Commun. Math. Phys. 159, 15-27 (1994)



# **Super-derivations**

# Akitaka Kishimoto, Hideki Nakamura

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Received November 25, 1992

**Abstract:** It is shown that the square of a super-derivation can never be a generator (without taking its closure) if it is unbounded and self-adjoint.

# 1. Introduction

The notion of a quantum algebra has been introduced by A. Jaffe et al. [5-7] in connection with entire cyclic cohomology (cf. [3, 4, 8]). A key ingredient to this notion is a super-derivation, defined on a graded C\*-algebra, whose square *is* or *extends to* the generator of a one-parameter group of \*-automorphisms. In this note we study the relationship between the super-derivation and the generator to seek the *right* definition of a quantum algebra and obtain among others the result stated in the abstract, i.e., if the square of a self-adjoint super-derivation is a generator then it is bounded.

We will state the main results in Sect. 2 and give their proofs in Sects. 3-6. Finally we will give a *spatial* example based on the algebra of bounded operators on a Hilbert space. One of the authors (A.K.) is grateful to C.J. K. Batty for many discussions.

In the rest of this section we will state the definition of a super-derivation and give some basic properties.

Let  $(A, \gamma)$  be a graded C\*-algebra; i.e., A is a C\*-algebra and  $\gamma$  is a \*-automorphism of A of period two. Let

$$A_{e} = \{ a \in A | \gamma(a) = a \}, A_{o} = \{ a \in A | \gamma(a) = -a \}.$$

Then it follows that  $A_e$  is a sub-C\*-algebra of A and that  $A_eA_o \supset A_o$ ,  $A_o^* = A_o$ , and  $A_oA_o \subset A_e$ . The C\*-algebra A is the direct sum of  $A_e$  and  $A_o$  as a Banach space.

Let d be a super-derivation of A; i.e., its domain D(d) is a (dense)  $\gamma$ -invariant subalgebra of A and d is a linear map of D(d) into A such that

$$d(ab) = da \cdot b + \gamma(a) \cdot db, \ a, b \in D(d) ,$$

and  $\gamma \circ d = -d \circ \gamma$ . In particular

$$D(d) = D(d) \cap A_e + D(d) \cap A_e$$

and d maps  $D(d) \cap A_e$  into  $A_o$  and  $D(d) \cap A_o$  into  $A_e$ .

Let *B* be the crossed product  $A \times_{\gamma} \mathbb{Z}_2$  of *A* by  $\gamma$ , and let *U* be the canonical unitary of *B* implementing  $\gamma$ . Define a linear map  $\delta$  of  $D(d) \subset A \subset B$  into  $AU \subset B$  by

$$\delta(a) = Ud(a) \; .$$

Then since  $\delta(ab) = Ud(ab) = U \cdot da \cdot b + U\gamma(a) \cdot db = \delta(a)b + a\delta(b)$ ,  $\delta$  is a derivation. In particular if D(d) = A, then d is automatically bounded since the corresponding  $\delta$  is bounded (see e.g. [2]).

Define a linear map  $d^+$  on  $D(d^+) = D(d)^*$  by

$$d^+(a) = \gamma(da^*)^* .$$

Then  $d^+$ , called the adjoint of d, is again a super-derivation.

An example of super-derivations is an inner one; if  $q \in A_o$ , the linear map defined by

$$\delta_a = qa - \gamma(a)q, \quad a \in A$$

is a super-derivation. Note that  $(\delta_q)^+ = \delta_{q^*}$ . Hence if  $\gamma$  is properly outer or freely acting (i.e., has no inner part [9]),  $\delta_q$  being self-adjoint (i.e.,  $\delta_q^+ = \delta_q$ ) is equivalent to q being self-adjoint.

If  $\gamma$  is implemented by a unitary  $u \in D(d)$ , then it follows that d is inner. To see this apply d to the equality  $ux = \gamma(x)u$  for  $x \in D(d)$ . Since  $u \in A_e$ , it follows that

$$du \cdot x + u \cdot dx = -\gamma(dx)u + xdu ,$$

which implies that  $d = \delta_q$  with

$$q = -\frac{1}{2}u^* \cdot du \; .$$

If d is self-adjoint, then so is q, which follows from

$$0 = d(1) = d(u^*u) = du^* \cdot u + u^* du .$$

If d is a super-derivation, then  $d^2$  is a derivation satisfying  $d^2 \circ \gamma = \gamma \circ d^2$ . If d is selfadjoint in addition, then  $d^2$  is self-adjoint, i.e.,  $(d^2)^* = d^2$ , where  $(d^2)^*$  is defined by

$$(d^2)^* = -d^2(x^*)^*, \quad x \in D((d^2)^*) = D(d^2)^*$$

(Note that  $(d^2)^*$  is normally defined by the above equality without minus sign. See [1, 2, 12].) If  $d = \delta_q$  with  $q \in A_o$ , then  $d^2 = \delta_{q^2}$ , where for  $h = q^2 \in A_e$ ,  $\delta_h$  is defined by

$$\delta_h(x) = hx - xh \; .$$

If  $h = h^*$ , which follows from, but does not imply,  $q = q^*$ , then  $i \cdot \delta_h$  generates a one-parameter group  $\alpha$  of \*-automorphisms of A with  $\alpha_t \circ \gamma = \gamma \circ \alpha_t$ . We note that our one-parameter groups of \*-automorphisms always preserve the grading (or commutes with  $\gamma$ ).

# 2. Main Results

We call a linear operator L on the  $C^*$ -algebra A a generator if iL generates a strongly continuous one-parameter group  $\alpha$  of \*-automorphisms of A, where the strong continuity is defined by:

$$\|\alpha_t(x) - x\| \to 0$$
, as  $t \to 0$ , for  $x \in A$ .

Note that if L is a generator, then L is a closed self-adjoint derivation.

Given a one-parameter automorphism group  $\alpha$  of A and given an open subset U of  $\mathbb{R}$ , we denote by  $A^{\alpha}(U)$  the spectral subspace defined as the closure of

$$\{\alpha_f(x) | x \in A, \text{ supp } \hat{f} \subset U\}$$

where, for a continuous  $f \in L^1(\mathbb{R})$  and  $x \in A$ ,  $\alpha_f(x)$  is defined by

$$\alpha_f(x) = \int f(t) \alpha_t(x) dt$$

and  $\hat{f}$  is defined by

$$\hat{f}(p) = \int f(t) e^{ipt} dt .$$

For  $x \in A$ , the  $\alpha$ -spectrum  $\text{Sp}_{\alpha}(x)$  of x is defined by

$$\bigcap \{ \{ p | \hat{f}(p) = 0 \} | \alpha_f(x) = 0 \} .$$

It follows that  $x \in A^{\alpha}(U)$  satisfies  $\operatorname{Sp}_{\alpha}(x) \subset \overline{U}$  and that any  $x \in A$  with  $\alpha$ -spectrum in U belongs to  $A^{\alpha}(U)$ . Let L be the generator of  $\alpha$ . If U is bounded, then  $A^{\alpha}(U) \subset D(L)$ . The union  $\bigcup_{k>0} A^{\alpha}(-k,k)$ , which is a dense \*-subalgebra of A, is a core for L. See [10] for details.

**Theorem 1.** Let  $(A, \gamma)$  be a graded C\*-algebra, and let d be a closed super-derivation of A and  $\alpha$  a strongly continuous one-parameter group of \*-automorphisms of A with  $\alpha \circ \gamma = \gamma \circ \alpha$ . Suppose that  $d \circ \alpha_t = \alpha_t \circ d$  for all  $t \in \mathbb{R}$ , that  $D(d^2)$  is dense in A, and that  $d^2$  is a restriction of the generator L of  $\alpha$ . Let  $A_0 = (\int_{k>0} A^{\alpha}(-k,k))$ . Then the following hold:

(i)  $D(d) \cap A_0$  is a core for d and  $D(d^2) \cap A_0$  is a core for  $d^2$ . (ii)  $D(d^2) \cap A_0$  is contained in  $\bigcap_{k=1}^{\infty} D(d^k)$  and is invariant under d, and the closure of  $d^2$  is L.

(iii) If  $D(d^2)$  is a core for d, then  $D(d) \cap A_0$  is contained in  $\bigcap_{k=1}^{\infty} D(d^k)$  and is invariant under d.

*Remark 1.* In the situation of the above theorem let  $d_1$  be the closure of  $d|D(d^2)$ . Then  $d_1$  commutes with  $\alpha$ , and since  $D(d^2) \cap A_0 \subset D(d_1^2)$ , the closure of  $d_1^2$  is L. Moreover  $D(d_1^2)$  is a core for  $d_1$  because  $D(d^2) \cap A_0$  is a core for  $d_1$ .

We do not know in general whether the commutativity that  $d \circ \alpha_t = \alpha_t \circ d$ ,  $t \in \mathbb{R}$ , can be derived from the other conditions in the above theorem. But it can if we assume that  $\alpha$  is uniformly continuous or L is bounded, as the following theorem shows:

**Theorem 2.** Let  $(A, \gamma)$  be a graded C\*-algebra, and let d be a closed super-derivation such that  $D(d^2)$  is a core for d and  $d^2$  is a restriction of an everywhere defined self-adjoint derivation L. Then d commutes with the strongly continuous one-parameter group  $\alpha$  of \*-automorphisms generated by iL.

The following result concerns the problem of whether we have to take the closure of  $d^2$  to get the generator L when d is unbounded. We have to restrict ourselves to self-adjoint super-derivations to prove:

**Theorem 3.** Let  $(A, \gamma)$  be a graded C\*-algebra, and let d be a self-adjoint superderivation of A and  $\alpha$  a strongly continuous one-parameter group of \*-automorphisms of A with  $\alpha \circ \gamma = \gamma \circ \alpha$ . Suppose that  $d^2 \subset L$ , where L is the generator of  $\alpha$ . Then the following conditions are equivalent:

- (i)  $d^2 = L$ .
- (ii) d is everywhere defined (and hence bounded).

(iii) d is closed,  $D(d^2)$  is dense,  $d \circ \alpha_t = \alpha_t \circ d$  for all  $t \in \mathbb{R}$ , and  $D(d) \supset A^{\alpha}(-\varepsilon, \varepsilon)$  for some  $\varepsilon > 0$ .

Hence we should not expect in general that D(d) contains the entire analytic elements with respect to  $\alpha$  (cf. [6, 7]),

*Remark* 2. Under the situation of the above theorem, if the super-derivation d is unbounded, the range of  $\lambda \cdot 1 + d$  is not the whole A for any  $\lambda \in \mathbb{C}$ , and in particular the spectrum of d is the whole complex plane.

This may be proved as follows. Suppose that for some  $\lambda \in \mathbb{C}$ ,  $(\lambda + d) D(d) = A$ . By applying  $\gamma$  one obtains that  $(\lambda - d) D(d) = A$  and then  $(\lambda^2 - d^2) D(d^2) = A$ . By the above theorem  $d^2$  cannot be the generator L; there must be a non-zero  $x \in D(L)$  such that

$$(\lambda^2 - L)(x) = 0 .$$

Then, since  $\alpha_t(x) = e^{itL}(x) = e^{i\lambda^2 t}x$ , it follows that  $\lambda^2 \in \mathbb{R}$ . Since  $(\lambda^2 - L)D(L) = A$ , there is  $y \in D(L)$  such that

$$x = (\lambda^2 - L) y \; .$$

Since  $\alpha_t(y)$  satisfies

$$\alpha_0(y) = y, \quad \frac{d}{dt}\alpha_t(y) = \alpha_t(iLy) = i\lambda^2 \alpha_t(y) - i\alpha_t(x),$$

it follows that

$$\alpha_t(y) = e^{i\lambda^2 t} y - it e^{i\lambda^2 t} x \; .$$

Since  $||\alpha_t(y)|| = ||y||$  and  $x \neq 0$ , this is a contradiction.

If we further assume the situation of Theorem 1, the second part of the remark also follows from a general result (presented to us by C.J.K. Batty): If d is a closed operator with  $\operatorname{Sp} d \neq \mathbb{C}$ , then  $d^2$  is closed. The proof of this goes as follows. Let  $\{x_n\}$  be a sequence in  $D(d^2)$  such that

$$||x_n - x|| \to 0, ||d^2x_n - y|| \to 0$$

for some y. If  $\lambda \notin \text{Sp } d$  is non-zero,

$$d((\lambda - d)^{-1} - \lambda^{-1})x_n = (\lambda - d)^{-1} \lambda^{-1} d^2 x_n$$

converges to  $(\lambda - d)^{-1} \lambda^{-1} y$ . Since  $((\lambda - d)^{-1} - \lambda^{-1}) x_n$  converges to  $((\lambda - d)^{-1} - \lambda^{-1}) x$  and d is closed, it follows that  $x \in D(d)$  and

$$((\lambda - d)^{-1} - \lambda^{-1})dx = (\lambda - d)^{-1}\lambda^{-1}y.$$

Hence  $dx \in D(d)$  and  $d^2x = y$ . If  $0 \notin \text{Sp } d$ , we just have to note that  $dx_n$  converges to  $d^{-1}y$ . Hence  $x \in D(d)$  and  $dx = d^{-1}y$ , i.e.,  $x \in D(d^2)$  and  $d^2x = y$ .

Our final result concerns inner perturbations of a self-adjoint super-derivation d, which is used in [7]. Let q be a self-adjoint element of  $D(d) \cap A_o$ , and let

$$d_q = d + \delta_q$$

which is again a super-derivation with  $D(d_q) = D(d)$ . Then  $D(d_q^2) = D(d^2)$  and

$$d_q^2 = d^2 + \delta_\Omega,$$

where  $\Omega = dq + q^2$  is a self-adjoint element of  $A_e$ . Thus if  $\overline{d^2}$  is a generator, then  $\overline{d_q^2}$  is also a generator as being just an inner perturbation of  $\overline{d^2}$ . Since  $\Omega \in A_e$ , the one-parameter group  $\alpha_t^q$  generated by  $\overline{i(d_q)^2}$  preserves the grading (i.e., commutes with  $\gamma$ ).

**Theorem 4.** Let  $(A, \gamma)$  be a graded C\*-algebra, and let d be a closed self-adjoint super-derivation of A and  $\alpha$  a strongly continuous one-parameter group of \*-automorphisms of A with  $\alpha_t \circ \gamma = \gamma \circ \alpha_t$ . Suppose that

(i)  $d \circ \alpha_t = \alpha_t \circ d$  for all  $t \in \mathbb{R}$ , (ii)  $D(d^2)$  is a core for d, and (iii)  $d^2 \subset L$ ,

where L is the generator of  $\alpha$  (hence  $\overline{d^2} = L$  due to Theorem 1).

If q is a self-adjoint element of  $D(d) \cap A_0$ , then the pair of the super-derivation  $d_q = d + \delta_q$  and the generator  $L_q = L + \delta_{\Omega}$  with  $\Omega = dq + d^2$  satisfies the same conditions (i), (ii), (iii) as for the pair of d and L.

# 3. Proof of Theorem 1

Let f be a continuous function in  $L^1(\mathbb{R})$  and  $x \in D(d)$ . Then it follows that  $\alpha_f(x) \in D(d)$  and

$$d(\alpha_f(x)) = \alpha_f(dx) .$$

Suppose that supp  $\hat{f}$  is compact with  $\hat{f}(0) = 1$  and let  $f_n(t) = f(nt)n$  for n = 1, 2, ... Then

$$\alpha_{f_n}(x) \to x, \ d(\alpha_{f_n}(x)) = \alpha_{f_n}(dx) \to dx$$
.

Since d is closed and

$$\operatorname{Sp}_{\alpha}(\alpha_{f_n}(x)) \subset \operatorname{supp} \hat{f}_n = n \cdot \operatorname{supp} \hat{f},$$

this implies that  $D(d) \cap A_0$  is a core for d. By repeating this procedure once more one obtains that  $D(d^2) \cap A_0$  is a core for  $d^2$ . Thus we have shown Theorem 1(i).

**Lemma 1.** For  $x \in D(d)$ , it follows that  $\operatorname{Sp}_{\alpha}(dx) \subset \operatorname{Sp}_{\alpha}(x)$ .

*Proof.* This is immediate since  $\alpha_f(x) = 0$  implies  $\alpha_f(dx) = 0$ .

**Lemma 2.**  $D(d^2) \cap A^{\alpha}(-k,k)$  is dense in  $A^{\alpha}(-k,k)$  for any k > 0.

*Proof.* Let  $x \in A^{\alpha}(-k,k)$  and  $\varepsilon > 0$ . Then there is a non-zero  $f \in L^{1}(\mathbb{R})$  with  $\operatorname{supp} \widehat{f} \subset (-k,k)$  and  $y \in A$  such that  $||x - \alpha_{f}(y)|| < \varepsilon/3$ . Since  $D(d^{2})$  is dense,

A. Kishimoto, H. Nakamura

there is  $z \in D(d^2)$  with  $||y - z|| < \varepsilon/2 ||f||_1$ . Then  $\alpha_f(z) \in D(d^2) \cap A^{\alpha}(-k,k)$  and  $||\alpha_f(z) - x|| < \varepsilon$ .

Let  $x \in D(d^2) \cap A_0$ . Then  $dx \in D(d) \cap A_0$  and  $d \cdot dx = Lx$ . Hence to prove that  $d(D(d^2) \cap A_0) \subset D(d^2) \cap A_0$ , we only have to show that  $Lx \in D(d) \cap A_0$ . By letting  $t \to 0$  in the equality

$$d\left(\frac{1}{t}(\alpha_t(x)-x)\right) = \frac{1}{t}(\alpha_t(dx)-dx)$$

we obtain that  $Lx \in D(d)$  and

$$dLx = Ldx$$
.

Hence it follows that  $D(d^2) \cap A_0$  is contained in  $\bigcap_{k=1}^{\infty} D(d^k)$  and is invariant under d.

Since  $d^2$  is bounded on  $D(d^2) \cap A^{\alpha}(-k,k)$ , it follows that

$$D(\overline{d^2}) \supset A^{\alpha}(-k,k)$$
.

Thus  $D(\overline{d^2}) \supset A_0$  and hence  $\overline{d^2} = L$  because  $A_0$  is a core for L and  $d^2$  is a restriction of L, which completes the proof of Theorem 1(ii).

Theorem 1(iii) follows from Lemma 1 and the following:

**Lemma 3.** Under the assumption of Theorem 1(iii) it follows that  $D(d) \cap D(L) \subset D(d^2)$ .

*Proof.* Let  $x \in D(d) \cap D(L)$ . We have to show that

$$(dx, Lx) \in G(d) \equiv \{(a, da) | a \in D(d)\}.$$

Since G(d) is a closed subspace of  $A \oplus A$  as being the graph of the closed operator d, if  $(dx, Lx) \notin G(d)$ , there is a  $(\varphi, \psi) \in A^* \oplus A^*$  such that

$$\begin{aligned} \varphi(a) + \psi(da) &= 0, \quad a \in D(d) ,\\ \varphi(dx) + \psi(Lx) &= 0 . \end{aligned}$$

Let  $f \in L^1(\mathbb{R})$  be such that supp  $\hat{f}$  is compact with  $\hat{f}(0) = 1$ , and let  $f_n(t) = f(nt)n$  as before. Since d and L commutes with  $\alpha_{f_n}$ ,  $(\varphi \circ \alpha_{f_n}, \varphi \circ \alpha_{f_n})$  vanishes on G(d) and

$$\lim \left\{ \varphi \circ \alpha_{f_n}(dx) + \psi \circ \alpha_{f_n}(Lx) \right\} = \varphi(dx) + \psi(Lx) .$$

Thus  $\varphi \circ \alpha_{f_n}$  and  $\psi \circ \alpha_{f_n}$  in place of  $\varphi$  and  $\psi$  respectively still satisfies the above condition for a sufficiently large *n*. In particular we may suppose that  $\psi \circ L$  (on D(L)) extends to a bounded functional on *A*, which we denote by  $\overline{\psi \circ L}$ .

For  $a \in D(d^2)$  one has

$$\varphi(da) + \psi(d^2a) = 0$$

which implies that  $\varphi \circ d | D(d^2)$  is bounded. Since  $D(d^2)$  is a core for d, it follows that  $\varphi \circ d$  is also bounded, and

$$\overline{\varphi \circ d} + \overline{\psi \circ L} = 0 \; .$$

Hence  $\overline{\varphi \circ d}(x) + \overline{\psi \circ L}(x) = 0$ , which is a contradiction.

#### 4. Proof of Theorem 2 (Commutativity)

It suffices to prove that there is a dense subalgebra  $\mathscr{A}$  of D(d) such that  $\mathscr{A}$  is a core for d and  $d(\mathscr{A}) \subset \mathscr{A}$ . Because then it follows that  $L = d^2$  on  $\mathscr{A}$  and

$$d\sum_{n=0}^{N} \frac{1}{n!} (itL)^n = \sum_{n=0}^{N} \frac{1}{n!} (itL)^n d$$

on  $\mathscr{A}$  for any N, which implies that  $d \circ \alpha_t = \alpha_t \circ d$  on  $\mathscr{A}$ , by taking the limit of  $N \to \infty$  (cf. [6]). We can take D(d) as  $\mathscr{A}$  by the following:

**Lemma 4.**  $D(d) = D(d^2)$ .

*Proof.* This can be proved as Lemma 3, where we needed the commutativity that  $d \circ \alpha_t = \alpha_t \circ d$  to make  $\psi \circ L$  bounded, which is automatic in the present case.

#### 5. Proof of Theorem 3 (Self-Adjoint Super-Derivation)

We have already remarked that if a super-derivation is everywhere defined then it is automatically bounded. Hence the implications  $(ii) \Rightarrow (i)$  and  $(ii) \Rightarrow (iii)$  follow immediately.

To prove (i)  $\Rightarrow$  (ii) we first note:

**Lemma 5.** If  $D(d) \supset D(L)$ , d|D(L) is relatively bounded with respect to L.

*Proof.* Remember that  $\delta$  defined by

$$\delta(a) = Ud(a), \quad a \in D(d)$$

as a map of D(d) into  $A \times_{\gamma} \mathbb{Z}_2$  is a derivation, where U is the canonical unitary implementing  $\gamma$ . Note that  $\|\delta(a)\| = \|d(a)\|$  for  $a \in D(d)$ . For the two derivations  $\delta$  and L of D(L) into  $A \times_{\gamma} \mathbb{Z}_2$ , we adopt the same arguments as in [1] and conclude that  $\delta$  is relatively bounded with respect to L. Hence the conclusion follows.

Suppose that  $d^2 = L$ . Since  $D(d) \supset D(L)$ , it follows by the above lemma that  $d|A^{\alpha}(-k,k)$  is bounded for any k > 0. Since L leaves  $A^{\alpha}(-k,k)$  invariant, the left side of

$$d\sum_{n=0}^{N} \frac{1}{n!} (itL)^n = \sum_{n=0}^{N} \frac{1}{n!} (itL)^n d$$

on  $A^{\alpha}(-k,k)$  converges to  $d \circ \alpha_t$  as  $N \to \infty$ , and hence the right side should converge to  $\alpha_t \circ d$ . Thus we obtain that  $d \circ \alpha_t = \alpha_t \circ d$  on  $A_0$ , and also that  $d \circ \alpha_f = \alpha_f \circ d$  on  $A_0$  for any continuous  $f \in L^1(\mathbb{R})$ . Since for an open bounded set U of  $\mathbb{R}$ , d is bounded on  $A^{\alpha}(U)$ , and  $A^{\alpha}(U)$  is a closed span of  $\alpha_f(x)$  with supp  $\hat{f} \subset U$ and  $\operatorname{Sp}_{\alpha}(x)$  compact, it follows that d leaves  $A^{\alpha}(U)$  invariant. Then by Lemma 7 below it follows that L is bounded, which implies that d is everywhere defined. Thus we obtain that (i) implies (ii).

To show the lemma referred to above we first prove:

**Lemma 6.** There is a constant c > 0 such that for any  $\lambda \in \mathbb{R}$ ,  $\varepsilon > 0$ , and  $x \in A^{\alpha}(\lambda - \varepsilon, \lambda + \varepsilon)$ ,

$$\|Lx - \lambda x\| \leq c\varepsilon \|x\|.$$

*Proof.* Let  $f \in L^1(\mathbb{R})$  be a  $C^{\infty}$ -function such that  $\hat{f}(p) = 1$  for  $p \in [-1, 1]$ . Let  $h(t) = e^{-i\lambda t} f(\varepsilon t) \varepsilon$ .

Then for any  $g \in L^1$  with supp  $\hat{g} \subset (\lambda - \varepsilon, \lambda + \varepsilon)$ , it follows that  $\hat{h}\hat{g} = \hat{g}$ , since  $\hat{h}(p) = \hat{f}(\varepsilon^{-1}(p-\lambda))$ . Hence for  $x \in A^{\alpha}(\lambda - \varepsilon, \lambda + \varepsilon)$ , one has  $\alpha_h(x) = x$  and

$$iL\alpha_h(x) = \int h(t)\frac{d}{dt}\alpha_t(x)dt = i\lambda\int h(t)\alpha_t(x)dt - \varepsilon\int e^{-i\lambda t}f'(\varepsilon t)\alpha_t(x)\varepsilon dt$$

Thus one obtains

$$\|Lx - \lambda x\| \leq c \varepsilon \|x\|,$$

where

$$c = \int |f'(t)| dt$$
.

This concludes the proof.

Lemma 7. Suppose (i) or (iii) of Theorem 3. Then L is bounded.

*Proof.* Suppose that L is unbounded. Then, since  $\operatorname{Sp} \alpha = -\operatorname{Sp} \alpha$ , there is a sequence  $\{\lambda_n\}$  in  $\operatorname{Sp} \alpha \cap (0, \infty)$  such that  $\lambda_n \to \infty$ .

Fix  $\varepsilon_0 > 0$  such that  $d | A^{\alpha}(-2\varepsilon_0, 2\varepsilon_0)$  is bounded. Note that  $D(d^2) \cap A^{\alpha}(\lambda_n - \varepsilon_0, \lambda_n + \varepsilon_0)$  is dense in  $A^{\alpha}(\lambda_n - \varepsilon_0, \lambda_n + \varepsilon_0)$  and is  $\gamma$ -invariant. Since  $A^{\alpha}(\lambda_n - \varepsilon_0, \lambda_n + \varepsilon_0) \cap A_e \neq \{0\}$ , there is a non-zero element x of  $D(d^2) \cap A^{\alpha}(\lambda_n - \varepsilon_0, \lambda_n + \varepsilon_0) \cap A_e$  and let

$$y = x + \frac{1}{\sqrt{\lambda_n}} dx \; .$$

Since  $x = (y + \gamma(y))/2$  one has  $||x|| \le ||y||$ ; in particular  $y \ne 0$ . Since

$$dy - \sqrt{\lambda_n} y = dx + \frac{1}{\sqrt{\lambda_n}} d^2 x - \sqrt{\lambda_n} x - dx$$
$$= \frac{1}{\sqrt{\lambda_n}} (d^2 x - \lambda_n x) ,$$

it follows by Lemma 6 that

$$||dy - \sqrt{\lambda_n y}|| \leq \frac{c \varepsilon_0}{\sqrt{\lambda_n}} ||x|| \leq \frac{c \varepsilon_0}{\sqrt{\lambda_n}} ||y||.$$

Since  $dy^* = \gamma(dy)^*$ , it follows that

$$\|dy^* - \sqrt{\lambda_n}\gamma(y^*)\| = \|\gamma(dy - \sqrt{\lambda_n}y)^*\| \leq \frac{c\varepsilon_0}{\sqrt{\lambda_n}}\|y\|.$$

Hence, since

$$d(yy^*) = dy \cdot y^* + \gamma(y) dy^*$$
  
=  $(dy - \sqrt{\lambda_n} y)y^* + \sqrt{\lambda_n} yy^*$   
+  $\gamma(y)(dy^* - \sqrt{\lambda_n} \gamma(y^*)) + \sqrt{\lambda_n} \gamma(y) \gamma(y^*)$ ,

we obtain

$$\|d(yy^*)\| \ge \sqrt{\lambda_n} \|yy^* + \gamma(yy^*)\| - \frac{2c\varepsilon_0}{\sqrt{\lambda_n}} \|y\|^2$$
$$\ge \sqrt{\lambda_n} \left(1 - \frac{2c\varepsilon_0}{\lambda_n}\right) \|y\|^2.$$

Since  $yy^* \in A^{\alpha}(-2\varepsilon_0, 2\varepsilon_0)$ , it follows that

$$\|d|A^{\alpha}(-2\varepsilon_0,2\varepsilon_0)\| \geq \sqrt{\lambda_n}\left(1-\frac{2c\varepsilon_0}{\lambda_n}\right).$$

As  $\lambda_n \to \infty$ , this implies that d is unbounded on  $A^{\alpha}(-2\varepsilon_0, 2\varepsilon_0)$ , which is a contradiction.

Suppose (iii). Then by Lemma 7 it follows that L is bounded. Now we have to show that it follows then d is bounded.

Let  $\varepsilon_0 > 0$  be such that  $D(d) \supset A^{\alpha}(-3\varepsilon_0, 3\varepsilon_0)$  and let

$$M = \|d|A^{\alpha}(-3\varepsilon_0, 3\varepsilon_0)\| < \infty .$$

We shall show that  $d|D(d^2) \cap A^{\alpha}(\lambda - \varepsilon_0, \lambda + \varepsilon_0)$  is bounded (by  $M + ||L||^{1/2}$ ) for any  $\lambda$ . From this the conclusion follows by the following lemma:

**Lemma 8.** Let  $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$  be a finite sequence in  $\mathbb{R}$  such that  $\bigcup_{i=1}^n (\lambda_i - \varepsilon_0, \lambda_i + \varepsilon_0) \supset \operatorname{Sp} \alpha$ . Then  $\sum_{i=0}^n D(d^2) \cap A^{\alpha}(\lambda_i - \varepsilon_0, \lambda_i + \varepsilon_0) = D(d^2)$ .

*Proof.* If  $x \in D(d^2)$ , then for any continuous  $f \in L^1(\mathbb{R})$  one has  $\alpha_f(x) \in D(d^2)$  immediately. The rest is easy (see [10]).

Let  $x \in D(d^2) \cap A^{\alpha}(\lambda - \varepsilon_0, \lambda + \varepsilon_0)$  be such that ||x|| = 1 and  $dx \neq 0$ , and let

$$y = dx / \|dx\| .$$

Then  $y \in D(d)$  and

$$d(\gamma(y^*)x) = y^* dx - \gamma(dy^*)x = \frac{(dx)^*(dx)}{\|dx\|} - (dy)^* x$$

which implies that

$$||d(\gamma(y^*)x)|| \ge ||dx|| - ||Lx|| ||x|| / ||dx||.$$

Since  $y \in A^{\alpha}(\lambda - 2\varepsilon_0, \lambda + 2\varepsilon_0)$  and  $\gamma(y^*)x \in A^{\alpha}(-3\varepsilon_0, 3\varepsilon_0)$ , one obtains

$$||dx||^{2} - M||dx|| - ||L|| \leq 0.$$

Hence

$$||dx|| \leq \frac{M}{2} + \sqrt{||L|| + \frac{M^2}{4}} \leq M + ||L||^{1/2}.$$

# 6. Proof of Theorem 4 (Inner Perturbations)

Since  $d_q^2 = d^2 + \delta_{\Omega}$  with  $\Omega = dq + q^2$  and  $L = \overline{d^2}$ , it is immediate that (ii)  $D(d_q^2) = D(d^2)$  is a core for  $d_q = d + \delta_q$  and that (iii)  $d_q^2 \subset L_q = L + \delta_{\Omega}$ . We only

have to show that (i)  $d_q \circ \alpha_t^q = \alpha_t^q \circ d_q$ , where  $\alpha^q$  is the one-parameter group of \*-automorphisms generated by  $iL_q$ .

Define a family  $u_t$  of unitaries of A (adjoined by a unit if it is not unital) by

$$u_t = \sum_{n=0}^{\infty} i^n \int_{0 \le t_1 \le \ldots \le t_n \le t} \alpha_{t_1}(\Omega) \alpha_{t_2}(\Omega) \ldots \alpha_{t_n}(\Omega) dt_1 \ldots dt_n$$

for  $t \in \mathbb{R}$ . Then  $u_t$  is differentiable in  $t \in \mathbb{R}$  and satisfies

$$u_0 = 1,$$
  

$$\frac{d}{dt}u_t = iu_t\alpha_t(\Omega),$$
  

$$\alpha_t^{q}(x) = u_t\alpha_t(x)u_t^*, \quad x \in A.$$

**Lemma 9.** If  $A \ni 1$ , then  $D(d) \ni 1$  and d(1) = 0.

*Proof.* Note that the  $\delta = Ud$  defined in the proof of Lemma 5 is a closed derivation. Hence this can be proved as for the derivations (see [2, 11]).

Suppose that  $q \in D(d^2)$ . Then  $\Omega \in D(d)$  and it easily follows that  $u_t \in D(d)$ . (If A is adjoined by a unit we can set d(1) = 0.) To prove that  $d_q \circ \alpha_t^q = \alpha_t^q \circ d_q$ , we have to show:

$$u_t \alpha_t (dx + \delta_q(x)) u_t^* = (d + \delta_q) (u_t \alpha_t(x) u_t^*)$$

for  $x \in D(d)$ , which, by computation, follows from the following equality:

$$u_t \alpha_t(q) u_t^* = d(u_t) u_t^* + q, \ t \in \mathbb{R} .$$

When t = 0, this is correct. Now compute:

$$\frac{d}{dt}u_t\alpha_t(q)u_t^* = iu_t\alpha_t(\Omega)\alpha_t(q)u_t^* + iu_t\alpha_t(d^2q)u_t^* - iu_t\alpha_t(q)\alpha_t(\Omega)u_t^*$$
$$= iu_t\alpha_t(\Omega q + d^2q - q\Omega)u_t^*$$
$$= iu_t\alpha_t(dq \cdot q + d^2q - qdq)u_t^*$$
$$= u_t\alpha_t(d\Omega)u_t^*$$

and

$$\frac{d}{dt}(d(u_t)u_t^*) = id(u_t\alpha_t(\Omega))u_t^* - id(u_t)\alpha_t(\Omega)u_t^*$$
$$= iu_t\alpha_t(d\Omega)u_t^*,$$

where the first equality is easily justified by using the infinite series expansion of  $u_t$ . Hence

$$\frac{d}{dt}u_t\alpha_t(q)u_t^* = \frac{d}{dt}d(u_t)u_t^*$$

Thus one obtains that  $d_q \circ \alpha_t^q = \alpha_t^q \circ d_q$  for  $q \in D(d^2)$ . For a general  $q \in D(d)$ , since  $D(d^2)$  is a core for d, we may choose a sequence  $\{q_n\}$  in  $D(d^2)$  such that  $q_n \to q$ , and  $dq_n \to dq$ . Then since  $d_{q_n}(x) \to d_q(x)$  for  $x \in D(d)$  and  $\alpha_t^{q_n}(a) \to \alpha_t^q(a)$  for  $a \in A$ , one obtains the conclusion.

24

#### 7. An Example

Let  $\mathscr{H}$  be an infinite-dimensional Hilbert space and let U be a self-adjoint unitary on  $\mathscr{H}$  such that both (1 + U)/2 and (1 - U)/2 are infinite-dimensional projections. Let Q be an *unbounded* self-adjoint operator on  $\mathscr{H}$  such that UQU = -Q. We can define a self-adjoint super-derivation  $\delta_Q$  on the graded  $C^*$ -algebra  $(B(\mathscr{H}), \operatorname{Ad} U)$  as follows:  $D(\delta_Q)$  consists of  $x \in B(\mathscr{H})$  such that  $xD(Q) \subset D(Q)$  and  $Qx - \operatorname{Ad} U(x)Q$  is bounded on D(Q), and  $\delta_Q(x)$  is the bounded extension of  $Qx - \operatorname{Ad} U(x)Q$  for  $x \in D(\delta_Q)$ .

**Proposition 1.**  $\delta_Q$  is a (not densely defined) closed-adjoint super-derivation on  $(B(\mathcal{H}), \operatorname{Ad} U)$ .

*Proof.* Since UQU = -Q, it follows that UD(Q) = D(Q), which implies that

$$U(Qx - \operatorname{Ad} U(x)Q)U = -Q\operatorname{Ad} U(x) + xQ$$

is well-defined on D(Q). Hence one obtains that if  $x \in D(\delta_Q)$  then  $\operatorname{Ad} U(x) \in D(\delta_Q)$ and  $\operatorname{Ad} U(\delta_Q(x)) = -\delta_Q(\operatorname{Ad} U(x))$ .

Let  $x \in D(\delta_Q)$  and  $\xi, \eta \in D(Q)$ . Since

$$(x^*\xi, Q\eta) = (\xi, xQ\eta) = (\xi, (\operatorname{Ad} U(\delta_Q(x)) + Q\operatorname{Ad} U(x))\eta)$$
$$= ((\operatorname{Ad} U(\delta_Q(x))^* + \operatorname{Ad} U(x^*)Q)\xi, \eta),$$

It follows that  $x^*\xi \in D(Q)$ , and

$$(Qx^* - \operatorname{Ad} U(x^*)Q)\xi = \operatorname{Ad} U(\delta_O(x))^*\xi.$$

Hence it follows that  $x^* \in D(\delta_Q)$  and

$$\delta_Q(x^*) = \operatorname{Ad} U(\delta_Q(x))^*$$
.

The closedness of  $\delta_Q$  easily follows from the closedness of Q. We omit the rest of the proof.

Let  $H = Q^2$ , which is a self-adjoint operator with UHU = H. We define a closed self-adjoint derivation  $\delta_H$  in a similar way to  $\delta_Q$ . (Remember that  $\delta_H(x)$  is formally defined by Hx - xH and satisfies that  $\operatorname{Ad} U \circ \delta_H = \delta_H \circ \operatorname{Ad} U$ .) Let B be the set of  $x \in B(\mathscr{H})$  such that  $t \to e^{itH} x e^{-itH}$  is continuous in norm. Then B is a C\*algebra on which  $\beta_t = \operatorname{Ad} e^{itH}$  acts as a strongly continuous one-parameter group of \*-automorphisms of B, and  $\delta_H$  is a generator of  $\beta$ . Note also that  $\delta_Q$  commutes with  $\operatorname{Ad} e^{itH}$ .

Lemma 10.  $\delta_Q^2 \subset \delta_H$ .

*Proof.* Let  $x \in D(\delta_Q^2)$  and  $\xi \in D(H)$ . Then it easily follows that

$$\delta_Q^2(x) = (Q\delta_Q(x) - \operatorname{Ad} U\delta_Q(x)Q)\xi$$
$$= (Q^2x - xQ^2)\xi,$$

which concludes the proof.

Lemma 11.  $D(\delta_Q) \cap D(\delta_H) = D(\delta_Q^2)$ .

*Proof.* We only have to show that  $D(\delta_Q) \cap D(\delta_H) \subset D(\delta_Q^2)$ . Let  $x \in D(\delta_Q) \cap D(\delta_H)$  and let  $\xi \in D(Q)$ . Since D(H) is a core for Q, there is a sequence  $\{\xi_n\}$  in D(H) such that

$$\xi_n \to \xi, \quad Q\xi_n \to Q\xi$$

Since  $\delta_Q(x)\xi_n = (Qx - \operatorname{Ad} U(x)Q)\xi_n \in D(Q)$ , it follows that

$$\{Q\delta_Q(x) - \operatorname{Ad} U(\delta_Q(x))Q\}\xi_n = (Q^2x - xQ^2)\xi_n$$

is well-defined, and converges to  $\delta_H(x)\xi$ . On the other hand  $\operatorname{Ad} U(\delta_Q(x))Q\xi_n$  converges to  $\operatorname{Ad} U(\delta_Q(x))Q\xi$ , and hence  $Q\delta_Q(x)\xi_n$  converges. Thus  $\delta_Q(x)\xi \in D(Q)$  and

$$(Q\delta_Q(x)\xi - \operatorname{Ad} U(\delta_Q(x))Q)\xi = \delta_H(x)\xi.$$

Since  $\xi$  is an arbitrary vector in D(Q), this implies that  $\delta_Q(x) \in D(\delta_Q)$ .

**Proposition 2.**  $D(\delta_Q^2)$  is a core for  $\delta_Q$ .

*Proof.* Since  $D(\delta_Q) \cap D(\delta_H)$  is a core for  $\delta_Q$ , which may be shown as Theorem 1(i), this follows from the above lemma.

**Lemma 12.**  $U \notin D(\delta_0)$  where the bar denotes the norm closure.

Proof. We shall show that

$$\{x \in B(\mathscr{H}) | \|x - U\| < 1\} \cap D(\delta_Q) = \phi.$$

Let  $E_+ = (1 + U)/2$  and  $E_- = (1 - U)/2$ . Since Q is unbounded and UQU = -Q, it follows that  $Q^2E_+ = E_+Q^2$  is also unbounded. Hence there is a sequence  $\{\xi_n\}$  in  $D(Q^2) \cap E_+ \mathscr{H}$  and  $\{\lambda_n\}$  in  $(1, \infty)$  such that  $\|\xi_n\| = 1$  and

$$\|Q^2\xi_n - \lambda_n\xi_n\| \to 0, \quad \lambda_n \to \infty$$
.

Let  $\eta_n = Q\xi_n / \|Q\xi_n\| \in E_-\mathscr{H}$  and compute for  $x \in D(\delta_Q)$ ,

$$\begin{aligned} (\delta_{\mathcal{Q}}(x)\xi_{n},\eta_{n}) &- \sqrt{\lambda_{n}}(x\xi_{n},\xi_{n}) + \sqrt{\lambda_{n}}(x\eta_{n},\eta_{n}) \\ &= (x\xi_{n},(\mathcal{Q}^{2}\xi_{n}/\|\mathcal{Q}\xi_{n}\| - \sqrt{\lambda_{n}}\xi_{n})) - (\mathcal{Q}\xi_{n} - \sqrt{\lambda_{n}}\eta_{n},x^{*}\eta_{n}) \;. \end{aligned}$$

Since  $||Q\xi_n|| - \sqrt{\lambda_n} \to 0$ , the right side converges to zero. Hence if ||x - U|| < 1, then  $||E_+ xE_+ - E_+|| < 1$  and  $||E_- xE_- + E_-|| < 1$  and thus

$$|(\delta_{Q}(x)\xi_{n},\eta_{n})| \geq 2\sqrt{\lambda_{n}} - \sqrt{\lambda_{n}}(||E_{+}xE_{+} - E_{+}|| + ||E_{-}xE_{-} + E_{-}||)$$

should hold as  $n \to \infty$ . This is a contradiction since the left side is bounded.

Let A be the closure of  $D(\delta_Q)$ . Then A is a  $\beta$ -invariant proper C\*-subalgebra of B. Let  $\alpha = \beta | A$ , and L the generator of  $\alpha$ , and let  $\gamma = \operatorname{Ad} U | A$ . Note that  $\delta_Q(D(\delta_Q)) \subset A$  since  $D(\delta_Q^2)$  is a core for  $\delta_Q$ . Thus  $d = \delta_Q$  is a well-defined superderivation on A. Now we sum up the result obtained:

**Proposition 3.** The super-derivation d and the one-parameter group  $\alpha$  of \*-automorphisms defined on the graded C\*-algebra  $(A, \gamma)$  as above satisfies that  $d \circ \alpha_t = \alpha_t \circ d$  for all  $t \in \mathbb{R}$ ,  $D(d^2)$  is a core for d, and  $\overline{d^2} = L$ , where L is the generator of  $\alpha$ .

# References

- 1. Bratteli, O.: Derivations, Dissipations and Group Actions on C\*-algebra. Lecture Notes in Math. 1229, Berlin, Heidelberg, New York: Springer 1986
- 2. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Berlin, Heidelberg, New York: Springer 1979
- 3. Connes, A.: Entire cyclic cohomology of Banach algebras and characters of  $\theta$ -summable Fredholm modules. K-theory 1, 519-548 (1989)
- 4. Connes, A.: On the Chern character of  $\theta$ -summable Fredholm modules. Commun. Math. Phys. 139, 171–181 (1991)
- 5. Jaffe, A., Lesniewski, A., Österwalder, K.: Quantum K-Theory. Commun. Math. Phys. 118, 1-14 (1988)
- Jaffe, A., Lesniewski, A., Osterwalder, K.: On Super-KMS Functionals and Entire Cyclic Cohomology. K-theory 2, 675–682 (1989)
- Jaffe, A., Lesniewski, A., Wisniowski, M.: Deformations of Super-KMS Functionals. Commun. Math. Phys. 121, 527-540 (1989)
- 8. Kastler, D.: Cyclic cocycles from graded KMS functionals. Commun. Math. Phys. 12, 345–350 (1989)
- 9. Kishimoto, A.: Freely acting automorphisms of C\*-algebras. Yokohama Math. J. 30, 39-47 (1982)
- 10. Pedersen, G.K.: C\*-algebras and their automorphism groups. New York: Academic Press, 1979
- 11. Sakai, S.: C\*-algebras and W\*-algebras. Berlin, Heidelberg, New York: Springer 1971
- 12. Sakai, S.: Operator Algebras in Dynamical Systems. Cambridge: Cambridge University Press 1991

Communicated by H. Araki