (where differentials were inner),
but by transformations changing the multiplication law. (The Sugavara inclusion
acts by differential only because the action of Vect preserves the Poisson structure,
which, in turn, is explained by the trivial Lie algebra structure on Vect*.) Indeed,
the quantization of

is (on the language of deformations Θq(X) of the algebra Θ(X) of functions on X)

or

(i.e., an action of Θq(G)* in Θq{X)*\ or, what is the same, an action of Θq{G)* in
Θq(X):

Oq(G)*®βq(X)->Θq(X).

If the action of G is local, as above, we should change G to the infinitesimal
neighborhood of eeG, which results in a change of Θq{G)* to l/g(g). In our
situation we get the following

Conjecture 2.1. There is an action

υq($\{c*>φ^w)f)®

such that the corresponding mapping

^ = 2 φ ( q ) ) * -

is a morphism of coalgebras. Here φ is unknown function, φ'(l) = 1.

Remark 2.4. Due to usual anomalies, a possible modification is a change of some
"obvious" value of 2φ(q) to 2φ(q) —h, where h is the dual Coxeter number. It is
interesting to compare this conjecture with the results of [4].

What we constructed in this paper is a prequantization of this action and
a generalization of this prequantization to J^-algebras.
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2.6. The Topological Approach. In Sects. 2.0 and 2.1 we promised to give an
explanation how to modify the definitions of the objects we consider to identify the
space of linear functional on smooth functions with the set of smooth functions
itself. Let us recall that in the usual sense this set is the set of generalized functions.
However, to define the Poisson structure on the sets we consider we need to restrict
these functionals to be smooth functions.

Essentially we say that to avoid this difficulty we should consider a set of
smooth functions on the set of pseudodifferential symbols that is much finer than
the set of continuous functions. Let us recall that by the usual definition the set of
smooth linear functions on a topological vector space F coincides with the set of
continuous linear functions F*. If we drop this restriction, then we get a much
bigger number of possible sheaves of smooth functions. A choice of such object
determines a subset of smooth linear functions

F * L cz F *
γ smooth ^— v

The dual picture is the inclusion

' 'antismooth \ ' smooth/

If (ϊ7Smooth)** = ŝ*mooth? and V** = V, then the latter inclusion determines the
former. In this case we (by definition) call a function on V a smooth function if it is
a restriction on F of a smooth "in the usual sense" function on F a n t i s m o o t h . It is
usually expressed by saying that we consider two different topologies on V (intro-
duction of a different (and weaker) topology automatically adds additional ele-
ments to a vector space, therefore the vector space increases to be F a n t i s m o o t h ).

Therefore we should work in the category of rigged topological vector spaces,
i.e., spaces with several fixed topologies. Here we define the inclusion

V a V
v ^~ v antismooth

corresponding to the Gelfand-Dickey structure. First of all, if we fix a topology on
the space of allowed coefficients, then we can consider on the space of symbols the
topology of a direct limit of inverse limits, i.e., if we denote by ΨDSW the space of
ΨDS of degree no more than m, then

ΨDS = ind lim proj lim Ψ D S ^ / Ψ D S - M .
N-+oo M->oo

Since the space Ψ D S ^ / Ψ D S - M is a finite product of spaces of coefficients, fixation
of a topology on smooth functions fixes a topology on ΨDS. Now we consider on
the space of functions on the line a pair of topologies:

(And the same for functions with finite support.) Here C°°(1R) is a space of smooth
functions on IR with a coarse topology (i.e., with a topology of a projective limit
according to an increasing family of intervals), C~°°(IR) is a dual space to a space
CJ)(1R) of smooth functions with compact support with the topology of an induc-
tive limit with respect to this family of interval (the space C^(IR) is often denoted as
3, and the space C~°°(IR) as 3)'\

This pair of topologies on functions defines a pair of topologies on the space of
ΨDS. Taking as a dual space in this category to the pair F+ c F_ the pair
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F * c F * , we get a formal justification of what was said above: a differential of
a "smooth function" on V+, i.e., a smooth function on F_, corresponds in
a described above way to a pseudodifferential symbol with smooth coefficients, and
not with generalized coefficients as in the naϊve theory.

In the same way we can consider the ΨDS with finite support (or with rapidly
decreasing coefficients) by introduction of the pair CC°°(1R) c CC~°°(IR).9 Such
a play with topologies is a usual deal in the theory of infinite-dimensional mani-
folds. Several other examples will be given in what follows. We should note that
any smooth function on the smaller set of ΨDS (i.e., on the set of ΨDS with smooth
coefficients) extends uniquely to the bigger one (i.e., of ΨDS with generalized
coefficients) by definition, however, only the smaller set carries an algebra struc-
ture. 1 0

Now we discuss the (much simpler) theory in the case of the group GL(CCO(R)).
We should note however, that the only explanation we are going to give is the
explanation of the choice of the dual space to the Lie algebra of this group. We
cannot explain even such a simple question as what is the relation between the Lie
algebra we consider and the Lie group we consider, or what is the topology on this
Lie algebra. The only hope we have now is that the discussion below can justify the
identification of the space we considered in Sect. 2.1 to be a dual space to the Lie
group. However, if we could find some good set of smooth functions on
GL(CGO(1R)) in the same sense as below, then the hypothetical Hopf algebra
structure on this vector space could justify all the algebraic discussion above.
This is related to the fact that the language of Hopf algebras allows one to live
quite comfortable without a reference to the Lie algebra, if we have a good
description of functions on the group, and, in particular, of the dual space to the Lie
algebra.

We begin the discussion with a note that formula (2.3) determines the r-matrix
from the algebraic point of view. However, to be able to apply all the described
above machinery we should verify that this is indeed an r-matrix, therefore we
should show that this formula has something to do with g (x) g. The problem is that
this element is "outside" of any naturally defined notion of the tensor square for
any naturally defined notion of the vector space gI(C°°(JR)).

In the finite dimensional case if we consider a vector subspace, then the dual
space to the subspace is "smaller" than the dual space to the ambient space. The
same is true for closed subspaces in the topological case. However, for a dense
inclusion the dual space to the subspace is bigger than the dual space to the
ambient space. On the other hand, the definition of the biggest possible tensor
square is the space of bilinear functionals on the dual space. Therefore to get the
given element into g ® g we can take the smallest possible g*, i.e., the biggest

9 This should be the choice if we considered the second Gelfand-Dickey structure in the context
of integrable systems, since the usual local Hamίltonίans are defined on this space
1 0 Let us give here another example of a similar situation. In the theory of quantum groups one
considers an algebra (or a Hopf algebra) of generalized functions on a group G with support in
e e G. This space carries a topology of an inductive limit. However, if one considers the dual Hopf
algebra, it is not the dual space of oo-jets of functions at eeG, which carries a topology of
a projective limit, but the subspace spanned by the matrix coefficients in finite-dimensional
representation, that carries a topology of an inductive limit. If the group G is a linear algebraic
group, the latter space coincides with polynomial functions on G
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possible g, and the biggest possible notion of the tensor square. However, this is not
sufficient.

Therefore we apply the following trick: we take two different definitions of
gI(C°°(IR)) that result in two topological vector spaces with an intersection that is
dense in both spaces. We consider the sum of these two vector spaces as g, more
precise, we consider a linear functional on this sum to be an element of g*. This sum
does not carry a structure of a Lie algebra, however, below we propose some way of
interpretation of this trick.

Denote these two Lie algebras as g! and g2. Consider the corresponding Lie
groups G1 and G2 and the group G 1 2 = Gλ n G 2. Now call a function on
G 1 2 a smooth function if this function can be extended as a smooth function on both
Gx and G 2 . n In this definition the tangent space to G 1 2 at e is gx n g2, but the
cotangent space (i.e., the space of values of differentials of functions) is
9i n 9* = (9i + 92)*- Therefore if r is a bilinear functional on g* n g 2 , we can
compute the value of r on any pair of differentials of functions. Therefore we can
eventually define the Poisson bracket of (smooth!) functions on G1 n G2. Now we
proceed with the description of the spaces g t and g2.

If the pair C°°(1R) c C~°°(R) represents the space of functions on a line, then
instead of a group of continuous operators in the space of functions on IR we
should use the set of continuous operators in this pair, i.e., the set of pairs of maps

Γ_OO:C-CO(1R)-+C-OO(1R),

T-00 lc°°(lR) = Too .

Hence the group we consider is GL(C°°(1R)) n GL(C~°°(R)), and the pair of
group inclusions is

G 1 2 = GL(C°°(R)) n GL(C~°°(R)) c GL(C°°(R)) = Gγ ,

G 1 2 = GL(C°°(R)) n GL(C"°°(R)) c GL(C~°°(IR)) = G2 .

Correspondingly instead of the dual space to a Lie algebra of continuous operators
in the space of functions we will take a dual to a pair of inclusions

8 l 2
 = gI(C°°(R)) n gI(C-°°(R)) c gI(C°°(R)) =

 3l
 ,

812 = flUC^ίR)) π gI(C-°°(R)) c gI(C"°°(R)) = g
2
 ,

i.e., a pair of inclusions

n gI(C--(R)))* 3 gl(C°°(R))* ,

n gI(C-°°(R)))* ̂  g U C ^ I R ) ) * .

We need all this machinery to find an appropriate definition of the space

/I2(gl(functions on IR)) .

Without it we could define the formulae for the r-matrix we want to construct, but
we could not motivate a choice of (a big) space this matrix lies in. This is a usual
difficulty in functional analysis. It is difficult to define a notion of a tensor product

1 1 Of course, we need to know first what is a smooth function on, say, Gι. However, here we skip
this discussion (until a better time)
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of a pair of spaces. It is possible in the case when one of these spaces is a nuclear
space. However, in our case we want these spaces to be Lie algebras, and these two
restrictions (being a Lie algebra and a nuclear space) seem to contradict in this
particular case (at least we could not invent anything feasible).

So now we can define the space /t2(gl(functions on ]R)) to be the space of
skewsymmetric continuous bilinear forms on the space

gl(C°°(R))* n gI(C-°°(R))* c (gI(C°°(]R)) n

This space is sufficiently small for the formula (2.3) to define a continuous bilinear
form on it. Indeed, as we explained in Sect. 2.1, the kernels of covectors from this set
are smooth with compact support in one variable. We hope that this sketch can
help in justification of our consideration of (2.3) as of an r-matrix.
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