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Abstract: We find a relation between the spectrum of solitons of massive N = 2
quantum field theories in d — 2 and the scaling dimensions of chiral fields at the
conformal point. The condition that the scaling dimensions be real imposes restrictions
on the soliton numbers and leads to a classification program for symmetric TV = 2
conformal theories and their massive deformations in terms of a suitable generalization
of Dynkin diagrams (which coincides with the A-D-E Dynkin diagrams for minimal
models). The Landau-Ginzburg theories are a proper subset of this classification. In
the particular case of LG theories we relate the soliton numbers with intersection
of vanishing cycles of the corresponding singularity; the relation between soliton
numbers and the scaling dimensions in this particular case is a well known application
of Picard-Lefschetz theory.

1. Introduction

Quantum field theories in two dimensions have been under intensive investigation
recently in part due to their importance in string theory and in part serving as exactly
soluble toy models for quantum field theories in higher dimensions. The interest in
studying them for string theory has mostly focused on conformal field theories, i.e.,
the ones with traceless energy momentum tensor (with only massless excitations).
On the other hand, as examples of interesting exactly soluble quantum field theories
with interesting ^-matrices, the massive ones have been under investigation [1]. In
view of the fact that massive QFT's can be viewed as deformation of the conformal
theories, it is natural to ask if there is any way to understand properties of conformal
theories, by studying the massive analogs. This program has been followed with a
spectacular degree of success originating with the work of Zamolodchikov's [2, 3].
The method to relate properties of integrable massive theories to the conformal ones
uses thermodynamical Bethe ansatz (TBA). In this way, just by studying the S-
matrices of the massive integrable theories one can deduce for example the central
charge of the conformal theory.
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An interesting class of conformal theories for superstrings is the class with N = 2
superconformal symmetry. These can be used to construct string vacua. For instance,
σ-models on Calabi-Yau manifolds provide examples of such theories. In view of
their importance in constructing string vacua, it is natural to ask if one can classify
all TV = 2 theories. Progress in this direction was made [4] when it was realized that
N = 2 Landau-Ginzburg theories is an effective way of classifying some of them.
In particular all the minimal N = 2 models were found to have a simple Landau-
Ginzburg description which fitted with the known classification of simple singularities
[5]. This program had the following limitation: It is known that not all the iV = 2
conformal theories can be realized as a LG theory. So this program leads to a partial
classification.

Massive integrable deformation of N = 2 superconformal theories has also been
considered [6-9]. Furthermore the TBA has been applied to these theories (and in
particular the central charge and the charge of chiral primary fields at the conformal
point has been recovered in this way). In this paper we will consider massive
perturbations of N = 2 theories in 2 dimensions and show that there is a very simple
relation between the U{\) charges of chiral fields at the conformal point (the highest
of which is equal to the central change) and the degeneracy of solitons which saturate
the Bogomolonyi bound in the massive theory. This relation exists whether or not the
theory is integrable. Turning this around, we end up with the following classification
program: Start with n-vacua, and impose having a certain number of solitons between
each pair. Then deduce the structure of the chiral ring at the conformal point. In
particular in this way we can compute the charges of primary fields at the conformal
point. It turns out that the condition that the charges of chiral fields be real puts a
strong restriction on the number of solitons allowed. For instance, we show that for a
minimal model, defined by the condition that all chiral fields are relevant perturbations,
there is at most 1 soliton allowed between vacua. Using the soliton numbers, we can
associate a bilinear form (with 2's on the diagonal) to each massive N = 2 theory. We
also find a relation between the signature of the bilinear form and the charges of chiral
fields. We show that for minimal models this bilinear form is positive definite, which
with the above restriction leads to the well known ADE classification of the minimal
models. This method explains in the most natural way why the A-D-E classification
arises while classifying minimal models. For theories with higher central charge more
general types of "Dynkin diagrams" arise, which encode the soliton structure of the
theory.

The organization of this paper is as follows: In Sect. 2 we describe the soliton
structure of the N = 2 LG models and relate it to intersection theory of the Homology
cycles (as in singularity theory [5]). We will also show how, in this subclass, one can
obtain the charges of chiral fields from the number of solitons. In Sect. 3 we discuss
how to formulate these results generally independently of whether they come from a
LG theory. In Sect. 4 we give a proof of the general reformulation. The proof uses
the topological-anti-topological equations (tt*) formulated in [10] which has been
reformulated as an isomonodromy deformation of a linear system of equations by
Dubrovin [11]. We show that the phase of the eigenvalues of the monodromy of
these equations are simply the chiral charges. Relating the monodromy operator to
the soliton numbers gives the desired relation between the charges and the soliton
numbers. In Sect. 5 we discuss a criterion to select which massive models have a
non-degenerate UV limit. In Sect. 6 we show how these ideas lead to a classification
program for massive N = 2 theories (up to addition of D-terms), or by taking the
UV limit to the classification of conformal N = 2 theories which admit a massive
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deformation (the jD-term being fixed by the conformal condition). These ideas may
be useful in classifying cx > 0 Kahler manifolds (with diagonal Hodge numbers),
as to each such manifold (which admit massive deformation) one can associate a
particular bilinear form by considering sigma models on them. We give a number of
examples where we can use these techniques. In particular in Sect. 7 we rederive
the A-D-E classification of minimal models, as well as its "affine" counterpart
(including orbifolds of S2) and (in Sect. 8) supersymmetric sigma models on CPn and
Grassmannians. Moreover we spell out the classification of theories with up to 3 vacua
as well as that of models with a Z n symmetry. In Sect. 9 we present our conclusions
and suggest some directions for future research. In Appendix A some aspects of the
Grassmannian σ-models are worked out. In Appendices B, C some further properties
of the classification program are discussed.

We would like to make a historical remark: The order we have decided to present
our results does not reflect the order in which we discovered them, but rather the order
in which it can be understood most easily. In particular a time ordered sequence of
our understanding is roughly Sects. 4, 6, 3, 2, 5, 7, 8.

2. Landau-Ginzburg Solitons and Monodromy

An interesting subclass of N = 2 QFT's in two dimensions is given by Landau -
Ginzburg theories (see e.g. [12, 13] for the definition). These theories are characterized
by a superpotential W(xι) which is a holomorphic function of n chiral superfields
x\ up to variation in .D-terms which is represented by a positive function K(x\ xι).
The bosonic part of the LG action is given by

S= ί SSz

where G%- = dfi^K (which is positive definite for a unitary theory). The scalar

potential is minimized at xJ = aj such that

dW
= 0 for all i.dx%

which thus correspond to vacua of this theory. Let us assume that the vacua are non-
degenerate, in the sense that near each of them W is quadratic. This can always be
arranged, if necessary, by perturbing W. Let us find the number of solitons in this
theory. Our argument is a simple generalization of that given in [6] from one variable
case to higher n.

Solitons are configurations of fields as a function of space, where on the left
xι(—oo) = a1 and on the right xz(-foo) = bτ, where α, 6 label two distinct critical
points of W. Stable solitons are the ones satisfying the above boundary condition
which minimize the energy. Let us denote the space variable by σ. The energy of the
soliton configuration is given by

where AW = W(b) - W(a), and a is some arbitrary phase, and we have hidden all
the indices and raising and lowering of indices is done with Gτ-. It is easy to see that
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there is a lower bound for the energy: choose a = Z\VF/|Z\VF|, then we see from the
above representation of E that

Kb > 2\ΔW\.

Since W is not renormalized in the quantum theory (due to the existence of topological
ring which characterizes it) this is precisely the same as the Bogomolnyi bound in
the quantum field theory. So the number of solitons which saturate the Bogomolnyi
bound are given by solving the equation with

dσx
ι = aG13 djW. (2.1)

Note that for any such solution the image of the soliton configuration in the W-plane
is a straight line

3σW = dzW - dσx
ι = a\dW\2 .

In other words the image is a straight line connecting W(a) to W(b). Now we come
to asking how many solutions are there to (2.1)? For simplicity, and with no loss of
generality we take W(a) — 0 and W(b) to be a positive real number, which means
taking a = 1. First let us analyze solutions to (2.1) near a. Again with no loss of
generality we take a to correspond to xι = 0, where near it we take W = Σix1)2

i

and Gt- = δτ- . Then the equation for soliton (2.1) near the critical point becomes

dσx
{ = xι. (2.2)

So the solution which at σ = -co is at the critical point is given by

xι = a

ιeσ with a* = (aψ . (2.3)

Of course it is not clear if for all a1 we get a solution, i.e., if this trajectory ends
up on another critical point. In order to analyze how many of these initial conditions
would correspond to an actual soliton, we should look at the totality of allowed
solutions near each critical point, and try to match them with solutions near others.
Let us consider the points Δa of the totality of all possible solutions (2.3) with a
given value of W = r2 (where r is a small real number) near the critical point α. In
other words let's look at the intersection of W~ι{r2) with all the potential solutions
originating from a. This intersection is given by the condition

where from (2.3) the only restriction on x% is that it be real. So the "wave front" of
all possible solutions originating from a critical point with a given value of W is an
n — 1-dimensional sphere. Note that this sphere vanishes as r —> 0. This is precisely
the definition of a vanishing cycle in singularity theory [5]. In fact near each critical
point we get a vanishing cycle which is diffeomorphic to Sn~ι. Now suppose we
consider the vanishing cycle Δb near the critical point b. Those points will represent
the points which by (2.1) can flow from the critical point b (along the negative real
axis), where we need to set a = — 1 in (2.1). Now consider going on a straight line
in the W-plane connecting the two critical values W(a) = 0 and W(b). Let us fix
a point p on this line, say W = W(b)/2. The wave front originating from a over
p continues to be an n — 1 dimensional cycle in W~ι(p). It gets deformed from
the original shape but it is still an n - 1 dimensional sphere (as the flow with the
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vector field given by (2.1) is just a diffeomorphism). Let us still denote this cycle by
Δa. Also consider the intersection of wave front originating from the point b with
W~ι(p) and denote the cycle by Δb. These two cycles intersect at a discrete number
of points [note that each one is half the dimension of W~ι(p)]. For each point of
their intersection we get a soliton. This is almost obvious: For each point that they
intersect the flow of the vector field from a which reaches that point continues to
flow to the critical point b. Here it is crucial that (2.1) is a first order equation. So we
get a solution to (2.1) with the boundary condition that x(—oo) = a and x(+oo) = b.
Moreover the points on Δa that do not intersect any point of Δb will not flow to
b when evolved with (2.1) as Δb is the totality of all such points that flow to b.
Therefore the number of solitons is exactly the number of points that Δa and Δb

intersect. This is not necessarily the intersection number of these two cycles, because
the intersection number counts each intersection point with ±1 depending on the
orientations. However the intersection number appears naturally for us as follows:
The solitons come in pairs, as they are Bogomolnyi saturated states. We have been
focusing on the bosonic piece of the soliton, there will also be a fermionic partner
obtained by acting on this state with Q~ the supersymmetry charge (which decreases
the fermion number by 1). In weighing the solitons with phases the natural thing to
consider is (-1) F . However this would cancel for pairs of solitons. Instead as in [14]
we consider weighing the soliton pairs with (— l)FF which is the same as weighing
the bosonic components with (-1) F . What we will now show is that the number of
bosonic solitons weighted with (— 1)F, is just this intersection number, i.e.,

v^
ab solitons

Σ
ab bosonic solitons

From now on whenever we talk about soliton numbers we mean this weighted soliton
number. Generically all the solitons have the same fermion number and so this is just
the counting of the soliton. At any rate this weighted soliton number is more useful
for our purposes than the actual soliton number, in case they are not the same. Also
we show that the absolute value signs can be taken out of the above equation in the
following sense: First note that the fermion number of any state in the ab sector is
fab + k> where fab is in general fractional and can be written as a difference fa - fb

(see [14]) and k is an integer. In fact in a Landau-Ginzburg theory fab is given ι by
[7]

e ^ = phase

where H- = d^^W. In the LG case fa and fb can be identified with the phases
of the determinant of Hessian at the respective critical points. So μab will in general
carry a phase d= exp(2iτr/α5). Viewing μab as a matrix we see that we can get rid of

1 There is a general topological proof of this fact which holds for any N = 2 theory not just for
LG models. In the general case one has

exp[2πifab) = phase [ηjηb],

where ηa is defined by the corresponding TFT metric as ηab = δabηa. The proof of this formula
follows from comparing three known facts: 1. fab is defined (mod. 1) by Qab = ± exp[iπfab] \Qab\,
where Qab is the new index of [14] computed in the spectral-flow "point basis" |e α ) (see [14]). 2.
In the canonical basis |/ α ) Qab is real. See [15]. 3. By definition [15] | / α ) = (ηa)~ι/2 \ea). The
statement in the text is obtained by replacing ηa with its explicit expression for a LG model
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phases up to ± signs by a redefinition of the basis using fi as in [14]. Note also from
the definition (2.4) that μ is an anti-symmetric matrix in this basis.

To remove the absolute value signs in (2.4) it is more convenient to consider the
case when we have an even number of LG fields, i.e., n is even. This can be done
with no loss of generality by simply adding, if necessary, a field with x2 contribution
to superpotential. In order to have a consistent definition on the right-hand side the
intersection matrix should be anti-symmetric which is the case when n is even, because
vanishing cycles are odd dimensional. We will show that with this choice in a suitable
basis we have 2

μab = ΔaoΔb. (2.5)

Note also the fact that there is no soliton from one vacuum to itself μaa = 0 is
automatic because an odd dimensional sphere has zero self intersection (the Euler
character is zero). We still have the freedom of redefining the basis by multiplications
by ±. So the invariant quantities are obtained when we consider "cycles" which means
that if we consider μiχi^μii%^ . . . μiriχ it is independent of conventions.

Now we come to showing (2.5) which requires a rather long and delicate analysis.
Suppose we have two different soliton trajectories from a and 6, and we wish to show
that their relative contribution to the left- and right-hand side of the above equation
is the same. In order to show that we need to show that if these two trajectories
correspond to the same sign for intersection between cycles they also have the same
fermion number mod 2, and if they have opposite intersection number their fermion
number differs by 1 mod 2.

Let us consider a given solution to (2.1) (with a = 1) and consider the family of
solutions which is near this solution. If we write the perturbation as x —• x + δ the
equation we get for δ is given by

dσδ = #*<$* . (2.6)

Note that an obvious solution to this variational equation is the "velocity vector" of
the soliton trajectory vι = dσx\ Near a critical point H is a constant, and the above
equation can be solved by finding solutions to

H*δ*k = \kδk , (2.7)

where λk > 0 for solitons which at σ = — oo start at the critical point. In fact
the above equation has n independent solutions. Indeed if we pair (<5, <5*) as a 2n
dimensional vector and consider

0 # *

H 0

as a Hermitian hamiltonian, then its eigenvalues come in pairs with opposite signs.
If (δt,δf) has eigenvalue λi > 0 then (iδ^—iδf) has eigenvalue — λz. The vectors
tangent to the vanishing cycle Δa near the critical point a are real linear combinations
of the vectors (2.7) with positive eigenvalues subject to the additional constraint that
they are at the preimage of a fixed value of W, i.e.,

dW = dW -δ = 0.

2 If we had chosen n to be odd we would need to order the vacua and use one definition of sign
when a > b and the other when b < a
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Using the equation of motion (2.1) this means that

akδk ϋ = 0

(where the field indices are implicit). Thus the vectors tangent to vanishing cycle are
always orthogonal to v and iυ. This means that tangents to vanishing cycle near the
critical point span positive eigenspace of 3@ orthogonal to v (which itself belongs to
this subspace). Note that near b the vanishing cycle Δb is spanned by the negative
eigenspace of (2.7) (because a — — 1) which are orthogonal to v and iυ. Note that
the υ, which near a belonged to the positive subspace of (2.7), near b belongs to the
negative subspace of (2.7), while iυ which near a belonged to the negative subspace
near b belongs to the positive subspace. The tangents to the vanishing cycle Δa near
the critical point b must however belong again to the positive eigenspace of (2.7) near
the critical point 6, as they are orthogonal both to υ,iυ and the tangents to Δb.

We wish to compute the fermion number of this trajectory. This is the N = 2
version of a similar problem which arose in Witten's considerations of Morse theory
[16]. We have two options in finding this sign: either find the number of times the
phase of detίf wraps around the origin modulo 2 as we go along soliton trajectories,
or more directly relate the sign of the amplitude by relating fermions to the tangent
vectors of the vanishing cycle. We will use the second option. First we note that
the object we are computing is an index, and thus can be computed by reducing the
theory from 2 dimensions to 1, and the question of determining the sign in this set
up is the same as determining the sign for an overlap of the vacuum evolved from
critical point a transported along the soliton trajectory, with the vacuum at point 6.
It is important to note that Eq. (2.6) is the same equation which evolves the fermions
of the theory (this follows from supersymmetry transformation), and each vacuum
will correspond for us to an n-form, when we identify the fermions with the tangent
vectors (or forms via the metric G). We identify the fermionic degree of freedom
for the state evolving from a with the ordered set of vectors δ{, . . . , δn_1,υ, where
<$i, , <5n_i forms a basis for Δa near a and in such a way that the orientation
of it is compatible with that of Δa, which means that δι,iδι, ..., δn_ι,iδn_ι,v,iv
give the standard orientation of xι which is C n . The fermionic degree of freedom of
the state evolving from b will be identified with vector 71 ? 72, , ln-i-> υ> where ηi

form the tangent to the vanishing cycle at 6, ordered in the canonical way. In taking
the overlap between these two states, the F insertion (in the definition of μ) removes
the zero mode we would have obtained and so using the definition of Grassmann
integration of fermions we are just left with the standard definition of the intersection
number Δa o Δb for the contribution of this path integral. Therefore the sign of this
amplitude is the same as the sign of the intersection number.

This completes what was to be shown as far as relative contribution of two
trajectories beginning at a critical point a and ending at another critical point b is
concerned. By repeating this argument by including another critical point c it is easy
to see that the relative sign in the ac, cb and ab sectors are correlated with Δa o Δc,
Δc o Δb and Δa o Δb. This finally shows (2.5) is true for a suitable choice of basis
for the vacua.

We now consider what happens to the soliton numbers when we perturb the
superpotential W. As we perturb W the critical values move in the VF-plane. As
long as no critical value crosses the straight line connecting two other critical values,
the stability of intersection numbers under continuous deformations guarantee that
the soliton numbers do not change. But suppose the critical value of a vacuum j
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lies exactly on the straight line from critical value of vacuum i to k (see Fig. 1).
Then the wave front originating from i cannot be continued past the point j , as some
trajectories originating from i may get absorbed by j or some new trajectories may
open up. So in this way the soliton number of the ik sector changes, as some new
solitons may appear which previously used to go through j and were not primitive, or
some primitive solitons in the ik sector may become composite solitons ij,jk. Can
we compute this change in soliton number? We should be able to as it just involves
understanding what happens to the vanishing cycles as the vacua pass through an
aligned configuration.

Wj

Fig. 1. Vacuum j labeled by its critical value in the W-plane will pass, by perturbing the theory,
through a straight line connecting two other vacua i, k

In order to discuss this it is useful to recall some facts about vanishing cycles. If
we fix a non-critical value t in the W plane and look at the preimage of that point,
we get a n n - 1 complex dimensional space. The (compact) homology cycles are in
real dimension n — 1 and they can be described as follows [5]: Connect the point t
to the critical values wx, . . . , wn along some cyclically ordered paths η% which do
not cross any critical values (see Fig. 2), and consider the n— 1 cycles that vanish as we

Fig. 2. The critical points in the W-plane are connected to a point t along some cyclically ordered
paths 7i, , 7 n
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go along these paths (by homotopy lifting) to each of the critical values. These form
a basis for n — 1 cycles. Let us denote the ίth vanishing cycle, the one that vanishes
along 7 ,̂ by A{. The question we wish to address now is how to use the intersection
between these cycles to find the soliton numbers μ-. If the point t is along the straight
line connecting i and j and ηi and 7^ are the straight lines connecting t to i and j
respectively then it is clear that μ- = AtoA-. Since the intersection numbers are rigid
under continuous deformations this means that as long as we can deform t and 7's
continuously to the above situation without having the paths ηi cross critical values
wr we can still use these intersections to count the corresponding soliton numbers.
However sometimes this cannot be done with a particular choice of the paths 7^ and
we will have to choose a different set of paths connecting t to critical values, and
this will give us a different basis for the vanishing cycles. Equivalently for any given
choice of paths 7 ,̂ by deforming the critical values by perturbation of the theory, we
can arrange so that the intersection numbers of the corresponding cycles do count
the soliton numbers of the perturbed theory. So there is a one to one correspondence
between the set of paths and the set of possible perturbations of the critical values.

Fig. 3. The vanishing cycles change if we choose a different set of paths. In this case A% changes
to Δ[ as we have deformed path j t by passing it through w3 to a new path η[

The theory of how the vanishing cycles change by choosing a different basis of ηi

is known as the Picard-Lefschetz theory [5]. Suppose we wish to change a particular
cycle ryi to a path η[ by passing it through the critical value Wj (see Fig. 3). If we
know how the cycles change under this particular change of basis, since we can get
an arbitrary basis by just repeating such steps over arbitrary critical values we would
be done. The Picard-Lefschetz theorem implies that the new vanishing cycle Δ[ is
given by

Δ'i^Δ^iΔioΔ^Δ,, (2.8)

where the ± sign corresponds respectively to whether the circle 7Ϊ(7^)~1 *s clockwise
or counter-clockwise in the W plane (in the case of Fig. 3 it is + sign). This formula
is very much like the formula for "Weyl reflection" and it is indeed exactly that for
the example of minimal models that we will discuss later.

Now we are set to compute the change of the soliton number as critical values
pass through configurations in which three critical values get aligned. As discussed
above as the fh vacuum crosses the ik line this can be equivalently described by a
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change of basis of path by changing η% (see Fig. 1 and Fig. 3). So the new soliton
number μlik is given by

/4 = ± ( A o Δά)Δά) o Δk = μik ± μi5 μ
j k , (2.9)

where the ± will correspond respectively to whether the right-hand rule applied to the
triangle ijk before the j t h vacuum crosses the ik line is into or out of the W plane.
The formula (2.9) can be intuitively understood by noting that we get new solitons
(or lose solitons) by the fact that composite solitons in the ik sector (composed of
two solitons in the ij and jk sectors) become primitive solitons (or vice-versa). We
will show how to derive Eq. (2.9) from purely physical reasoning in the next section
for arbitrary N — 2 models, thus generalizing this result for the Landau-Ginzburg
theory.

Fig. 4. The monodromy of the vanishing cycles can be computed by taking t on a large circle in the
W-plane connected by straight lines to the vacua. As the straight lines overlap lines joining pairs of
vacua we pick up contributions to the monodromy

Having set up all the machinery we now come to proving a surprising relation
between the monodromy of vanishing cycles and the intersection numbers. Suppose
we pick a point t on the W plane very far from the critical points. Furthermore let us
choose the paths ηi to be straight lines connecting t to the critical values. As t goes
around a large circle in a clockwise direction with \t\ fixed (see Fig. 4), the vanishing
cycles undergo a monodromy. We can compute what this monodromy is just by using
(2.8) which tels us what happens when ηi cross any of the vacua. In other words,
consider n(n — 1) half lines passing through the vacua in pair and originating from
one of the vacua. Let us denote the half-line originating at the j t h and passing through
the i th vacuum by l{j. Then as t cross the line li3 the basis for the vanishing cycles
change, using (2.8) by multiplication with the matrix

where 1 denotes the identity matrix and AZJ is a matrix whose only non-vanishing
entry is the ij entry and that is equal to Aτj = μ- = Δi Λ

Note that
o Λ3•.
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where we used the fact that A^ = - A\3 and that as a matrix (Ai3 ) k = 0 for k > 1.
Let S denote the ordered product (ordered according to which li3- line crosses the
circle first) of matrices M- as we go half the way around the large circle

Mυ- ( 2 Π )

Iji cross half circle

Then as we go around the full circle, because of the identity (2.10), and because the
order in which the lines cross the second half circle is the same as the order in which
they cross the first half circle modulo replacing li3 with lJ% we get the full monodromy
matrix M to be

M = S~tS.

We will be interested in the eigenvalues of M. We will compute the eigenvalues
of the monodromy matrix in another way: We first note that the matrix M is
independent of finite deformations of the vacua. So in the limit in which all the critical
values become equal, i.e. the conformal case in which W is quasi-homogeneous, the
eigenvalues of the monodromy matrix M can be computed by a suitable choice of
n - 1 forms, which form a basis for the dual space to the vanishing n - 1 cycles. Let

C\x 1
φk be a monomial basis for the chiral ring JB = % . Let qk be its degree (charge).
Consider the n form d W

ωk = φkdxι . . . dxn .

Since t is not a critical value of W we define an n — 1-form ak defined on the
preimage of W = t by

UJ = ak Λ dW .

Then it is known that ak form a basis for the dual to the vanishing cycles [5]. Now
consider deforming t —> e27Γlt. This can be undone, since W has charge 1 by letting

χi _ , e^qiχr

So using the above formula for ak, we see that it transforms by

where c = ^ ( 1 — 2^) is the (normalized) central charge of the conformal theory (we
i

put (—l)n in the above to cancel the term involving ]Γ 1/2 in the definition of c/2).
i

Now if we take even number of variables, as we have done, the ( - l ) n disappears
and we get

Eigenvalues(S'-ίS') = e2πtq* , (2.12)

where qf} = qk — - denotes the charge of the ground states of the Ramond sector.

This is the relation we were after, which connects the information about the soliton
spectrum on the left, a property of the massive theory, to the spectrum of the charges
of chiral fields of the conformal theory on the right, a property of the massless theory3.

3 The reader may wonder how reliable is the argument in the text since we claim to be able to
compute UV quantities in the semi-classical limit (which is the IR limit for the LG models). The
point is that t r M m is equal to Tr(— \)Fg™, where g is the operator generating a ί/(l) transformation
by 2τr. Such objects are susy indices and so can be reliably computed. But then the eigenvalues of
M can be computed in any regime we please
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This theorem for the LG case was known to the mathematicians (in the mathematical
way of thinking it is a relation between the intersection numbers of vanishing cycles
with the Milnor monodromy of the singularity) [5]. Note that Eq. (2.12) gives the
Ramond charges only mod integers. We will find a method, which applies to an
arbitrary N = 2 QFT in later sections, which also gives the integral part of the
charges.

The matrix S can be simplified further if we choose a particular deformation of
the theory. This certainly should not affect the monodromy as the monodromy is
independent of the perturbation. We deform the critical values so that the polygon
wvw2, . . . , wn,w{ is convex4. Moreover we assume that the polygon is such that
I- crosses the half circle for all ί < j . This configuration of vacua we call standard
configuration. Then the matrix S given by (2.11) simplifies because the products of
A's vanish for this convex geometry and we get

where

Note that A is strictly an upper triangular matrix, and thus in this deformed version
S is just upper triangular, with Γs on the diagonal and - μ ^ , i.e. minus the ij soliton
number, on the ij entry with i < j .

i+1
i

Fig. 5. The exchange of the i + 1 th vacuum with the ith vacuum generate a Braid group

For a given N = 2 theory there are many "standard" configurations. Going from
one such configuration to another will give a new matrix A, as the number of solitons
will change. So even after we restrict to upper triangular matrices we will end up
with many matrices A which are equivalent modulo perturbations of the original
theory. Indeed there is an action of the Braid group on S which corresponds to this
equivalence: Consider ordering the vacua according to decreasing value of Re(W)

4 It is not clear that we can always do this, because not all the chiral fields are relevant perturbations,
and so generally we cannot add all of them to the action. Nevertheless this does not modify the relation
we derived for the monodromy, as choosing such configurations correspond to conjugating 5 5 " *
by some matrix and does not affect the relation between charges and the monodromy. Therefore it
is useful to assume that at least formally we can choose such a configuration
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from 1, . . . , n. Let us further assume that the vacua are in the form of a convex
polygon. Order the wk's so that Rewk > ReWj for k < j and choose the imaginary
parts so that they form a "standard" convex polygon where S = 1 — A. Let us deform
the theory. It is easy to see from the definition (2.11) and (2.9) that a deformation
which leaves invariant the real parts of the wk's does not change S (as long as I-
crosses the half circle for all i < j), although in general, the soliton numbers change
since some vacua get aligned. Next let us perturb the theory so that the i + 1th and
i th vacua exchange their positions as shown in Fig. 5. We deform the wi+ι coupling
along a clockwise path making an half turn around wi in such a way that we end up
with the "standard" configuration but now with wi in the (i-\- l) t h place. In doing this,
wι+ι crosses once all soliton lines emanating from the point wi (except, of course, the
line through wi itself). The effect on 5, using our discussion of how soliton numbers
change, is

S -+ PSP* P = (1 + 4 i + 1 ) P M + 1 , (2.13)

where Pi i+ι is the matrix permuting i and i + 1. It is clear from this geometrical
description that repeating this operation for all i forms a braid group. Note that the
above transformation on S acts as

and thus does not change the eigenvalues of the monodromy matrix SS~t as expected.

3. Generalization

In this section we discuss how the results of the previous section can be stated for
any N = 2 massive quantum field theory in two dimensions. This is not automatic as
even the definition of some of the objects in the previous sections seemed to depend
on the fact that we were describing the Landau-Ginzburg models. We will show that
this is not an obstacle. We prove some of the general statements that we make, but
the proof of the main statement relating the S matrix with the U{\) phases is left for
the next section.

The first thing to discuss is what we mean by a massive N = 2 theory. We
mean one which has a mass gap with non-degenerate vacua. In particular this means
that each of the vacua support local massive excitations. Let us label the vacua by
i = 1, . . . , n. In an abstract definition, this "point basis" can be defined by the
condition of diagonalizing the chiral ring, i.e., we can choose representatives of the
chiral ring labeled by Φ^ such that

φj \i) = ή \i).

Note that the condition of having non-degenerate vacua which is needed for a massive
theory cannot be satisfied for N = 2 theories which have elements in the chiral
ring with non-vanishing fermion number F. In particular since fermion number is
conserved by the N — 2 algebra (even for a massive theory) we will end up having
degenerate vacua. So a necessary condition for a conformal theory to admit a non-
degenerate massive deformation is that it have vanishing fermion number for chiral
ring elements5.

5 It would be very interesting to study massive theories which do not satisfy this constraint, an
example of which is provided by Kahler manifolds with positive c1 with non-vanishing off-diagonal
Hodge numbers



582 S. Cecotti, C. Vafa

A crucial ingredient in our discussion of the LG case was the understanding of the
solitons in the theory. The definition of solitons of interest is as easy in the general
case: We consider the ίj sector defined by the condition that we start with a vacuum i
on spatial infinity at left and end up with vacuum j at spatial infinity to the right. The
solitons of interest to us are the ones that saturate the Bogomolnyi bound. What this
means is the following: The N = 2 algebra in the ίj sector has a central extension
which we denote by w^ and appears in

{Q+,Q+} = 2wίj. (3.1)

It is easy to show, using the rest of the N — 2 alebra, that the mass m of any state
in the ij sector satisfies

m > 2\w^\.

As discussed in [14] Tr(— \)FF counts the number of Bogomolnyi solitons. So at
least this part of the definition which we used in the LG case exists quite naturally
in the general set up.

In the previous section we also saw that the critical values in the W-plane played
a crucial role in the change of soliton numbers as we perturb the theory. In particular
when three vacua passed through a configuration in which they were aligned in the
VF-plane the number of solitons changed. So if we wish to understand how soliton
numbers change we first need to see if we can define the notion of a critical value
of a vacuum. This can be done as follows: The central term in the supersymmetry
algebra (3.1) is additive, i.e.,

Wik = Wτj + Wjk '

This together with the fact that wu — 0, implies that we can assign to each vacuum
i a critical value w^ unique up to an overall shift, such that

w.. = W i - wj .

So the notion of critical value is also universal and not restricted to LG theories. So
we now ask if the number of solitons change as in the LG case when three vacua
pass through an aligned configuration. The answer is exactly as in the LG case, but
the proof will be different; after all in the general case we do not have the analog
of Picard-Lefschetz theory which gave the formula in the LG case. What we have
instead is the fact that the tt* equations (topological-anti-topological equations) [10]
have continuous solutions. In particular the new supersymmetry index defined in [14]
which computes Q — Tr(-l)FF exp(-βH) is a continuous function of moduli of
the theory. Now the leading contribution, up to two soliton terms, to this index was
computed in [14]. Using the results of that paper, it is clear that there will be a jump
in the contribution of two particle solitons to Q in the ik sector precisely as the j t h

critical value passes through the straight line connecting wt to wk (see Eq. 4.14 of
[14]). This jump is unphysical, as Q should be continuous. Indeed the jump in two
soliton contribution is of the same form as the one soliton contribution in the ik
sector. So to compensate that jump the number of solitons in the ik sector must have
jumped precisely by

Vik -> Vik ±

where the ± sign depends again on the orientations of the j t h critical value crossing
the ik line (as follows from Eq. 4.14 of [14]). This is exactly the same answer as in
the LG case and so we have recovered it without using Picard-Lefschetz theory. This
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suggests that in the general case tt* equations are sufficiently powerful to replace the
Picard-Lefschetz theory. Indeed we will find that not only this is true, but in some
sense it is even stronger than Picard-Lefschetz theory. In particular we will use tt*
equations to derive results which were not known to mathematicians (as far as we
know) using Picard-Lefschetz theory.

Since we have translated the number of solitons and the geometry of change of
soliton numbers to the abstract "VF-plane" even when we are not dealing with LG, it
is clear that all the rest of the discussion about the LG case would lead to a natural
guess about the relation between the soliton numbers and the chiral charges at the
conformal point. Namely the eigenvalues of SS'1, where S is as defined in the
previous section, should be related to exp(2τri^), where qi are the (left) charges of
Ramond vacua at the conformal point. Also, the choice of a simple vacuum geometry,
i.e., the "standard configuration" for critical values simplifies the formula for S to be
S = I — A, where A is strictly upper triangular and counts the soliton numbers. Also
the discussion about the action of the Braid group on S at the end of the previous
section is equally applicable in the general set up. In other words, we do not need the
notion of vanishing cycles which does not exist in any obvious sense in the general
set up to formulate the main results of the previous section.

We will indeed go one step further in the general set up, which was not done in
the LG case: Note that from S it seemed that we have only a way of fixing the chiral
charges qi modulo addition of integers. We will show in the next section that we can
also fix its integral part. The idea is to consider

S(t)=l-A(t),

where A(t) is a continuous function of t and is a real strictly upper triangular matrix
interpolating from 0 to A as t runs from 0 to 1. We then consider the eigenvalues
of SS'1 as a function of t. Note that the eigenvalues are never zero and so we can
consider how many times a given eigenvalue wraps around the origin as t goes from
0 to 1. This will be the integral part of qi

 6. As far as we know this is a new result
even for the singularity theory7.

4. Isomonodromic Deformations and the General Solution of tt*

4.1. The tt* Equations

In this section we give a general proof of (2.12) which does not depend on a particular
Lagrangian formulation of the theory, Landau-Ginzburg or otherwise. The idea is to
use the differential equations which describe the ground state geometry (tt* equations
[10]) to connect the leading IR behaviour (encoded in the soliton spectrum) to the
UV one which is specified by the C/(l) charges of the Ramond vacua qk. The basic
quantity of interest is the "new index" [14], i.e. the matrix

Qi, = ^ ^ Tr^K-lfFe-W]. (4.1)

Here Tr ( i j ) means the trace over the sector (i, j) of the (infinite volume) Hubert
space. This sector is specified by requiring that as x -> +00 (resp. — 00) the field

6 The reader may worry about collision of eigenvalues, but this can be avoided by considering a
slight perturbation of A
7 To make it fully rigorous we need one assumption which we have not been able to rigorously
prove (see Sect. 4)
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configuration approaches the j t h (resp. ith) vacuum. By definition Q is related to the
axial U(l) charge of the vacua. At the conformal point (UV limit) Q is the same
as the left (or right) charges of Ramond ground states, and at the IR the leading
contribution to (4.1) counts the number of solitons. So this object knows about both
sides of (2.12) and is thus no surprise that studying it would lead to proving (2.12).

For a completely massive theory there is a natural system of coordinates in coupling
constant space, i.e. the canonical coordinates8 wk(k = 1, . . . , n) [17, 15, 11]. They
are defined as follows. Let Z = {Q+, Q+} be the central charge in the N = 2 algebra.
Then as discussed before we can set

In the canonical coordinates one has [15]

Σ ι \ - χ , (4.2)
fc

where # - = (j \i), is the ground state-metric in the canonical basis9, g satisfies the

differential equations (tt* equations)

8t(gdig-ι) = [CJ,Ci\,

[gdjg-ι,Ck] = [gdkg-ι,Cj],

where Ck are the matrices representing in M the multiplication by the chiral primary
operator φk such that

• / '
f.

By definition, in the canonical basis we have

(Ck){ = δkiδl. (4.4)

Then, in this basis, the tt* equations take a universal form [15, 11] which is nothing
else than the equations for the Ising n-point functions (see [15] for details). Different
models differ only in the boundary conditions satisfied by solutions of tt* equations.
Thus, finding a universal way to describe the boundary conditions will lead to a
classification of different models.

From the thermodynamical interpretation of QtJ [14] it is clear that the general
solution to tt* can be written in the form of a soliton expansion, and that the specific
boundary conditions for (4.3) are encoded in the soliton spectrum. More precisely,
we have n(n — l)/2 soliton "fugacities" μ i = - μQi corresponding to the n(n — l)/2
possible soliton masses [6],

The "fugacities" are defined by the asymptotics 1 0 [14]

^ m^β), (4.5)

8 For simplicity, we assume we are in a generic situation, i.e. wτ φ Wj for i φ j
9 The canonical basis \i) is the topological basis (see [10]) such that: 1) the chiral ring JB is

diagonal, and 2) the topological metric is normalized to 1. The canonical basis is unique up to sign
1 0 The convention-dependent phases are chosen so that μ%J is real. Here and below Kv{-) are

modified Bessel functions
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or, in terms of g, ([10] App. B)

ftj^y-^/0K/). (4.6)

Although regular solutions to (4.3) exist for real π μ , in the physical case \μij\ is

an integer counting the number of soliton species connecting the i th and j t h vacua.

On physical grounds one expects that varying μ^ one gets all possible solutions to

the tt* equations. The UV asymptotics is

where q- are the U{\) charges of the Ramond vacua at the UV fixed point [10].
Since the solution depends on the boundary data μ^ , the tt* equations may be seen
as a map from the soliton spectrum μi3 to the possible values of the U{\) charges.
Below we show that this map is precisely the one predicted by Eq. (2.12).

Since Qi3 can be computed from the ground-state metric, we should be able to
read the n soliton contribution to the Q matrix from the tt* equations. Indeed the
general solution to the tt* equation (for a massive model) has naturally the form of a
grand-canonical sum over n-soliton sectors. For the case of two vacua (corresponding
to PHI) this has been shown in [15, 14]. This case is particularly easy since there is
only one soliton of mass 2\wλ — w2\. In the soliton expansion of (4.1), the n-soliton
sector contributes a term of order

exp(—2β\wx — w2\n) for β large.

For PHI the soliton expansion (first obtained in [18]) is in terms of Ising form-factors.
By the remark after (4.4) this is true in general.

42. The Integral Formulation of'tt* [11]

In principle to get the general soliton expansions we could start from the Ising form
factors or, equivalently, from the known series for the Ising correlation functions [19].
However it is more convenient to take advantage of the analysis of the tt* equations
due to Dubrovin [11]. He was able to reformulate the (massive) tt* equations as a
Riemann-Hilbert problem 1 2 having a very convenient expression in terms of linear
integral equations. Here we recall the aspects of his work we need in the following.

Introducing the covariant derivatives

where x is a spectral parameter, we can rewrite Eqs. (4.3) as the consistency (zero-
curvature) conditions for the system of linear differential equations,

V f#(z, wk) = V-τΨ(x, wk) = 0, (4.9)

1 1 Only for μ- small enough the solutions are expected to be regular. This reflects the fact that
there is an upper bound for the UV central charge c of a unitary "massive" theory with a given
Witten index π. For instance, for n = 2 we get c < 1. Stated differently, let us order the eigenvalues
qi of the Q-matrix in increasing order. Then the gaps (g ι + 1 — q^ cannot be too big
1 2 For a review of this problem, see e.g. [20]
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where Ψ(x, wk) is an n x n matrix. Clearly, in order to solve the tt* equations it
is enough to compute 1 3 Ψ(x). To completely specify the tt* geometry one needs to
impose the condition that g is independent of an overall rotation in the value of w{.
In order to incorporate this condition naturally, let us consider the dependence of Ψ
on the overall scale β and the overall chiral angle θ. This amounts to a redefinition
of the canonical coordinates as

wk->βeiθwk. (4.10)

From (4.8), (4.9) we get (after the identification x — eιθ, natural in view of (4.8))

x φ = (βxc + Q-βχ-1C)Ψ, (4.11)
dx

(4.12)
up

where

Notice that Q, C and C are independent of x. Indeed, the wk's overall phase can
be absorbed in the phase of the fermions. The introduction of a spectral parameter x
allows us to extend Ψ(x), which originally was defined only for \x\ = 1, to bpiecewise
analytic function in the whole x plane Ψ(x), whose dependence on x is governed by
(4.11). In fact the nice thing about (4.11) is that the compatibility of this equation
with (4.9) automatically implies that the solution to tt* are independent of θ (are "self
similar"), a condition which was previously imposed by hand. So the compatibility
of the above linear system of equations completely captures the tt* geometry.

The differential equation (4.11) has two irregular singular points for x = 0 and
oo. Then Ψ(x) presents the Stokes phenomenon [21]. This means that Ψ(x) is well
defined only in certain angular sectors centered at the origin. In the present case we
need (at least) two angular sectors. For convenience we choose these two sectors to be
two suitable angular neighborhoods of the upper and lower half-plane, respectively.
This means that Ψ{x) should be replaced by a coule of n x n matrices (Ψ+(x), Ψ_(x))
which are analytic in the half-planes Imα; > 0 and Imx < 0 respectively. In the
overlap between the two angular sectors, Ψ+ and Φ_, being both solutions to the
linear equation (4.11), should satisfy a relation Ψ_ = Ψ+M for some constant matrix
M. More precisely, along the real axis they satisfy the following Riemann boundary
condition (here y > 0)

General Stokes theory gives constraints 1 4 on the matrix S

S i i = l ' (4.14)
5 ^ = 0 for R e ^ - ^ - X O . V ;

Moreover, PCT requires S to be real.

1 3 To save print we usually omit the dependence of Ψ on the couplings wk and wk
1 4 We choose the overall phase of the wk's so that Re(u^ — w3) Φ 0 for i Φ j . Of course, this
can be done only locally in coupling space. To get the global solution one has to glue all the local
solutions so obtained
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The matrix Ψ(x) satisfies the following boundary condition

lim Ψ(x)exp[β(xC + x~ιC^)] = 1. (4.15)

Using this boundary condition and the well-known identity (P means principal part)

= P ± iπδ(x - y), (4.16)
x — y ^ zε x — y

one rewrites the above Riemann boundary problem as the integral equation

Σ / ,
k

h
k

0

/

J y-2πi^J y-(x + ie)-™J*A"€

κ - o o

where

and

Ψ+(χ) = Φ(χ) exip[-β(xC

In terms of A the Stokes matrix reads

S=l -A, (4.18)

so, in particular, (4.14) gives

Akj^0 only if ReZi fc j > 0 ,
which is nothing else than the condition needed in order to make sense out of the
integrals in (4.17).

The solution to (4.17) is automatically a solution to all Eqs. (4.3). Indeed, the matrix
S encodes (with respect to the chosen angular sectors) the monodromy properties
of the linear differential equations with rational coefficients (4.11). In particular
the monodromy around the singular point x — 0 is given by H = Si^S1)"1. A
priori the monodromy data depend on the coefficients in Eq. (4.11), i.e. on wk, Q
and the ground-state metric g. However Eqs. (4.3) just represent the isomonodromic
deformations of Eq. (4.11), that is they describe the variations of the coefficients in
(4.11) which do not change its monodromy data. Said differently, the fact that Ψ
is a solution to (4.8) and (4.11) means that the matrix S is a constant independent
of both x and w{. In fact, from the general theory of isomonodromic deformations
[22] we know that the condition for having isomonodromic deformations is just the
zero-curvature condition above 15, i.e. the tt* equations themselves.

Now, the solution to (4.17) for a given (fixed) S is certainly a family of
isomonodromic solutions to (4.11) parametrized by the couplings wk. Indeed the
monodromy data S is a constant by construction. Then it must be also a solution
to (4.3). (Mathematically oriented people may find complete proofs in [11]; for the
special n — 2 case see also [22, 24]). This "monodromic" viewpoint also explains

1 5 Recall that the massive tt* equations are those for the Ising correlations. It is well known that
these equations describe isomonodromic deformation. In fact this is precisely what the Kyoto school
mean when they talk of "holonomic field theory' [23]
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how the Stokes parameters Atj encode the boundary conditions needed to specify a
solution of (4.3).

For small temperatures, β —> oo, the kernel in (4.17) is exponentially suppressed.
Hence for small enough temperature we have a unique solution with given monodromy
data A-. Whether this can be extended to a regular solution for all /3's depends on the
particular A^. This should happen for the physical values of the Stokes parameters.
From the Riemann problem (4.13) and the uniqueness of the solution we infer that
the piecewise analytic function Ψ = (Ψ+,Ψ_) satisfies [11]

*(x)Ψ*t-x)=l,

where the second equation is nothing else than the statement that complex conjugation
acts on the vacuum wave function 1 6 as the ground state metric g [10].

From (4.15) and (4.19) we get

A j = lim Φ(a;)ti . (4.20)

43. The Ultra-Violet Limit: The Q-Matrix

Now we study the large temperature asymptotics (4.17) of the solutions to tt*. This
would give us the conformal dimensions of the chiral primary operators at the UV
fixed point as a function of the Stokes parameters Ai3.

To get the eigenvalues q^A) of the matrix q^iA) we exploit its physical meaning.
As β —> 0 the U(l) invariance is restored and q^A) are just the vacuum values of the
corresponding conserved charge. Therefore when we increase θ by 2π in Eq. (4.10)
the wave functions Ψ pick up phases exp[2πig (A)]. This can also be seen from the
differential equation (4.11) satisfied by Ψ(x). As β —» 0, and as long as we restrict
ourselves to the region

/ ? < | α | </?-*, (4.21)

we can approximate Eq. (4.11) by one with constant coefficients, namely 17

d τ

dθ % %3 J'

Hence in the region (4.21) we have

Ψ(θ + 2πi\ « {elπiq)ijΨ{θ)j . (4.22)

On the other hand from (4.13) we see that

Comparing the last two equations we get

expβπify] = Eigenva lues^^-^J . (4.23)

This is the equation expressing the UV charges g in terms of the Stokes parameters
we look for, modulo showing the relation between A defined here and the soliton

1 6 Indeed for LG models Ψ(x) is related by a linear integral transform to the usual SQM wave
function
1 7 Recall that qi3 = lim Q%3
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numbers μi3 which needs a detailed analysis which we postpone to the next two
subsections.

We will now see that we can use tt* to also fix the integral part of q{. To do this
note that even though the physical values for the matrix A are integer, as we will
relate it to soliton numbers, as far as the tt* equations are concerned we can take
them to be arbitrary. Consider A —> A(t) with A(0) = 0 and A(\) = A. Then at t = 0
we get the trivial theory with the charges equal to zero. As we vary t from 0 to 1,
we can trace the eigenvalues of H(t) — 5( t)(5(t)) - t on the complex plane. Since
these eigenvalues do correspond to exp(2πig), where q is the solution of tt* at the
UV point1 8 (unphysical as they may be), by continuing the eigenvalues until we get
to t — 1 we can deduce the integral part of the charges by the number of times they
have wrapped around the origin in the complex plane. This clearly shows the power
of tt* equations as they can be used even in the unphysical regime (non-integral
soliton numbers) to give some physical results (with integral soliton numbers). This
result applies in particular to the LG case, and as far as we know it was not known to
the mathematicians how to fix the integral part of charges purely from the S matrix.
In the singularity language the trick we are using is like taking a "continuous real
intersection number" which is not easy to see how would one interpret.

Using the idea of "building up the charge" we can also learn something about the
signature of the matrix B = S + S1. Note that this matrix is a symmetric integral
matrix with 2's on the diagonal. It can be interpreted as the bilinear form for an
integral lattice. It is useful to discuss the signature of this form when we begin to
classify N = 2 quantum field theories. We know that at t = 0 and t = 1 the
eigenvalues of H(t) = SS~t are pure phases (i.e. have norm 1). Let us assume
that by a proper choice of ί-dependence of S which connects these points we go
only through phases. Let us consider the signature of Bit). Clearly B(0) is positive
definite. For its signature to change we should come across a zero eigenvector of B,
which means we must have a vector υ with

which implies
Htυ = -υ.

In other words the signature changes precisely when one of the eigenvalues crosses
the negative real axis. Of course if that eigenvalue crosses the negative real axis
another time, it will change back the signature. Now noting the connection between
the integral part of charges and the number of times an eigenvalue wraps around the
origin we see that the number of positive directions r and negative directions s of B
are given by

r = #(2n- \ <q<2n+\),
\ \ (4.24)

s = #(2n+ ± < q < 2n+ | ) .

When there are some charges equal to 1/2modi we also get some null directions.
This result for the signature of B agrees with what is known to mathematicians in
the context of singularity theory.

We made the assumption that by continuously changing the parameters of S we can
vary the eigenvalues of H maintaining the condition that they remain roots of unity.
Indeed if the eigenvalues of H end up having norm other than one, then q becomes

See the discussion below on the requirement of the existence of solution to tt*
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complex and this implies that for the solution of tt* there is some singularity because
otherwise q is given by the eigenvalues of — gβdβg~ι /2 and that is real for a solution
of tt*. So as long as the regular solution space of tt* is connected, we should be
able to go through phases only. In general it is easy to see (as we will argue later)
that for small t this is the generic case. Indeed the eigenvalues of H come in groups
of four λ, λ*, λ" 1, λ*" 1 and for t near zero (S near one) it is easy to see that they
come in pairs because λ is a root of unity. In general if we just take an arbitrary
deformation of S like letting A—>tA this condition will not be maintained for larger
values of t. However, it is natural to expect that by proper tuning of the coefficients
of A (with arbitrary real functions of t), we should be able to maintain the condition
that eigenvalues of H be pure phases. It would be nice to prove this highly plausible
statement. The fact that in the LG case the result obtained in this way agrees with
what mathematicians had obtained lends further support to this statement.

Subtleties with Asymptotic Freedom. At first sight one would also expect that the two
matrices exp[2πig] and H — SiS^Ύ1 are similar. However it is not so: H many have
non-trivial Jordan blocks. This possibility arises because of UV sub-leading terms
that we have neglected in the above analysis. Instead of discussing the (well-known)
mathematics of this phenomenon, let us explain its deep physical meaning. To make
things as simple as possible, we consider a specific model, namely the supersymmetric
C P 1 σ-model [25]. This model has a mass-gap [26]. Since it is asymptotically free,
its UV fixed point is just free field theory. At this UV fixed point the (unique) non-
trivial chiral primary field has dimension (^, ^ However it is not really a marginal
operator, otherwise the σ-model would be conformal for all /3's. As it is well-known,
this state of affairs leads to logarithmic violations of scaling. The non-trivial Jordan
blocks are related to these violations. For instance, for C P 1 ,

(4.25)

and so we expect logarithmic corrections to scaling 1 9. The Jordan structure of (4.25)
can be extracted directly from the basic equations (4.11), (4.12). It is natural to look
for a solution of the form

Ψ(x, β) = exp[g(log x + log β)] Φ(χ, β).

In the limit β —• 0 the differential equation for Φ(x>β) reduces to

X ± Φ = [ B _ χ-2β] Φ + O (T^-S) , (4.26)
dx \logβj

where
B = lim βx[(xβΓqC(xβ)q],
- ^ ° - (4.27)

B = lim βx[(xβ)~qC(xβ)q].

The matrix C represents in M some chiral operator Φ = Y^wkφk. Let us decompose
k

φ into a sum Σ φi of operators having definite U{\) charge qi at the UV fixed point.
iei

Let q = max{<? }. Then, for small β (xβ)~qC(xβ)q is of order β~q. Thus, if our

These corrections can be found by an exact computation, see [25]
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perturbation φ has an UV dimension less than 1 (i.e. it is "super-renormalizable")
B = B = 0 and there is no new subtlety. Instead for an "asymptotically free" (AF)
theory q = 1 and B is finite20. For instance, in the C P n - 1 case we have (up to
similarity)

0 1 0 0 . . . 0\

B=\ ° ° 1 ° - ° , (4.28)

0 0 0 1/

and Bn = 0. From (4.26) we see that for x large (but still x <^ β~λ)

Ψ{x, β) ~ exp[^(log x + log /?)] exp[£(log x + log /?)] Φo ,

from which it is manifest that the Jordan structure of H is that of

exp[2πig] exp[2πί,B]. (4.29)

In particular, for the CPn~ι models H should consist of a single block of length n.

4.4. Infra-Red Asymptotics

To complete our proof of the formula relating q3- to the soliton matrix μi3 we have
still to find the relation between the Stokes parameters A and the soliton numbers
μi3 . In order to do this, we have to find the asymptotic behaviour as β —> oc of the
tt* solutions. Here the integral formulation of Sect. 4.2 becomes crucial.

We write symbolically Eq. (4.17) as

Φ = 1 + Φ$ζ.

For β large enough we can solve this equation by the method of successive
approximations. In this way we get a convergent (for β large enough) series for
the ground-state metric

(4.30)
cc-0

The term 1 J ^ m is of order OiA171). To begin with, let us consider the first order
contribution. Using the formula (valid for Re a > 0 and Re b < 0)

CO

/ •

ί e x p [ - α x - 6 χ - 1 ] - 2 ( - ) Ku{2\fάb), (4.31)

one gets

gt- = δi3 - i(Atj - A3i)
 X- K0(2\Wi - Wj \β) + O(A2). (4.32)

The first order contribution has precisely the form predicted by the large β asymptotics
(4.6). This may suggest that the first order saturates the one-soliton contribution and,
more generally, that the rath order term 1 J£ί m corresponds to m soliton processes.

2 0 If q > 1 it is not clear how to make sense of the corresponding perturbation. Below we shall see
that (typically) the non-renormalizable interactions lead to singular solutions to tt* and so they are
"pathological"
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This is almost but not quite true. Explicitly [1 .5?ίm]2j can be written as a sum of
terms, one for each sequence a(k) (k = 1, . . . , m) in {1,2, . . . , n} with a(l) — i,
a(m) = j . The sequence of a(k) specifies a particular chain of m would be "solitons"
connecting the ith vacuum to the j t h one. Then

l.j^™= J2 Ga(β,A,wk), (4.33)

m—chains

where Ga(β, A, wk) has the general form (here A = A — A*)

Ga(β,A,wk)

7
/

x exp
fe=l

where Fa(x) is an universal function independent of the parameters and

σk =

Now, where the kernel 3τS non-singular, we could evaluate the large β asymptotics
of (4.34) by the usual saddle-point method. The relevant saddle point is at

>k\
^ _ , a(k) ~ Wa(k+l)

Wa(k) Wa{k+\)

and then we would have

Ga(β, A, wk) « exp [ - 2β jjT \wa{k) - wa(k+{)|] , (4.35)
L fe=i -"

which is the expected result for a chain of m solitons having masses 2\wa(k)~wa(k-\-i)\-
However, since J?Γ is singular, (4.35) is not necessarily correct. Indeed in order

to use the saddle point technique [27] we have to deform the integration contour to
pass through the saddle point. In this process we may cross poles (resp. cuts) of the
integrand and hence we pick up residue (resp. discontinuity) contributions to (4.34).
From (4.16) it is clear that these contributions have also the general structure (4.34)
but with a smaller m. Moreover the presence of these additional terms depends in
a crucial way on the angles in 1^-plane since the number and type of singularities
encountered while deforming the path depends on the vacuum geometry in VF-space.

Because of this mechanism, the /c-soliton processes may get contributions from all
terms in (4.30) with m> k. This, in particular, holds for the one soliton term which
defines the soliton matrix μi . So 2 1 ,

. (4.36)

2 1 Note that our definition of A in this section defers from the one used in Sect. 2. There it was
defined in terms of soliton numbers. Here it is defined by S = 1 — A. In the "standard" configuration
the two definitions are the same
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Under our genericity assumption, the rhs of (4.36) is a finite polynomial. Indeed,
without deforming the integration contour, we get the weaker bound (for β large)

r ™ i
Ga(β, A, wk) < C exp - 2β J2 I Rt(w*{k) ~ wa(k+\))\ »

and thus only sequences satisfying

K ~ Wj I
k=\

may contribute to μiy Clearly, there are only finitely many such sequences. Then to
compute μ^ we can truncate the expansion after a. finite number of terms. However,
this method is rather impractical since the nubmer of terms needed varies very much
from model to model. For this reason, we shall adopt a different strategy based on the
known properties of the solution (4.19) rather than on the integral equation itself. In
order to do this, we need more details on the analytic properties of the functions which
appear in the expansion (4.30). We pause a while to digress on this more technical
material. The reader may wish to jump directly to Sect. 4.5.

Some Useful Functions. The purpose of this digression is to describe the functions
one gets when the integrals (4.34) are computed along a contour for which the saddle-
point analysis is correct. As discussed above, the functions appearing in the expansion
(4.30) can be expressed in terms of these ones, the precise relation being determined
by their analytic properties as well as the vacuum geometry.

We introduce a function J^[z, ζ"], where z is a real positive variable and ζ is a
variable taking value in the complex plane cut along the positive real axis, by

(4.38)
s-C

For ζ real positive, J^[z,ζ] is defined to be J^[z,ζ -f iέ\. The discontinuity at the
cut along the positive real axis is given by

JT[z, x + iε] - JT[z, x-iε] = ie~z{x+x~l). (4.39)

As z -^ oo one has the asymptotic expansion (for ζ not real positive)

where

These formulae are a consequence of

s
0

ds _ 2 ( s + s - i
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together with (4.31). Instead for ζ real positive

oo

2π J s —
(4.42)

where P f means principal part and we used (4.16). As z —> oo, the integral in (4.42)
has the same asymptotic expansion as above, except for x = 1 when it vanishes
more rapidly. In this case the leading term is the second one. Hence for ζ = 1 the
asymptotics is

Then, for ζ = 1 the large z behaviour differs 2 2 for a factor zγ/iτr with respect to that
for ζ φ 1.

Next we define a function ^^[z^z2:ζ^φ], (where zi are real positive, ζ is as
above, and φ is an angle with φ φθmod2τr)

oo

- 1 f

If φ — 0 we define this function as the limit as φ [ 0. Here again we have a
discontinuity for ζ real as well as for φ = 0. In particular,

! 2 {,z2, C, -ε] - i ^ [ ^ + ^ , ζ ] , (4.43)

x + zε, 0] - ^ ( 2 ) [ ^ , ^2, x - iε, φ] = ie-z'(x+x'l)^[z2, eiφx]. (4.44)

So one has 2 3

oo

y 5_

X / Γ ^ e-* t + t '> + l- &-{zx + z2, C]. (4.45)
0

If eιφ φ 1 and ζ φ 1, for ^ —> oo we have

If eτφ = 1 one has instead

i
4 , - • - ' ( 4 4 ? )

2 2 This discontinuity in the low temperature behaviour can be understood physically as due to
contact terms
2 3 Taken at the face value, this says that two solitons represented by two exactly aligned segments
give a contribution which looks like a " h a l f soliton of mass mx + m2. This strange effect is
effectively seen in explicitly computable models (see Appendix B for an example). It can also be
understood from the 5-matrix viewpoint
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so we have again the discontinuity in the large zi behaviour. We have a similar result

when C — 1 a n d when both variables are equal to 1. In this last case both factors

z~ cancel.
Clearly, the above analysis may be generalized. Let us define recursively the

functions

oo

L / ds

2π
/ d s

 c-zkis+s-χ)gr{k-\)r eιφk~ιs ώ ώ 1
s — C ' ' ' ' fc-1' l 5 ' ' ' ' Ψk~2*'

Here z{ are real positive variables, ζ is a complex parameter taking value in the plane
cut along thre real semi-axis (for ζ real, by convention, we define the function as
its limit by above), and φτ are angular variables in the range 0 < φi < 2π, and for
φ% = 0 we take as definition the limit by above. As zi —> oo one has

up to a power of the ̂  which depends on ζ and the 0 's.
From their recursive definition, it is clear that the discontinuity of ^ ^ for ζ real

positive (resp. for φi = 0) can be expressed in terms of i Γ ( ^ ) with h < k, possibly
multiplied by factors exp[—z%{χ + x~1)].

Sample Integrals. As a preparation to Sect. 4.5, and illustration of the above mech-
anism, we compute some sample integrals one gets in (4.30). At the first order the
typical integral is

_L f
πι J y -

f p
2πι J y - {x + is)

o

where Re Δτj > 0 and

\ mιjeίΦίj J W i t h ~ \ Έ

Assume 0 < φi3 < | π, and let CR be the segment y = te~ιφiJ, 0 < t < R, and j R

the arc y = Re**, - ^ < 6̂  < 0. Denote by F(y) the integrand in Eq. (4.48). F(y) is
holomorphic in the lower half-plane. Then we have

R

- I F{y)dy + j F(y)dy + ί F(y)dy = 0.

0 CR yR

As R —> oo, the last integral vanishes exponentially. Hence (4.48) reduces to

ί F(y)dy = - iAif^[l- mtJβ, eιφ^x] . (4.49)

Consider now the case —^π<φi3 < 0. This time CR is in the upper half-plane.

Since F(y) has a pole for y = x + is, we have
oo

f f f
I F(y)dy + / F(y)dy — / F(y)dy = ^(x)Res_ , ^F(y).

J J J
ΊR
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Taking R —> oo we get

oo

ί F(y)dy = ί F(y)dy + ΰ(x)Atj exp { - \ miάβ[eiφi>x + e^ 'aΓ 1 ] } .
0 Coo

The integral in the rhs is given by (4.49); but in this second case there is also a
contribution from the residue. Notice that this term is present only if the angle φ^
belongs to the IV quadrant.

A typical integral appearing in the next order is

oo

^-AikAkj ί
2πι %k kJ J y-

x exp [ - i mkjβ(yeiφu + y-χe~iφV)] , (4.50)

where — ^ TΓ < φik,φkj < 2 π Again, the idea is to deform the integration contour

to the ray y — e~ιφkH. When deforming the contour we can cross two kind of
singularities, i.e. the pole at y = x + iε and the cut of the function &\z, ζ] for
ζ = x + iε, x real positive (i.e. on the ray y = e~ιφikt). There are four distinct cases

case 1 0 < φkj < ^ π and φkj < φik < 2π,

case 2 0 < φk- < \π and 0 < φ-h < φkά,

case 3 - « π < φk- < 0 and 0 < φ-h < φkη ,

case 4 — | π < φk- < 0 and φkj < φik < 0.

In case 1 we encounter no singularity when deforming the contour from the real
positive semi-axis to the ray y = se~τφkJ, 0 < s < 00. Instead in case 2 deforming
the contour to the ray y = e~~ιφk*i s we encounter a cut along the ray y = e~ιφikt.
Using the discontinuity (4.39), we find

00

J y-
dt

x e-
m ̂ ( t + t )/2 exp [ - I

Consider the integral
00

2π J ί - .
0

xp [ - \x exp [ - \ mkjβ(eι{Φk3-φ*k)t + eiiΦik-φki}Γ1)] . (4.52)

Using the identity

mike
11 kj , (4-53)

0 < φik < ψi:j < φkj < 5 7τ (case 2),
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(4.52) becomes

oo

2π

i.e. the typical first order. Again we deform the integration contour to the ray
t — e~

ι^~~Φik)s. From (4.53) we see that we encounter no singularity in this process.
Hence (4.52) is equal to

i.e. (4.49), but for the third side of the triangle (w^w^Wj). Then, in case 2, (4.50)
is

m k j β , i m % k β i e*Φk,Xj φ.k _ φkj\

β,etφvχ]. (4.54)

As β —> oc, the first term in the rhs is of order (4.46), whereas the second one is of
order

Q\p[-2mi3β] > exp[-2(m fc + mkj)β],

unless the three points wτ, Wj and wk are aligned, in which case the two sides are
roughly of the same order. If no three points are aligned in W-space, the one-soliton
contributions are unambiguously determined to be the coefficient of ^[m^β/2]; the
second term in (4.54) is an explicit example of an O(A2) contribution to μ-. In case 3
(resp. 4) we get the same result as in case 1 (resp. 2) except that now when deforming
the controur we pick up also a contribution from the residue at y = x + is.

Large β Asymptotics of Φ. We use the following short-hand

g..(x) = exp [ - \ mi:jβ(eiφiJχ + e'iφ^χ~1)] .

Notice the identities

&ik(x)&kj(x) — ^ijix) not summed over k ,

βr.(-χ) = jr.(x), ^(-x) = &..(x). ( 4 ' 5 5 )

Moreover, (t real positive)

3?.(e-iΦij+ieQ _ jr.(e-ιΦtj-iεt) = i^l3(e'τφin). (4.56)

The previous discussion shows that just above the real positive (resp. negative)
axis Φ(x) has the following IR expansion:

Φβ{x) = δy - iμ^jix) + Bυ^(x) -
k

+ terms containing higher .i^'s (x > 0)

= δτj - iμ^ix) + &iό&%j(x) -
k

+ terms containing higher j^"'s (x < 0).

The various coefficients in this expansion are polynomials in the Stokes parameters
A^. As long as no three points Wj are aligned, the omitted terms are subleading in the
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IR limit. Notice that B^ (resp. Bτj) can be non-vanishing only if cos(<^ ) > 0 (resp.

< 0). A similar condition holds for JD^ , t>\r Then the third and fourth terms in the
rhs of (4.57) vanish exponentially as x —» 0, and hence by (4.20) do not contribute
to g. The coefficient of J ^ is fixed by the asymptotics (4.6), (4.40) to be —iμi3 .

Equation (4.19) gives strong restrictions on the various coefficients in (4.57).
Indeed, (for x real positive) one has

which, in view of (4.55), gives

μι + μ = 0 , (4.58)

(1 4- &) (1 + B) = (1 - A)~ι = S~ι. (4.60)

This last relation allows us to read the Stokes parameters directly from the IR
expansion of Φ near the real axis.

For simple situations, the relation between μ%J- and A- can be obtained by inserting
this truncated expansion for Φ in the integral equation (4.17). However this does not
work in general, since - because of the singularity of 3& - the integrals of terms
ignored in (4.57) may contribute to the coefficients μ and B. A better approach is
presented below.

4.5. Multi-Sector Formulation

The rays te~τφιό (t real positive) divide the plane into n(n— 1) sectors 2 4 . We number
these sectors according to the anti-clockwise order starting from the one containing
the real positive axis which is called sector 1. The ray separating the α t h sector from
the (a + l) t h one is called the α t h ray. To each a there is associated an angle —φi3.
The corresponding indices will be denoted by i(α), j(a), respectively. The sector
containing the negative real axis is the (m + l) t h one, where m = ^n(n — 1). If
M = (Mkl) is a n x n matrix, we denote by M[a] the matrix

(M[a])kι = δkι{a)δlj{a)Mι{a)j{a).

The analysis of Sect. 4.4 with the Stokes axis rotated by suitable angles in the
x-plane shows that in (some angular neighborhood of) the ath sector the function
Φ(x)τj has an IR expansion of the form

[f(x) = δy - iμijΦ[f(x)
- % > D\^βrk(x) gkj + higher f ' s . (4.61)

k

2 4 To simplify the discussion we assume that the angles φi3 are all distinct. Notice that the relevant
rays are not the soliton lines but their mirror images with respect to the real axis. Indeed Ψ{x) is the
momentum space wave function and the above condition corresponds to alignment in position space
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Comparing with (4.57), we have

zBij ( 4 ' 6 2 )

As before, B^ may be non-vanishing only if

R e ( e ^ x ) > 0 for x in the α t h sector. (4.63)

The crucial point is the identity

Dψk = μιkB
{$ (4.64)

(cf. (4.59)). This can be seen as before. Let a be the sector opposite to a (i.e. x
belongs to the ά t h sector if — x belongs to the ath one). Then inserting (4.61) into the
identity

Φ{θί\x) [Φ{ά\-x)Ϋ = 1, (4.65)

we get

B(a) = - [ ( l + B{ά))~ιB{a)Y , (4.66)

[D^k(l + B{ά))\ = - μikB$ . (4.67)

Plugging (4.66) into (4.67) yields (4.64).
The function Φβ(x) is globally defined in the upper half-plane. Then Φ ^ + 1 ) and

Φa should agree on the ath ray. On the other hand, the single terms in (4.61) are
discontinuous as we cross the α-ray because of (4.56). Then the continuity of the
sum gives relations between the coefficients in (4.61). Notice that (assuming no three
vacua get aligned) the discontinuity of terms omitted in (4.61) cannot contribute to
β(a+i)m On the contrary, they do contribute to D ( α + 1 ) . Luckily there is no need to
control these terms: Their net effect is just to produce the right discontinuity so that
Eq. (4.64) remains true as we cross the α-ray. Equation (4.56) yields

Then, comparing the coefficients of <^(x) in φ(a+ι"> and Φ ( α ) , with the help of (4.55)
we get

= _ μ[a] + β(a)β(a) _ μWβiat) ?

or
(1 + £ ^ + 1 ) ) = (1 - μW) (a + B{a)).

In view of (4.62) this implies

(1 + B) = (1 + £ ( m + 1 ) )

where the overarrow means that the product is taken in the anti-clockwise order.
Finally, let

Y[ (l-μ[a]). (4.68)
l<α<m

Using (4.60), the monodromy reads

S*)(l + JB)
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i.e. (up to a unimodular change of bases) the monodromy is given by (Lt)~ιL, or
explicitly25'26

d-μM) (4.69)
\<a<2m

Equation (4.69), together with (4.23), is our relation between the soliton numbers
and the UV £7(1) charges.

Let us consider (4.68) in more detail. We know that B^ (resp. B^) can be non-
vanishing only if cos(<^ ) > 0 (resp. < 0). In view of this remark, Lazzari's lemma
[28] aplied to (4.68) gives

= f[
I quadrant

(1 + 5)= f[ (l-μ[α]),
II quadrant

where the ordered products are on the α's whose corresponding angles —φih belong
to the first (resp. second) quadrant. Then

f[
IV quadrant

Finally, from (4.60) we have

right half-plane

This shows that the formula we derived for the relation between 5 and soliton numbers
in the context of LG theories in Sect. 2 is generally valid for any massive N = 2
quantum field theory.

5. More on Degenerate UV Critical Theories

5.7. The "Strong" Monodromy Theorem

In this section we wish to study in slightly more detail the critical theories one
gets as the ultra-violet limit of a given massive N = 2 model. In general one may
get a degenerate superconformal theory, i.e. a model with a continuous spectrum of
dimensions. For instance, in the CPn case the UV limit corresponds to free field
theory and this limit is reached up to logarithmic deviations. Typically a degenerate
limit looks like a σ-model with a non-compact target space. In this case Lo has a

25 This equation has been obtained under the condition that all φ^ are distinct. However it is valid
even if this condition does not hold (provided no three vacua are aligned). Indeed if, say, φτj = φ k l

then there is an a for which the α t h and (a + l ) t h rays coincide. Then the order of the corresponding
matrices (1 — μ [ α ] ) and (1 — μ [ Q ! + l ί ) is ambiguous. But (since the four points wi,Wj,wk,wl are all
distinct) these two matrices commute and hence the order ambiguity is totally immaterial
26 We can reinterpret this equation in terms of the original soliton lines te1^. We have just to take
the product in the clockwise order
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continuous spectrum and hence the states of definite dimension are not normalizable.
In particular |1) is not a normalizable state, as it is obvious from classical geometry
(harmonic forms in non-compact manifolds are usually non-normalizable).

One of the purposes of this section is to characterize the massive theories having
"nice" UV limits. If a model has a nice UV limit, we can find a basis Θ\ of M such
that as β —> 0,

for some constants C{. Equivalently,

This is just the statement that the UV theory has a positive gap a in the spectrum of
dimensions. In particular, this implies the normaizability of |1)

(ϊ I 1) <oo,

where in the lhs we mean the state obtained by spectral-flow of 1 in a special field
representation 2 7 . This no-degeneracy criterion fails, say, for the C P 1 σ-model, where
[25]

The first remark is that the UV limit cannot be non-degenerate if the monodromy
H = SS"1 has non-trivial Jordan blocks. This was shown in Sect. 4.3, see Eq. (4.29).
Then we have the natural question: is the triviality of the Jordan structure ofH enough
to ensure the non-degeneracy of the UV limit (assuming that the original massive
theory is regular)?

To begin with, let us consider the Landau-Ginzburg models with a polynomial
superpotential. In this case the UV limit is "nice" if and only if in the limit
the superpotential W^JQ becomes a quasi-homogeneous function. Indeed, this is
precisely the condition needed in order for W(X i) to be [/(l)-invariant. If W(JQ) is
quasi-homogeneous, i.e. if there are rational numbers qi such that

V λ e C ,

then

Σ ^ 0 in JB. (5.1)

Conversely, let WiX^^ be the superpotential in the UV limit, and C u v the matrix
representing multiplication by the chiral operator W{Xi)ViV in M. We claim that we
can choose the additive constant in WiX^ so that all the eigenvalues of C u v vanishes.
Indeed, for all β φ 0, multiplication by the superpotential is represented by the matrix
βC and hence2 8

det[z - Cu v] = lim det[z - βC] = zn .

Then C u v is nilpotent and therefore it is fully determined by the dimensions of its
Jordan blocks. The UV limit superpotential is quasi-homogeneous if and only if these

27 I.e. in a basis such that ηtJ is constant
28 Notice that this argument does not imply that C u v is the matrix 0. Indeed, the transformation
relating the canonical basis of JB to the operator one becomes singular as β —• 0. Otherwise, the ring
Jί itself would trivialize at the U V fixed point, which is obviously not the case. The characteristics
polynomial is invariant under changes of bases and hence we are allowed to take its limit as β —»• 0
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blocks are all trivial. For W(Xj) a polynomial, this is an easy consequence of (5.1).
So in the LG case the UV limit is "nice" iff C u v = 0.

The "strong" monodromy theorem of Singularity Theory (first proven by Varcenko
[29]) states that the Jordan structures of Cu v and of the Milnor monodromy H are
equal. Then for LG models (with polynomial superpotentials) the answer to our
question is yes.

Now let us go to the general case. By analogy with the LG case, to answer yes
we have to show that: 1. the "strong" monodromy theorem holds in general, and 2.
that the UY limit is nice iff C u v = 0. We have already shown 1. Indeed from (4.27)
we see that

and so the "strong" monodromy theorem is equivalent to the remark just after
Eq. (4.29). Instead 2 is a well-known consequence of the tt* equations. In fact, these
equations imply (here the matrix C is βC rewritten in the operator basis)

we see that Q has a constant limit if and only if the UV limit of the rhs vanishes for
all z's, i.e.

[ C u v , P u v φ - 1 ] = 0 Vi. (5.2)

Assume that the UV limit is a non-degenerate conformal theory. Then the metric gm

is a non-singular positive-definite inner product on M. In this case (5.2) implies 2 9

The fact that a "strong" version of the monodromy theorem holds allows us to
borrow manay results from Algebraic Geometry which are consequences of this
theorem. Some of these results were developed in the context of the degeneration
theory for complex structures over algebraic manifolds and eventually evolved in
Deligne's theory ofmixed Hodge structures [30]. Physically they are related to "mirror
symmetry." It is not appropriate to discuss further these developments here, so we
limit ourselves to the simplest result in this direction (Schmid's orbit theorems [31])
that we need below.

The basic idea is that from the Jordan structure of H we can cook up an SU{2)
action on M. In fact, given a nilpotent matrix L acting on a vector space 9^, we
can always find (by Jacobson-Morosov) an si(2) representation on 9^ such that the
generator J + is mapped into L. Applying this remark to the nilpotent matrix B
(acting on M), we see that we can use SU{2) representation theory to "measure" the
degeneration of the UV critical theory. The bigger the "angular momentum" the more
degenerate the UV limit is. In particular the theory is non-degenerate if and only if
the corresponding SU(2) representation is trivial. More generally, we get logarithmic
corrections of the form (log β)k

9 where fc/2 is the larger "spin" appearing in the above
SU(2) representation. We illustrate the physical applications of this viewpoint in the
special case of σ-models.

5.2. AF σ-Models

We consider an AF σ-model with action

^
S = Σ ta ωf] + L>-term.

(1,1) classes

Indeed a nilpotent matrix which commutes with its own adjoint, vanishes
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Asymptotic freedom requires the Ricci tensor jR- to be (strictly) positive-definite.
The corresponding (1,1) form R can be decomposed as

R =
(1,1) classes

By definition, the matrix βC represents in M multiplication by the operator φ such
that

δRGS = / d2zd2θφ + h.c + D-terms,

(here δRG is the infinitesimal Renormalization Group flow). In the present case φ is
just the chiral field associated to the Ricci form, and thus βC is the matrix representing
multiplication by the Ricci class in the quantum cohomology ring.

As β —• 0, the target space metric Gtj flows towards one cohomologous to a
Kahler-Einstein metric of infinite volume.30 Moreover, this is the weak coupling
(= semiclassical) limit. In this limit the chiral ring reduces to the classical cohomology
ring.

Hence B is proportional to the matrix representing multiplication by the (asymp-
totic) Kahler class in the (classical) cohomology ring. For instance, in the CPn case
B is given by Eq. (4.28). From that equation it is obvious that B represents the
multiplication by the Kahler class in the cohomology ring.

Then for an AF σ-models having as target space a (compact Kahler) manifold
J%> of complex dimension d, the Jordan structure of H is completely specified in
terms of the geometry of ^M. Indeed the set of all harmonic forms on ^M can be
decomposed into irreducible representations of SU(2) (Lefschetz decomposition [33]).
Comparing the hard Lefschetz theorem with the our construction above, we see that
the Lefschetz SU(2) coincides with the one measuring the degeneracy of the UV
theory. Let {s3} be the set of "spins" appearing in the Lefschetz decomposition
(counted with multiplicity). Then the length (k- + 1) of the j t h Jordan block is equal
to (2s + 1). In particular in the (AF) σ-model case H has one and only one Jordan
block of length d + 1, and no Jordan block has length I > d + 1. Moreover for all
blocks kj = c?mod2. These geometrical facts are easily recovered from the general
classification of N = 2 superconformal models discussed in the present paper.

This example also "explains" in which sense the Jordan structure measures the
failure of the UV fixed theory to be a nice superconformal theory. The Ricci tensor
is the /^-function of the model, and its topological class (i.e. the first Chern class)
measures the obstruction to find a fixed point, i.e. a point where the /3-function really
vanishes. But B encodes exactly this topological information.

From the above formulae one can also extract the leading UV behaviour for the
ground-state metric g. Again we illustrate this in the CPn~ι case. Since Bn = 0, we
have

n - l 1

Let X be the chiral primary operator dual to the hyperplane section. In the UV limit
it acts on the ring as the matrix c~ιB, for some normalization coefficient31 c. Then
3 0 Indeed, by [32] we have Gβ(β) = G-(l) - Rτj- log ft where = mean equality in cohomology
3 1 One has c~ι = In. This can be seen as follows. In our conventions, C represents on M the

chiral field 2μdμω, where ω is the Kahler class and μ is the RG scale. For C P n ~ * we have

ω = - log(α/μn)X, and thus C = 2nX
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as β —)
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hand,
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Bn~ιΦ0.

and thus

(X I χ ) ~ (n-l-fc)! (

in agreement with [25]. Of course, this is just the result predicted by classical geometry
[34].

6. The Classification Program

We have seen in the previous sections that the number of vacua and the number
of solitons between them is enough to give the full solution to tt* equations. This
means that the geometry of ground states of the supersymmetric theory are completely
determined by the IR data which is the counting of the soliton numbers. Note that
the geometry of the ground state is sensitive only to F-term perturbations and are
insensitive to D-terms. Therefore two theories which differ only by a variation of the
D-term will have the same ground state geometry and soliton numbers. However as
we have seen the soliton numbers fully capture the F-term perturbations of the theory.
As an example, if we consider CPι σ-model, the Kahler class of the metric is the
information contained in the F-term, whereas the precise form of the Kahler metric is
determined by the D-term. In particular there are infinitely many ways to vary the D-
term which is equivalent to the space of all Kahler metrics with a fixed Kahler class.
So what we will be able to do is therefore to begin classifying massive N — 2 quantum
field theories up to variation of D-terms. Indeed this turns out to be equivalent to
classifying all N = 2 CFT's which admit a massive deformation. The reason is that the
condition of conformal invariance automatically picks a D-term for a given F-term.
This can be proven rigorously in the SCFT by noting that the only supersymmetric
perturbations which preserve conformal invariance is via chiral fields, which are F-
term, i.e., there is no continuous variation of the J9-term which preserves conformal
invariance. So the UV limit of any of the theories we consider will automatically label
a conformal theory, the D-term of which is adjusted to make the theory conformal!
In this way we get a mapping between soliton numbers and N = 2 superconformal
models. As we discussed before this will not give all superconformal models, but only
those which admit a non-degenerate massive deformation, a precondition of which is
that the left (qL) and right (qR) charges of chiral fields be equal (i.e., chiral fields have
zero fermion number). It is not clear that all conformal theories satisfying qL = qR

automatically admit a massive deformation but we know of no counterexample to
such an expectation. Assuming this is generally true, our method thus classifies all
the N = 2 CFT's with left-right symmetric U{\) charges for Ramond ground states.

Note that a particularly interesting class of conformal theories for constructing
string vacua, i.e., Calabi-Yau case, admit no massive deformation (there are no

In writing this equation we used the fact that q commutes with g for β ~ 0
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relevant operators). However we know that one can obtain examples of Calabi-Yau
by considering orbifolds of LG models. The same is true for the left-right symmetric
theories under consideration here 3 3 from which we can obtain Calabi-Yau manifolds
by taking orbifolds (it is an interesting question to see if for every Calabi-Yau there
exists a point on moduli space which is related to a symmetric theory by orbifoldizing).

We may be interested in classifying non-degenerate (or "compact") N = 2 CFT's,
in which case we have to impose the condition that H = SS~t has a trivial Jordan
block structure, as discussed before. As an example the UV limit of CPι is R2

which is degenerate (in the sense that it has a continuous spectrum). In this section
we consider both degenerate and non-degenerate theories.

We may also be interested in uncovering the allowed perturbations of our theories
which send some vacua to infinity. This would for example be interesting in
understanding the RG-flows among the theories. From the classification program all
the perturbations which send some vacua to infinity are allowed as long as we end up
with real U{\) charges for the theory with fewer vacua. In other words if the reduced
S matrix gives rise to real U(l) charges then it presumably is an allowed perturbation
of the theory.

To begin with classifying the theories, we first fix the Witten index of the theory to
be n. Then we take an arbitrary strictly upper-triangular integral nxn matrix A which
is taken to count the soliton numbers (taking into account (-1) F ) between these vacua
(where we assume the vacua to be in a "standard" configuration in the VF-plane)34.
For a general triangular matrix A, the eigenvalues of H = (1 — A) (I - A1)"1 need
not have norm 1. However in the physical case they should, since q is Hermitian.
This gives a severe restriction on the entries of physically allowed Stokes param-
eters 3 5 A which count soliton numbers. Thus H G SL(n, Z) is a modular matrix.
From Lazzari's lemma [28], A can be recovered uniquely from H.

Then the classification of N = 2 superconformal models having a totally massive
perturbation is reduced to the following Diophantine problem36. Find all integral
strictly upper-triangular nxn matrices A such that all the eigenvalues λ̂  of the
modular matrix

H = SS~t -(1 -A)(l-AtΓι

belong to the unit circle |λ j = 1. Two solutions A and A! are "equivalent" if they
are related by a braiding transformation and a change of sign in the canonical basis
discussed in Sect. 2. The very same number-theoretical problem arises in Algebraic-
Geometry [35] and Singularity Theory [5]. Unitarity gives further restrictions on the
physically allowed solutions. In particular in any (irreducible) unitary theory we have
only one chiral primary with vanishing charge, i.e. 1. Then the smallest value of q
should be non-degenerate.

Here we discuss some general facts about this classification program. In the
following subsections we apply these methods to obtain the complete classification
for the case of small Witten indices n < 4. In the next section we rederive the ADE

33 T h e reader should be careful to distinguish the usage of "left-right symmetr ic N — 2 theor ies"
here from that used in the context of R C F T ' s
34 As usual, w e order the vacua such that R e ^ — Wj) > 0 for i < j
35 It is conceivable that the condit ion that e igenvalue be a phase is already implied by the regularity
of the solution for all β ' s . T h o u g h the integrality of the matrix A is not guaranteed by regularity
alone, as there are counterexamples , and should be v iewed as an additional physical constraint
36 Strictly speaking, those discussed in the text are only necessary condit ions. However , experience
suggests that these condit ions are very close to being also sufficient
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classification of minimal models using our methods. It turns out to be extremely
simple to obtain this classification with these methods.

Standard number-theoretical argument (based on Kronecher's theorem [36]) shows
that H is quasi-idempotent, i.e. there exist integers m and k such that

(Hm ± \)k+ι = 0 weak monodromy theorem, (6.1)

(here m, k are assumed to be the smallest integers for which (6.1) is true; k is known
as the index of H). In particular the qk's are rational numbers. This is our first general
conclusion. In the geometrical case one has also a strong form of the monodromy
theorem stating that the index k is always less or equal to the (complex) dimension d.
In the physical context d should be replaced by the UV central charge c. The known
N = 2 theories satisfy this stronger statement (in particular the σ-models, as we
saw in Sect. 5). It is tempting to conjecture that the strong form of the monodromy
theory is always true. Indeed, in the LG case, the theorem is a simple consequence
of the "strong" monodromy theorem we discussed in Sect. 5.2. Since this "strong"
theorem holds in full generality, it is reasonable to expect that also the bound k < c
is always valid. Here we limit ourselves to a sketch of the proof for the general case,
under the additional assumption that in the (degenerate) UV critical theory the only
primary chiral field with vanishing charge is the identity operator 1. In this case, all
nilpotent chiral operators are linear combinations of fields of positive charge. This
remark, in particular, applies to the field φ corresponding to the matrix B. Consider
then the subset of operators (^(1 = 1, . . . , / c + l ) belonging to a Jordan block of H
of maximal index fc, and let q[ be their U{\) charges. By definition, q[ — q'3 modulo
one. On the other hand, the arguments of Sect. 5 imply

Since φ has positive charge, we have q'r > q/

r_ι, which implies Yr > q'r__x + 1. Then
Qr > (r — 1) + q[, which gives

2 = 9 m a x - q m i n > q f

k + ι - q [ > k , (6.2)

which is the strong form of the monodromy theorem.
Consider the characteristic polynomial P(z) = det[z — H]. It satisfies P(0) =

( - l ) n and

Then A is a solution to (6.1) if and only if all roots of P(z) are ra-roots of 1, i.e. if
P(z) has the form

P(z) = ]\Φd(z)k*, (6.3)
d\m

where Φd{z) are the cyclotomic polynomials [38]. Since degP(z) = n, we get a
relation between the Witten index and the possible U(\) charges qk of a Ramond
ground state3 7. Indeed let qk — r/2 with (r, s) = 1. Then φ(s) < n, where φ(s)
is Euler's totient function. Moreover, if we have ns Ramond vacua with charge
r/s mod 1 and (r, s) = 1, corresponding to a set of Jordan blocks of lengths (kjs + 1),

3 7 Some of the following restrictions can also be derived using integrality of the number of states
in twisted sectors of the orbifolds of the corresponding conformal theory
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then for all I G (Z/sZ) x ^ Gal(Q(e2™/s)/Q) there are precisely ns Ramond vacua
with charge

q = - mod 1, (6.4)
s

and they are organized in Jordan blocks of the same lengths.38

Not all products of cyclotomic polynomial can appear in (6.3). Let

P(z) =

where v(m) G N are almost all vanishing. Then one has the following constraints on
the possible z/(ra)'s (physically they are selection rules on the allowed U(l) charges):

γ = n.
m

2. ι/(l) = nmod2.
3. For n even, either ι/(l) > 0 or ^ i/(pfe) = 0mod2 for all primes p.

k>\

For instance, in degree 2 there are 6 polynomials of the form (6.5). Only three of
these satisfy the selection rules, namely Φ\, Φ\, and Φ6. In the same way, in degree
3 only 5 out of 10 possibilities are allowed, and in degree 4 only 12 out of 24 (e.g.
Φ8, Φ5 and Φ3Φ

2 cannot appear).
This is shown as follows: 1 is obtained by equating the degree of both sides of (6.5)

(recall that degΦ m = φ(m)). 2 follows from the fact that P(0) = άet[-H] = ( - l ) n ,
whereas Φm(Q) = 1 for all ra's but for m = 1, where Φ{(0) = —1.

To get 3, notice the identity

P(l) = det[l -H] = dettS* - 5] det[S*] = (pf[5 t - S])2 ,

where pf[ ] is the Pfafflan. Hence

( D ) " ( m ) - (pftS* - S])2 . (6.6)

Moreover, one has

( 0 if m = 1

p if m = pk, p prime, k > 1 (6.7)

1 otherwise.
Now, if n is odd, pf[5έ — 5] = 0 in agreement with 2. Instead, if n is even, either
pf[S* - S] = 0 or, by (6.6), Π ( Φ m ( l ) ) i / ( m ) is a non-trivial square, and hence its order

m

at each prime should be even. The order at the various primes is easily computed
with the help of (6.7). This gives 3.

For small n it is easy to solve the above Diophantine problem thus getting a
complete classification. Here we limit ourselves to n — 1,2,3.

For n = 1 there are no solitons, and then we have only the trivial solution to
our Diophantine problem. This solution corresponds to the free massive model. This
model has an unbroken U{\) symmetry whose charge q counts the number of Bose
particles. On the vacuum Q = q = 0, as required by PCT.

This follows from the fact that the minimal polynomial of H belongs to Z[z]
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6.1. Complete Solution for n — 2

For n = 2we have

Notice that the sign of a is physically irrelevant since it can be flipped by redefining
the canonical basis. Then we can assume α < 0. Moreover, \a\ is equal to the number
|μ| of solitons connecting the two vacua. The characteristic polynomial of H reads

P(z) = z2 + (a2-2)z+l. (6.8)

There are three values of a for which P(z) has the form (6.5). These correspond to
the three possibilities allowed by the selection rule. They are
1. a = 0. This gives P(z) = Φλ{z)2, i.e. q = 0. This case corresponds to the trivial
model (no solitons at all).
2. a = - 1 This gives P(z) = Φ6(z), i.e.

The integral part of the charge is fixed here and in what follows by taking a -> ta
and letting t go from 0 to 1, as discussed before. This solution corresponds to the
Landau-Ginzburg model with superpotential

W(X) = X3 - X .

The uniqueness of solution for (4.17) also fixes the integral part of q. Thus |α| = 1
implies q = ±1/6.
3. a = —2, which gives P{z) = Φ2(z)2. In this case we have

Qί = { — 2> 2) '

and H has a non-trivial Jordan block. Indeed, this is precisely the solution (4.25)
we have discussed in detail in Sect. 4.3. From that analysis we see that this model
corresponds to the P 1 σ-model (or, equivalenty, the Ising two-point function). Again
this also fixes the integral part of the charges.

In cases 2 and 3 the matrix B = S + 5* is the Cartan matrix for A2 and Al9

respectively. In fact, the model 3 can also be realized as the N = 2 Aι Toda theory,
i.e. the LG model with superpotential

W(X) = X(ex + e~x), (6.9)

and the identification X ~ X + 2πi.
The above number-theoretical result should be compared with the known regularity

theorems for Painleve III (PHI) [18]. (For a massive model with two vacua the tt*
equations can be always recast in the PHI form, see [10].) In the n = 2 case, the
eigenvalues of the Q-matrix are [10, 14]

]z^-u(z), (6.10)
4 dz4 dz

where z — mβ and u(z) satisfies special PHI, i.e. the radial sinh-Gordon equation

d2 1 dd2u 1 du . t

-ΓT + - T" = smhu. (6.11)
dz1 z dz
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As discussed in Sect. 4, the boundary condition for (6.11) is encoded in the Stokes
parameter a. In terms of the more usual boundary datum r, defined by the behaviour
of u(z) as z —» 0,

u(z) = r log I + s + ... for |r| < 2

r /* M
 (6 12)

± l l ( + j " for r = ±2>
a is given by [18]

TXT

α = 2sin ( — ) . (6.13)

In view of Eq. (6.10), the datum r is essentially the U{\) charge at the UV fixed
point. Indeed,

q

so, in physical terms, (6.13) reads

|μ|=2sin(τr|ςr |). (6.14)

In fact this result can be derived directly by continuously turning on the soliton
number and considering the eigenvalues of SS~t, which gives a nice illustration of
what we mean by continuously deforming the soliton number in order to recapture
the integral part of q. It is known [18] that PHI has one regular solution u{z) for
reach r with \r\ < 2, and that all regular real solutions (bounded as z -> oo) have
the UV asymptotics (6.12) for some r, \r\ < 2. In view of (6.13), we have a regular
solution for all (real) a with \a\ < 2. Comparing with (6.8), we see that this is just
the condition

-2<tr#<2,

i.e. u(z) is regular iff the eigenvalues of the monodromy have norm 1. So, in this
case, unitarity implies regularity. In particular, the three possible integral values of
\a\ do correspond to regular solutions having the expected UV behaviour. Thus for
n = 2 all solutions to the Diophantine problem are realized by physical systems. (In
fact even the non-integral unitary solutions play a role for non-generic n > 2 models,
see e.g. [10, 25, 14]).

6.2. Complete Solution for n = 3

Consider next n — 3. We put

S =

1

Two triples (xι>x2,x3) and (x'^x^x^) correspond to (massive perturbations of) the
same superconformal model if we can pass from one to the other by a repeated
application of the following transformations:
a) flipping the sign of two a^ 's;
b) a permutation of (x1? x2, x3);
c) replacing xx by x2x3 ~ X\ or x2 by x3xx — x2 or x3 by xxx2 — x3.
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Indeed, a) just corresponds to a redefinition of the signs for the canonical basis,
while b) and c) can be obtained by suitable combinations of i) rotations of the Stokes
axis, and ii) deformation of one vacuum wi across the line connecting the other two
vacua Wj, wk (see Sects. 2 and 3).

The characteristic polynomial of the monodromy is

P(z) = det[z - S'(5<)-1] = z3 + α(x )z 2 - a(xτ)z - 1,

where

α(α^) = x\ -f x\ + x\ — XιX2X2 ~~ 3

The requirement that P(z) has the form (6.5) leads to the following Diophantine
equation

x\ -f x\ -f x\ — xxx1xli — b, (6.15)

where b depends on the particular product of cyclotomic polynomials. Explicitly one
has

P{z) U{\) charges b

ΦiizΫ (-1,0,1) 0

Φx(z)Φ2(zf (-5,0,5) 4

Φx{z)Φ3{z) (-5»0.|) 3

^ ( z ) ^ ) (-δ>0,i) 1

Luckily enough, (6.15) is a well-studied Markoff-type Diophantine equation [39,
40]. All solutions are explicitly known. Let us summarize the main results for (6.15)
[40].

i) All non-trivial solutions39 (6.15) can be obtained from a fundamental solu-
tion 4 0 by a repeated application of the transformations a), b), and c). So the physically
distinct solutions are in one-to-one correspondence with the fundamental ones.
ii) For b = 0 the only fundamental solution is (3,3,3). Using a), b), c) this generates

an infinite number of "equivalent" solutions.
iii) For b — 4 the fundamental solutions are (1,1,2) and (2, y, y) for y > 2. Each of
these generates an infinite number of non-fundamental solutions,
iv) For b = 3 there are no fundamental solutions.
v) For b = 2 the only fundamental solution is (1,1,1). There is only a finite number

of solutions generated by this fundamental one. Up to permutations and changes of
signs there are just two: (1,1,1) and (1,0,1).
iv) For 6 = 1 there is no fundamental solution.

The absence of solutions for b odd is an additional number-theoretical "selection
rule" on the possible UV charges.

Regarding the Jordan structure, one checks that, except for the trivial solution
(0,0,0), and for (2,2,2), H is non-derogatory, i.e. it has Jordan blocks of dimension
equal to the multiplicity of the corresponding eigenvalue. This claim is equivalent to

39 A solution is trivial if at least two of the x% vanish. The only trivial solutions are (up to
permutations) (0 ,0 ,0) for 6 = 0; ( ± 2 , 0 , 0 ) for 6 = 4; and ( ± 1 , 0 , 0 ) for 6 = 1. Clearly, these
solutions correspond to physically trivial models
4 0 A solution is fundamental if 0 < Xj < x 2 < #3 and xx + x 2 + x3 is minimal
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the statement that, unless H = 1, the minimal polynomial for H is the characteristic
one. Since the minimal polynomial P(z)min is given by the formula [41],

detfrg]
V ; m i n gcd[Minors(z - H)] '

we see that P(z)min φ P(z) is possible only if (6.5) contains a factor with ι/(m) > 1.
From the table we see that this can happen only for b = 0, or 4. Then the above claim
is obtained by direct inspection.

Comparison with Degenerate Painlevέ HI. As in Sect. 5.3, the above classification
should be compared with the known results [42] about the regularity of solutions to
the degenerate PHI (i.e. radial Bullough-Dodd)

( r u ) e e ^ ( 6 1 6 )

dτ \ dτ )

The tt* equations for an n = 3 massive model can always be recast in this form
provided we have a Z3 symmetry. Hence (6.16) is connected to the special cases in
our classification with xx = x2 = x3 = s. Here s is the Stokes parameter for the
degenerate PHI, see Eg. (13) of [42]. A solution of degenerate PIII is a solution to
our integral equation provided the other parameters in [42] take the value

91=92 = °! 9s = 1

Then, for large τ (= large β) the asymptotic behaviour of the solution is

exρ[tx(τ)] =*

from which it is obvious that s counts the number of solitons connecting any two
vacua, in agreement with out general discussion (see also [10, 25]). In terms of u{τ)
the two non-trivial eigenvalues of the Q-index are

Q(τ) = ±τ-—u(τ). (6.17)

To compute the UV charges q, we need the asymptotic expansion of u(τ) for small
r. One has [42]

eu(r) ^ σ -

2τ sin < - [σ log r -f log a]

2

τ[logτ-(21og3 + 27)]2 S~ ' ( 6 > 1 8 )

2 wo

iv
- v log r - log b I s < 0, s φ — 1,

^-τ 1 / 2 logτ + τ 1 / 2 (21og3-7- I log2) s = - 1 ,
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where σ, z/, α, and 6 are

- 1 / / C _ 1 \ 2 \

with |Reμ| < 1

(6.19)

with |Rei/| < 1

a = 3~2μΓ(l - μ/3)Γ(l - 2μ/3)Γ(l + μ/3)"1 Γ(l + 2μ/3)~1

μ/ ! ' , (6.20)
6 = 3ί/Γ(l/2 + v/6)Γ(y/3)Γ(l/2 - ιs/6Γι Γ(y/3)~ι.

From (6.17) and (6.18) we see that lim Q(τ) exists and is real only if σ (resp. v) is
r—^0

real. In view of (6.19) this is equivalent to

= l ;

this condition is satisfied iff the expression inside the square-root is non-positive, i.e.
for

- 1 < s < 3.

Then there are precisely five regular solutions to (6.16) with integral soliton number
s, namely s — 3,2,1,0, — 1. These correspond to the five Z3-symmetric solutions we
got for our Diophantine problem 4 1 . So, "unitarity" implies regularity in this case too.
From (6.19) one finds

Xx H = 1 + cos(2πg) = 3 - 3s2 + s 3 ,

in agreement with the result of our Diophantine analysis. As for the n = 2 case, the
regularity theorem for degenerate Painleve III can be stated as the condition

-KtriJ<3.

63. Identification of the n = 3 Models

Now we discuss the physical realizations of the N = 2 models corresponding to the
non-trivial solutions of the n = 3 Diophantine problem. For some models more than
one Lagrangian formulation is known.

The (1,1,1) Model. The solution (xι,x2,x3) = (1,1,1) corresponds to the A3

minimal model, i.e. to the LG model with superpotential,

W(X) = \ X4 + lower order.

This identification is confirmed by the value of the UV charges, see the table in
Sect. 5.3. The two basic solutions in this class, (1,1,1) and (1,0,1) correspond to
the soliton multiplicities μ{j for the two inequivalent geometries in W-space. These
two geometries are realized, e.g. by the Z3-symmetric model W(X) = XA — X and

Notice that the solution (1,1,2) is equivalent to (—1, —1, —1) by perturbation
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by the Z 2 invariant one W(X) = X4 - X2, respectively. In [10] the tt* equations
for these two models have been solved in terms of PHI transcendents. The first case
leads to degenerate PHI (6.16), while the second to special PHI (6.11).

The (3,3,3) Model The unique class of solutions for 6 = 0, i.e. (3,3,3) is also an
old friend - the C P 2 σ-model. This identification is consistent with the U{\) charges
(see table). Moreover, from the explicit solution of the C P 2 model [26] we know that
there are precisely 3 solitons (transforming according the fundamental representation
of SU(3) connecting any two vacua. Thus the mass-spectrum extracted from the
ί'-matrix agrees with the one predicted by the Diophantine analysis.

This solution corresponds to a sensible physical theory only for special geometries
in VF-space. Indeed, if we send one of the three vacua to infinity (in VF-space) we end
up with a model with only two vacua connected by 3 solitons: but this is impossible
in view of the classification for n = 2. The usual C P 2 σ-model corresponds to
the three vacua at the vertices of an equilateral triangle in VF-space (its size being
related to the Kahler class of C P 2 , and its orientation to the 0-angle). Then the
model must not make sense if the vacuum triangle is squeezed more than a certain
amount. Note that there are three chiral operators in the C P 2 model, 1, fc, ft2, where k
denotes the Kahler class chiral field. The operator corresponding to k2 has dimension
bigger than 1 and is non-renormalizable. Addition of this term to the action is not
allowed. The corresponding coupling controls the shape of the vacuum triangle in W-
space. So stretching the vacuum triangle corresponds to adding non-renormalizable
interactions to the action, leading to a pathological field theory. Indeed we see here that
if we insist in adding terms which are not renormalizable we should either sacrifice
unitarity, as the Hermitian charges are becoming complex, or the decoupling of the
infinitely massive states (i.e., somehow the vacua that we move to infinity should
still be contributing somehow). At any rate we see that tt* equations allow us to
address the question of adding non-renormalizable terms to the action in a simple
way. These pathologies must manifest themselves as singularities in the solutions of
the tt* equations for certain critical values of β (cf. the discussion in Sects. 4.4, 4.5).

From the result of this section we can also infer the classification of the (compact)
complex surfaces with Betti numbers bλ = 0 and b2 = 1 having positive first Chern
class 4 2 (i.e. admitting a Kahler-Einstein metric with positive cosmological constant).
Any such manifold will lead to a σ-model having n = 3. Its monodromy H should
have a Jordan block of order 3. Our classification says that there is only one such
manifold, namely C P 2 . This is in agreement with the known classification of complex
surfaces, see [43]. Indeed consider a Kahler manifold of complex dimension d with
cλ > 0 which has only diagonal Hodge structure (hPjQ φ 0 only if p = q), i.e. with
chiral fields which have zero fermion number (p — q = 0). σ-model on such manifolds
should correspond to a massive N = 2 theory which should thus be showing up in
our classification. Let

p=l

Then in our classification with n vacua these σ-models will show up with U{\)
charges ranging from — d/2 to d/2 in integer steps, for which hPiP is the number of

This condition is needed to ensure AF, see e.g. [25]
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d
charges equal to — - + p. In particular if two manifolds lead to the same solution

in our classification, then they are "mirror" in the sense that the σ-model on the
two are isomorphic (at least as far as the ground states are concerned). It would be
interesting to see if there are any examples of mirror phenomena of this type. At
any rate our soliton diagrams give a new invariant for these Kahler manifolds (up to
braiding action discussed before). We expect that this N — 2 view of diagonal Kahler
manifolds with c{ > 0 should lead to their complete classification.

The (1,1,2) Model. This solution is equivalent to (—1,-1,-1) by perturbation (as
follows from how the soliton numbers change under perturbation (2.9)). The last one
is easier to realize since it is Z 3 symmetric. In this case the matrix

B^S + S1, (6.21)

is just the Cartan matrix for the ajfine A2 Lie algebra. By analogy with (6.9) it is
natural to realize the(—1,—1,—1) model as an N = 2 Toda theory related to the A2

root system. In fact, we claim that it is the N — 2 Bullough-Dodd model, i.e. the LG
model with superpotential

W(X) = t(ex +ι-e~2X), (6.22)

again with the identification X ~ X + 2πi. The simpler way to see this is to compare
with the usual A3 minimal model, i.e. (1,1,1). Clearly the only difference between
the two models is the sign of the basic Z 2 soliton cycle (we label the vacua according
to the anti-clockwise order in W space)

f - 1 for A3
μ 1 2 μ 2 3 μ 3 1 = j ^ f ^ ^ (6.23)

Let ft- be the Fermi number of the soliton connecting the ith vacuum to the j t h

one. Then (6.23) holds provided that [14]

exp[iπ(/12 + / 2 3 + f3l)]\Ai = - exp[iτr(/12 + / 2 3 + / 3 1 ) ] | Λ 3 . (6.24)

Indeed f^ = fτ — f , where (here Xk = e2 π ϊ / c/3, k = 0,1,2, are the classical vacua)

1 {\ A2
fk = -—Im\ogW"(Xk)=l 3

lk A (modi),

which gives (6.24).
This identification is also consistent with the UV behaviour. The Diophantine

analysis shows the the UV central charge is c = 1. Since the UV limit of (6.22) is
just (massless) free field theory, this is the correct result.

If one is not satisfied with the above argument, we can do much better, i.e. we
can solve explicitly the tt* equation for (6.22) in terms of (degenerate) Painleve
transcendents. To do this, we take the natural vacuum basis generated by spectral
flow, i.e.

|1>. Ie*>, \e2X).
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Because of the Z 3 symmetry X —>• X + 2τri/3, in this basis the ground state metric
g is diagonal. The diagonal entries of g are further restricted by the reality constraint
[10]. This gives43

(e | e ) - | t | .

Using this and setting

log(ϊ I 1) = u(τ) - \ \og\t\1, τ | | |*|2 , (6.25)

the tt* equations reduce to (6.16) with Q(τ) given by (6.17). In view of our discussion
at the end of Sect. 2.3, to prove that (6.22) is the ( - 1 , - 1 , -1) model it is enough to
show that u(r) in (6.25) is the solution to (6.16) with boundary data gι = g2 — 0,
#3 = 1, and s — — 1. This follows from "regularity" [10]. Regularity requires [25]
that (ϊ I 1) is regular as t —> 0, possibly up to logarithmic violation of scaling (as
predicted by the non-trivial Jordan structure of the monodromy). Comparing (6.25)
and (6.18) we see that this condition is satisfied only for s = — 1.

The (2,2,2) Model. This solution corresponds to the Ising 3-point function [15].
Equivalently, we can identify it as the LG model with superpotential the Weierstrass
function [15]

and the identifications

X ~ X + nιωι + n2ω2 , ni G N ,

where ω% are the two periods of ρ(X). This model has UV central charge c = 1 as
predicted by the number-theoretical viewpoint. Since the Jordan structure is trivial,
the UV limit of this model is a viable candidate for a new c — 1 non-degenerate
superconformal model. Indeed the fact that the solution for the metric is non-
degenerate at the UV point follows from the explicit solution of degenerate Painleve
III discussed before, which is thus a confirmation of our general arguments. Whether
or not this is sufficient to obtain a non-degenerate conformal theory remains to be
seen. Further details on this model can be found in [15]. More generally the solution
with n vacua with all soliton numbers equal to 2 is related to the massive Ising
model n spin correlation functions. Note that this is the only non-trivial theory for
which the number of solitons (in absolute value) does not change by perturbations
[see Eq. (2.9)].

The (2,y,y) Models for y > 2. To our knowledge, no physical realization of these
models is known. On the other hand, the consistency of these models requires
properties which sound so magical that one wonders if they exist at all (as sensible
QFT's). This fact, together with the absence of Z 3 symmetry, would make it very
difficult to guess an explicit Lagrangian realization for them, even if they exist.
Anyhow, the positive result is that any yet-to-be-discovered n = 3 model should

4 3 Notice that these reality conditions are quite different from those of the Λ3 minimal model. In
fact this is the only difference between the two models, i.e. they correspond to two inequivalent
foldings of the Λ2 Toda equation
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belong to this class, and hence have UV charges ( - | , 0 , | ) and soliton spectra

(related by a), b) and c)) to (2, y, y)\
We give a discussion of their properties: Certainly they cannot be well-behaved for

arbitrary vacuum geometries, since sending an appropriate vacuum to infinity we end
up with a model containing just two vacua connected by y > 2 solitons, a situation
ruled out by the n — 2 classification.

The UV charges of the three chiral fields are (0, | , l) This follows by continuously
turning on the soliton number as discussed before. However, in this case we find that
there is no way to turn the soliton numbers and go through phases as the eigenvalues
of H. This suggests to us that indeed these theories are pathological. At any rate, if
these theories exist, then q = 1 field cannot be a marginal operator, since otherwise
all vacuum geometry will be allowed, contrary to the above remark. By the same
argument it cannot be an AF coupling. Then the only possibility is that the leading term
in their /3-function is positive, i.e. that the coupling is infra-red stable. In particular
the q = 1 field may be the Kahler class of a dimension 1 complex manifold with
negative curvature. The fact that there is a non-trivial Jordan block and that B has a
negative eigenvalue in this case supports this picture. The field with q = 1/2 may in
this set up be related to a Z2 twist field for an orbifold of this σ-model.

7. The A-D-E Minimal Models Revisited

If we restrict our general classification to the models with c < 1 we should recover
the well-known A-D-E classification. Note that since minimal models by definition
have chiral charges less than 1, and since the left and right chiral charges differ by
an integer, this implies that for minimal models the left and right chiral charges are
equal. Moreover since the charges are all less than one, perturbation with all of them
are relevant and so we should get a massive theory. Therefore all the minimal models
must appear in our classification. In this section we show how nicely this particular
case fits in our general framework. From the discussion below it will be evident how
our methods for classification of N = 2 theories are the natural generalization of
the ones which were successful for the c < 1 case. From one point of view, our
discussion of the minimal models is more detailed than the usual one. In fact as an
extra bonus we get the classification of the solitonic spectra which may appear for a
given minimal model perturbed in a generic way. To get the usual A-D-E result we
just have to "forget about" this extra information.

7.1. Positive Inner Products and Root Systems

Let B — S + S*. We will now show that if B is positive definite, then the integral
matrix S is automatically a solution to our Diophantine problem. In fact from the
identity

EBE1 = S(SιTι (S + St)S"ιSt = S + S* = B ,

we see that H is orthogonal with respect to the inner product B. If B is positive its
orthogonal group is compct, and hence H is simple with | Â  | = 1. Then S solves
our Diophantine equation. Note also that if S is close to the identity matrix then
S + 5* is positive definite and so the eigenvalues of H are always phases. So in our
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argument in previous sections for "building up" the charges, at least near t = 0 we
are guaranteed that the charges are real.

We pause a while to digress on the classification of the positive definite (integral
matrices B. A first remark is that Bi3 = 0 or ±1 (for i ^ j). Indeed let (say) Bn = s.
Then consider the vector V = (vl,v2,0, . . . , 0). Then VBVf, as a quadratic form
in v{9 v2 is positive definite iff |s| < 2. Since s is integral, s = 0, ± 1 . To any such
B we associate a (generalized) Dynkin diagram by the following rule: the i t h and j t h

vertices are connected by a solid (resp. dashed) line iff Bi3 — - 1 (resp. BΪ3 — +1).
Since det[B] ^ 0, we can introduce a basis e^i = 1, . . . , n) of unit vectors in

R n such that

Consider the group W generated by the reflections Rk

U ά = Z ά - B ύ k e k . (7.1)

W, being a discrete subgroup of the compact orthogonal group, is finite. If we take
the union of all the images under W of the vectors ei we get a finite set of vectors in
R n which satisfies the axioms for a (reduced) root system [44]. In fact it is a simply-
laced root system since all elements have length 1. Therefore (assuming irreducibility)
it belongs to the A-D-E series [44]. There is a simple rule to get the root system
associated to a given B. Since the ei generate the root lattice, det-B is the volume of
the fundamental cell. Then det£ is n + 1 for An, 4 for Dn and 9 - n for En. The
general solution to our Diophantine problem with B positive is obtained as follows.
Take a simply-laced Lie algebra of rank n, and choose n linearly independent vectors
et belonging to its root system.44 Then put

f (e-.ej for i < j
13 \ 0 otherwise.

Let us compute the monodromy H of this solution. Consider the matrix

R= -Hι = -S~ιSt. (7.2)

The matrix R satisfies a remarkable identity due to Coxeter. One has [45]

R = RYR2R3 Rn (7.3)

Let us consider first a "standard" solution, i.e. the vectors eτ are normal to the walls
of a Weyl chamber. In this case the generalized Dynkin diagram reduces to the usual
one, and B is just the Cartan matrix. For this "standard" situation R is known as the
Coxeter element of the finite reflection group W (= the Weyl group). The Coxeter
element is independent of choices (up to conjugation) as long as the Dynkin diagram
contains only solid lines (which in particular means that it is a tree). The order h of R
is called the Coxeter number of the associated Lie algebra. Its eigenvalues are of the
form txp[2πimj/h], where the integers m- are the exponents of the corresponding
Lie algebra [45]. Comparing with (7.2) we see that the UV charges for a "standard"
solution are

Qj = -jr--\ (modi). (7.4)

Of course, this is precisely the answer for the corresponding A-D-E minimal model.

4 4 Notice that two choices differing only for the order of the elements ei should be considered as
distinct since they lead to different S"s
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The next step is to find the solutions which are equivalent to the "standard" one, in
the sense of corresponding to different perturbations of the same basic superconformal
model. This is the same as asking which sets of roots ei can be obtained from a given
one by a continuous deformation of the couplings wk. These are those obtained from
a standard solution by a repeated application of the following "moves." First of all,
we can replace a root ei by the opposite root — ei since this is just a redefinition of
the sign of the corresponding canonical vacuum. Then we can replace the ordered
pair of roots (e^ , βj+i) by the pair (e^ + 1 i ϊ , ep. Indeed, the transformation

e{ = e f o r i^jj + l,

i n d u c e s t h e f o l l o w i n g t r a n s f o r m a t i o n o n B ^ { i φ j , j -f 1 ) :

i.e. the transformation T3 - the braiding action taking the j t h vacuum in the anti-
clockwise direction replacing the j + 1th vacuum (see Sects. 2 and 3). We know that
this transformation can be realized via a deformation of the couplings wk as all the
perturbations are relevant and thus allowed. Finally we can cyclically permute the
eζ's or take them in the inverse order.

In this way many solutions are reduced to the standard ones. The corresponding
N — 2 model is known to be realizable as a Landau-Ginzburg model [4]. From
these explicit LG realizations, we see that their UV limits are just the corresponding
minimal models. Since in minimal models all formal perturbations are physically
allowed, the solution obtained by braiding the standard ones can be realized as a
suitable perturbation of the corresponding minimal model.45 Then these solutions are
just (massive perturbations of) A-D-E minimal models. For example the A-series can
be realized as Chebyshev perturbations of the xn minimal model [7].

However not all solutions with B positive are equivalent to the standard ones.
This reflects the fact that the notion of irreducibility for the field algebra of a QFT
is a much stronger constraint than the analog notion for a reflection group. Consider
e.g. the 4 x 4 matrix

where σi are the Pauli matrices. The corresponding ei generate the D4 root lattice.
However its monodromy H satisfies

dtt[z -H] = (z2 + I) 2 , (7.7)

and thus has nothing to do with the charges of the D 4 minimal model. In fact,
—if* = RλR2R3R4, whereas the Coxeter element (for this unorthodox choice of
roots) reads R3RιR4R2, and these two elements are not conjugate in W. Now the
point is that (7.7) cannot correspond to an irreducible regular critical theory. There
are three good physical reasons to discard the solution (7.6): i) The minimal value of
q is doubly degenerate (that is 1 is not the only chiral primary with q = 0). Then (7.6)
is reducible, ii) The solution has t r i ί = 0; this cannot be for an irreducible theory.

Of course, this is just the usual description of the deformations of a minimal singularity [5]
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Indeed the N — 2 superconformal algebra together with modular invariance shows 4 6

that tr H is the susy index counting with signs the number of chiral primaries with
q = 0. The requirement that the only such object is the standard identity operator

47

gives
t r i ϊ = l . (7.8)

iii) The solution to the tt* equations defined by the Stokes matrix (7.6) cannot be both
regular for all wk's and irreducible. Indeed, let us send Imw3, Imio4 —• oc while
keeping lmwι = Imu>2 = 0. We end up with a model with just two vacua and no
solitons. Again this is a reducible situation. For a general model this argument shows
that, in order to have irreducibility, we need 4 8

BltMφ0. (7.9)

Without loss of generality we can take Bt +ι = — 1. This condition is not fulfilled
by (7.6). The same reasoning shows that, if we have n vacua and take the limit
\mwn —» oo, the "reduced" Stokes matrix obtained by deleting the last row and the
last column should be such as to correspond to a regular irreducible solution of tt*.

Thus we have three necessary criteria for irreducibility. Now we give an argument
to the effect that if B is positive definite and satisfies these criteria49 then it is
equivalent to a standard solution. The idea is to argue by induction on the number
of vacua. Assume we know that this is true for n vacua. Then in the n -f 1 vacuum
case we can use criterion iii) to put the "reduced" S in a standard form for the given
"reduced" root system.50 Having fixed the "reduced" 5 in a standard form we are
reduced to a much simpler Diophantine problem for the unknowns ai = St n + 1 . By
(7.9) α n = — 1, so we have just n — \ unknowns which can only take the values 0
and dbl. At this stage we impose the index restriction txH = 1 which greatly reduces
the allowed values for the α/s (and kills the "spurious" solutions like (7.6)). Finally
one shows that the few surviving possibilities either lead to a non-positive51 B9 or
they are equivalent to standard solutions. To illustrate this last step of the process
we consider the simpler case in which the "reduced" S is associated to the An root
system. In this case one finds

tr H = 1 + ]Γ(α2 _ α?) - ] Γ aiaj .

4 6 In fact comparing with [46] we see that trϋΓ = Tr(— l)Fg, where g = e x p [ 2 π i J 0 ] . The modular
tranformation r —> — 1/τ transforms the character-valued susy index Tr(— \)Fg into the Witten index
for the sector twisted by g. The ground states in this sector are the harmonic representatives of a
certain cohomology (the group H(l,0) in the notation of [46]). Chiral primaries of minimal C/(l)
charge are always non-trivial elements of H(0,1) [46]. Moreover for c < 1 (at least) positivity
implies that these chiral primaries exhausts H(0,1)
4 7 Notice that this restriction is automatic in LG models. This is an easy consequence of the results
of [46] as well as a known fact from singularity theory [5]
4 8 At first sight, it may seem that this argument implies B ^ Φ 0 for all i,j. However it is not
so since in the limit lmwk —> oo (for k Φ i,j) we still get contributions to the soliton number
μ%J from the "vacua at infinity" because the singularity mechanism discussed in Sect. 4 spoils the
naive decoupling. Instead —μtt%+\ = Bτ,i+\ because of the bound (4.37) and thus for these particular
entries the arguments is correct
4 9 In fact we can forgot about i) since it is a consequence of the other two
50 Of course this process screws up the elements S{ n + 1
51 Generically they are not even solutions to our problem. However some are "affine" solutions,
see next subsection
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Let m(0 < m < n — 1) be the number of α/s with |αj = 1 and r(0 < r < m) the
number of those with α = 1. Then trϋf becomes

1 - (m - r) - \ [(m - 2r)2 + (m - 2r)].

The last two terms in this expression are non-positive. Hence trH = 1 iff they both
vanish. This happens in just two cases: i) all ai = 0; or ii) one aτ = 1 while all the
others vanish. So we have only n cases to check. The case a% — 0 for alli 's and the
one with an_ι — 1 give the standard An+ι solution. The cases aι = 1 or α n _ 2 = 1
give the usual Dn+ι solution. Finally the cases α2 = 1 or α n _ 3 = 1 give the En+ι

"solution" (it is a c < 1 model only if (n + 1) < 8; for (π + 1) < 6 it coincides
with a D solution, as one sees from the corresponding Stokes matrix). The cases with
ai = 1 for an i in the range 2 < i < n - 3 have never B positive definite. If the
"reduced" S is of the Dn or En type the analysis is similar although more involved.

It remains to show that the A-D-E series exhausts the models with c < 1, i.e.
that c < 1 implies B positive definite. One argument was mentioned before, i.e., the
fact that for the minimal model \q\ < 1/2 implies this. We will now give another
argument: In a model with c < 1 all chiral primaries are relevant, and hence all
deformations of the theory lead to regular solutions of tt*. Moreover, the property
that all UV charges are less than 1 should survive perturbation.

If c < 1 then all Ramond U{\) charges satisfy \q\ < | . Hence - 1 is not an

eigenvalue of the monodromy H = S(S~ιγ. Then

0 φ det[-l -H] = ( - l ) n det[5 < + S]. (7.10)

Assume that a model with c < 1 has B non-positive definite. By (7.10), B has (at
least) a negative eigenvalue. Consider the pseudo-reflection group W generated by the
corresponding Rk's (7.1). Repeating word-for-word the previous argument, we see
that the elements of this group can be realized as formal perturbations of the model.
But in a minimal model all formal perturbations should be good deformations of the
theory. So all the Stokes matrices generated by these reflections should correspond
to regular solutions of tt* for all wk's. But now W is infinite [44] and hence in
the equivalence class we can find arbitrarily big Stokes parameters Ai3. But this is
absurd. Indeed the solution of tt* cannot be regular for all wk

9s for Ai3 very large as
we can see by considering suitable geometries in VF-space and taking some vacua to
infinity. Then minimality requires B to be positive.

7.2. "Affine" Models and Their Lagrangian Realizations

c — 1 Degenerate Models. In our context the A-D-E classification has a natural
"affine" generalization. The main purpose of this subsection is to provide explicit
examples of such "affine" models. We make no attempt at completeness.

Suppose our (integral) Stokes matrix S is such that the associated symmetric form
B = S + S* is singular (i.e. det£? = 0), while all its (proper) principal minors
are positive definite. We claim that any such S is also a solution to our Diophantine
problem. Indeed, since B is singular, there is a vector v such that Bv — 0. This vector
is unique (up to normalization) since, by assumption, rank B — n - 1. In particular v
is real. Then υ is the unique eigenvector of Hι = S~lSf associated to the eigenvalue
λ0 = —1; indeed,

Hfv = S~ι(B - S)v = -v . (7.11)
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Consider next the quadratic form B induced by B on the quotient space Rn/Rt>.
By assumption, B is positive definite. From the argument of Sect. 7.2, we see that
the induced monodromy Hl acts orthogonally on Rn/Rv. This, together with (7.11),
shows that the eigenvalues of Hι satisfy |λ| = 1, as claimed. However the Jordan
structure of Hι is non-trivial. In fact Hf has just one eigenvector associated to
this eigenvalue, whereas (-1) is a root of the characteristic polynomial of even
multiplicity.52 Since Hι is simple, Hι has just a 2 x 2 block associated to the
eigenvalue (—1).

From our general discussion in Sect. 5 we know that these solutions lead to
degenerate superconformal models with cu v = 1. Conversely all such degenerate
models are associated to an S having the above properties. If we assume that the
off-diagonal entries of S are non-positive, then (up to permutations) B is nothing
else than the Cartan matrix for a simply laced affine Lie algebra, i.e. An_v Dn_{,

or E6EΊ, and E%. The general solution is obtained as follows. We consider a (finite)
simply laced root system of rank (n — 1) and take n roots e^i = 0,1, . . . , n — 1)
such that e{(i = 1, . . . , n — 1) span R7 1"1 whereas

n-\

e0 = ^2 K^i' K non-vanishing integers.

Then
Bi3 = 2(ez,e3) z, j = 0, . . . , n - 1.

The Cartan matrix corresponds to the special solution with e{(i φ 0) the simple roots
and e0 minus the highest root. Many solutions can be obtained one from the other by
"formal" perturbations (i.e. braiding transformations). Since the chiral fields φi are
either soft perturbations or asymptotically free renormalizable interactions, we expect
that all the "formal" perturbations make perfect physical sense.

LG Models with Exponential Interactions. In Sect. 6 we saw that the Aλ model can be
realized as the N = 2 Sinh-Gordon provided we make the identification X ~ X+2πi.
Other "affine" models are obtained by changing this identification to

X ~ X + 2πni.

In this way we get a A2n_ι model. The easiest way to see this is to solve the
corresponding tt* equations in terms of Painleve transcendents. As in [10] we
introduce the transformation T which shifts X by 2τri One has Tn — 1. Then
we consider the θ-vacua, i.e. the ground states such that

For a fixed value of θ there are just two ground states, and hence the tt* equations
take the PHI form (see [10] for details). Then the ground state metric is (here z — mβ,
with m the mass of the basic soliton)

4

where L(z, θ) is the regular solution to PHI with

r(θ) = 2 ( 1 ) , (0 < θ < 2π).

5 2 Because det H = 1, and if λ is an eigenvalue of H so is λ~ι
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Returning to the canonical basis, the ground state metric becomes (here |fcπ) denotes
the canonical vacuum associated to the critical points Xk = kπi)

Λj-k) n~ι

(kπ I jπ) = Σ ei7T{j-k)s/n[eL{z>27Ts/n) + (_i)(J-fc)e»^,27rs/n)j ? ( 7 1 2 )

where (fc, j = 0,1, . . . , In — 1).

Since as z —> oo,

exp[L(^, 6>)] = 1 - 2cos(<9/2) - KJz),

we have the IR asymptotics,

where

δ(m)=(l ifi=jmodm
hj \ 0 otherwise.

Then the soliton matrix μi3 reads

The U{\) charges in a given ^-sector are equal to ±r(0)/4 (see [10]). Thus

{UV [/(I) charges} = ± - =F \ (s = 0,1, . . . , n - 1). (7.14)

In the present case there are just two critical values, and so we have S = 1 — A with

Γ ι±.. if % even
A = = su \ 0 otherwise.

After a relabeling of the basis (and a suitable sign redefinition) the Stokes matrix
reads

where the n x n matrix R corresponds to a cyclic permutation. In particular, Rn — 1,
and Rf = R~ι. Then the characteristic polynomial of H is

P(-z) = dQt[zSt + S] = dtt[(z + I)2 - z(\ + R~ι) (1 + R)]

= [det(z - R)f = {zn - I) 2 ,

in agreement with (7.14).

In Sect. 6 we also saw that the N = 2 Bullough-Dodd model, i.e. the LG model
with superpotential

and field identification X ~ X + 2πi, leads to a model related to the A2 root system.
Our general discussion above implies that the models obtained by the more general
identification X ~ X + 2πni also correspond to degenerate c — 1 theories. We expect
that the corresponding solution to our Diophantine problem is related to the A3n_{
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root system. However this time it is not possible to check this expectation by writing
explicitly the ground-state metric in terms of known transcendents. Luckily there is
one special case, namely n = 2, in which g can be still written in terms of Painleve
transcendents.

We define the ground state

k=0

where |2πfc/3) is the "point basis" vacuum at Xk = 2πk/3(k = 0,1, . . . , 5). Then
the Z6-symmetry implies {fa \ ΐ) = 0 for m φ 1. Using the reality constraint the
tt* equations decompose into two decoupled degenerate Pills. Then the ground state
metric reads

2 | t | ( 2 | 2 ) = 2 | t | ( 5 | 5 ) = l ,

4> = (2|t|<0 I 0))- 1 = e-i<->,

where u{(j) are (regular) solutions to Eq. (6.16). In terms of the canonical basis, the
ground state metric reads

Qk-. = i [1 + (-l)(k-j)] + \ [e^-^/V 1 + e-
πι(k~j)/3eui]

Then the soliton matrix is

μkj = ~Ά s i s i n \k ( / c " fi " ~R 5 2 s i n

where 5̂  are the Stokes parameters specifying the boundary conditions for u^τ) (see
Sect. 6.2). Consistency with the m — 1 case (which can be identified with a subsector
of the present model) fixes s2 = — 1. Then the requirement that μi3 are integers
implies

sx = Imod2.

Using regularity (Sect. 6.2) we get s{ ~ — 1, 1, or 3. But 3 is not possible because it
gives c too big. On the other hand, — 1 is ruled out on the basis of the uniqueness of
the chiral field with the smallest U(l) charge. Thus sι = 1. Then

u - 5(6) _ r(6)

which is the expected result. (Notice that, although the iV = 2 soliton multiplicities
|μ^ | are the same as in the Sinh-Gordon with n = 3, the signs assignments are
physically inequivalent). The UV charges are easily computed from the above explicit
solutions. They are

( - I _ I o o - -)
V 2 ' 4 ' ' ' 4 ' 2/ "

Nedless to say, this is in agreement with the values obtained from the mono-
dromy H.

On general grounds one expects that similar phenomena also happens for more
general exponential interactions, in particular the Z n invariant one

W(X) = ex + —^— e-
(n-1)X . (7.15)

n — 1
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However explicit computations are not as elementary as in the above cases.

C P 1 Orbifolds. We saw in Sect. 6.1 that Ax model has a second Lagrangian realiza-
tion5 3 as the σ-model with target space C P 1 . Then our general arguments show that
any (sensible) orbifold of this σ-model should also be a degenerate c — 1 and hence
related to a simply laced root system as above. It is tempting to make the following
conjecture on the nature of this correspondence. An orbifold is obtained by modding
out a discrete subgroup G of the (double cover of) the C P 1 isometry group SU(2). As
is well known, these subgroups are again classified by A-D-E. Then it is natural to
expect that the G orbifold is related to the root system associated to the subgroup G.
More precisely, the correspondence between a subgroup and a root system is obtained
by considering the eigenvectors of the A-D-E Cartan matrices: They are the columns
of the character table for the corresponding group G [47]. In particular,

i r~Z r + 1 . (7.16)

It is also natural to expect that not all subgroups can appear, since the center Z 2

of SU(2) must belong to G because the physical states are automatically invariant
under this subgroup. (That is the original σ-model, having the isometry group
SO(3) = SU(2)/Z2: corresponds to G = Z 2 not G = 1).

That these massive orbifolds are bona fide quantum field theories was shown in
[25]. There the special case G = Z 2 n (corresponding to the orbifold CP1 /Zn) was
studied in great detail, and the corresponding tt* equations were explicitly solved in
terms of PHI transcendents. The results of [25] implies that the ground state metric
for the Zn-orbifold is just that for the N = 2 Sinh-Gordon with the identification54

X ~ X 4- 2πm, see Eq. (7.12). Again one can compute the soliton spectrum out of
this tt* solution. The computations are a word-for-word repetition of those leading to
Eq. (7.13). Then Eq. (7.13) gives the mass-spectrum of the CPι/Zn orbifold model.
In agreement with the guess (7.16) μ^ , as a solution to our classification program, is

indeed related to the A2n_ι root system (e.g. 26^ — |μ^ | is the A2n_{ Cartan matrix).
Non-abelian orbifolds of C P 1 have been recently considered in [48] with results in
the direction of connecting them to affine D and E series.

8. More on σ-Models

The primary aim of this section is to supply examples which cannot be realized as
LG models. Here we focus mainly on σ-models over symmetric spaces (with cλ > 0).
The main issue is to compute their (solitonic) mass spectra as we did in Sect. 7.2
for the C P 1 orbifolds. Typically these σ-models are confining theories whose physics
is quite similar to that of Ad gauge theories. So the possibility of getting (part of)
their exact mass spectrum by back-of-an-envelope computation is a very dramatic
consequence of our methods.

It is more convenient to start with a more general problem, i.e. the classification
of the massive models with a Zn-symmetry acting transitively on the n ground states.
Indeed, besides the cases of small n and small c, there is a third situation in which a

5 3 T h e structure of the exact 5-matrices for the C P 1 σ-model and the N = 2 sine-Gordon suggests
[7] that these two models are equivalent as Q F T ' s for a special choice of the D-terms
5 4 Physically this is due to the fact that (for a special choice of the D-terms) both models are
orbifold of the same Q F T
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complete classification is possible, namely in the presence of a "big" symmetry: One
looks for all models having a symmetry group 2? which is big enough to restrict the
/iij's in a significant way. In [14] it was shown that the Z n invariant models organize
themselves in a "family" and that it is somewhat easier to study all the models in the
family at once than one at the time.

8.1. The Classification of Zn-Invaήant Models

If our system has a cyclic symmetry, then the matrix C should transform according
to some irreducible representation of Z n , i.e. like ζr(a) = exp[2τrίαr/n] for some
r G Z n . We set m = n/(n, r). Then, without loss of generality, we can assume that
the m distinct "critical values" wk are given by

wk = exp[2πik/m] k = 0, . . . , m — 1. (8.1)

All these values have multiplicity (n, r). For convenience, we label the vacua with
two indices {k,a){k = 0,1, . . . , m — 1, a = 1,2, . . . , (n, r)) in such a way that
k + ma is increased by 1 under a basic Z n rotation while k labels the corresponding
critical value as in (8.1). In this basis S will not be upper triangular.

The Z n symmetry restricts the (n, r) x (n, r) matrices (μkh)ab. First of all, one has

μ^ = μ(i - j) with μ(k + m) = Jμ(fe),

where the (n, r) x (n, r) matrix J is

Jab = δa,b-l+εδa,lδb,(n,r)

ε is fixed by the following identity

μ(k + n) = J(n'r)μ(k) = εμ(k).

At first sight it may seem that this together with the Z n symmetry predicts ε = 1.
However it is not so. The point is that the canonical basis is well defined up to sign,
and it is quite possible that acting n times with the basic Z n transformation we end up
with the opposite sign. In this case ε = — 1 (in fact most models work this way). The
sign assignments for the canonical vacua are specified by the phases of the topological
metric η. Again η should belong to a definite representation of Z n . If it transforms
as 77 ̂  e-^q/nη t h e n ε = (-\)Qm Thus J ( n ' r ) = (-l)q. On the other hand μ is
antisymmetric, so μ(k) = — μ{—k)1, or

μ(m -k) = -Jμikf . (8.2)

Finally, the symmetry implies that μ(k) commutes with J . But J is non-derogatory
and thus

(n,r)

1=1

for some (integral) coefficients ρ(k, I). In view of (8.2) we have

ρ(m — fc, I) = —ρ(k, (n, r) — I + 1),

(we used that J* = J " 1 ) .
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The angles φkh of Sect. 4 are given by

- i exp[πi(k -f h)/m] for k > h

+ i exp[πi(/c -f h)/m] for k < h.

The (reflected) soliton rays belonging to the right half-plane are at angles

π s
ψs = , s = 0, . . . , ra — 1.

As we have discussed in Sect. 4.5 the matrices μ [ ' ̂  associated with a given ray
commute. Let μ^ be the sum of all the matrices associated with the sth ray. From
the above formulae one gets (z, j = 0, . . . , m — 1)

where

λ = 0

i f * > 3
otherwise.

From the definition it is easy to get the identity

then the Stokes matrix reads

S = (1 -

(8.3)

m = 21 + 2

Let R be the orthogonal n x n matrix

0
1

0

0

0
0

1

0

0
0

0

1

. . . 0

. . . 0

. . . 0

. . . 0

J
0

0

0

\ 0 0 0 . . . 1 0 /

which satisfies Rm = 1 0 J~ι. Then the cyclic symmetry of λ^ yields

μ(s+2) = R - l μ ( * ) R m

So, if (say) m = si + 2

where M = μ̂ 1^ 4-μ^ This procedure can be continued through the other half-plane.
Finally we get for the monodromy

H = i r ( m - 1 } [ ( l - M)R]mR-1 = (1 <g> J)R[{\ - M)R]mR~l.

So, up to similarity, (1 0 J " ι ) H is just [(1 - M ) # ] m . Since (1 0 J~ι) commutes
with H, the monodromy eigenvalues are phases iff the matrix (1 — M)R satisfies the
same condition, i.e. if det[> — (1 - M)R] is a product of cyclotomic polynomials.
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Let us assume for the moment that (n, r) = 1, so n = m. In this case J = (—l)q.
Then if

= det[* - (1 - M)R] =

the characteristic polynomial P(z) of iJ reads

where

One finds

= det[z - (1 -

(nodd)

n/2-1

- Σ μ(k)(zn-k + (-l)q+ιzk) (neven), (8.5)
fc=l

i.e. the coefficients of the polynomial @(z) are precisely the soliton numbers
μ(k) = μ^i+k [with signs as specified by Eq. (8.5)]. Then for, say, q odd the solution
of our Diophantine problem take a very elegant form: a set of soliton numbers μi • is
a Zn-symmetric solution of our problem if and only if the polynomial

-.77, i 1 I \ "^ k /Q /Γ\

z —f— x —I— y μ ^ i+fcZ , v^-oj
k

is a product of cyclotomic polynomials. In particular we have the bound

(8.7)

Let us give a few simple examples.
1. The basic example is the perturbed An minimal model, i.e. the LG theory with
superpotential W(X) = X n + 1 —tX. In this case q = — 1 and the soliton numbers
μ(fc) are all equal to 1. Then

i

r = Π
|()

Using the rule (8.4)

^ ω = Π *d(-̂ )>
d|(n+l)

which gives the usual result for the UV charges of the Am model.
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2. A second example is the Ising n-point function 5 5 with the spins located at the
vertices of a regular n-gon. In this case the soliton numbers μ(k) are equal 2 for all
fc's. Then

(2(z) = (z + 1) j — = Φ2(z) Y[ Φd(z),
d\n

and (8.4) gives

for n even

(—z) for n odd.

Needless to say, the corresponding U(l) charges agree with the physical picture of
the Ising correlators. These two examples (and the trivial case μ(k) = 0) exhaust the
solutions with all soliton numbers equal for n > 4.
3. μ(k) is 1 (resp. — 1) for k = 1 and 0 otherwise. Then

d\(n-\)

ι Y[ Φd(z)
d|(n-l)

Then

P((-l)qz) = Φι(z) Y[ Φd(z) μ(l) = -1 or n even
d\(n-\)

$2d(z) otherwise.

The case in the first line (and q odd) leads to the charges

qk (fc 0 , l , . . . , n l ) .

It is conceivable that these solutions correspond to the models in (7.15). This is the
case for n = 2,3.
4. This last example can be generalized to μ(k) = +1 (resp. -1) for k = k0 and zero
otherwise. Then

(2{z)=\[Φ2d(z) "[I Φ2l(z)
d|fc0 /|(n-fc0)

ω̂ Π w

Let us return to the general case, i.e. (n,r) φ 1. In each eigenspace for J the
situation is exactly as before. Then, in a sector in which J acts by multiplication, the
eigenvalues λ of H are

λ = Jzm , (8.8)

5 5 For a discussion of the associated "hyperelliptic" LG models see [15]
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where z is a solution to

/2(n,r)

J2g(k,l)Jl(zm-k-J-lzk) = 0 (modd),
k=l 1=1

zm_j-l_γ^ρί^λjl-lzm/2 ( 8 . 9 )

ι=ι ^ '
m/2-1 (n,r)

+ ] Γ ^ ^ ( f e , Z ) J z ( z m - f e - J - ^ f c ) = 0 (meven),
fe=l 1=1

and a set ρ(fc, /) = ^i^i+k+mi of soliton numbers gives a solution to our Diophantine
problem iff the roots of the (n, r) polynomials obtained from (8.9) by replacing J
with its eigenvalues

exp
2τrz TΓZ

(n, r) (n,
(8.10)

are phases. As an example, take the CPι/Zh orbifolds in Sect. 7.2. There n = 2/ι,
r = h, m = 2, and q = —h. Moreover,

μ(l) = l - J .

Then (8.9) becomes
(z-J-l)(z + l) = 0,

so z2 = J ~ 2 or 1. Then Eq. (8.8) gives

which, in view of (8.10), is what we got by a direct computation in (7.14).

82. The CPn~ι σ-Model

The CPn~ι σ-model has Witten index n as it is obvious from its Hodge diamond
hp>q — δpq(p, q = 0, . . . , n — 1). They are AF and hence the UV limit is described
purely in terms of classical geometry. The UV f/(l) charges are equal to the degree of
the corresponding harmonic form shifted by minus one half the complex dimension.
Then

Qj = j ~ \ (n - 1) j = 0, . . . , π - 1,

and exp[2πz^] = (— l)(<n~ι\ From the arguments in Sect. 5.2 we know that H consists
of a single Jordan block associated to this eigenvalue.

Since the Chern class is n times the hyperplane class, a chiral rotation by 2τr/n
is anomaly-free and we have a discrete Z n symmetry (spontaneously broken by the
vacuum). Then the above discussion applies. The same anomaly argument shows that
q — — 1 and that r = 1, i.e. the "critical values" wk are at the vertices of a regular
n-gon.

From the above geometrical considerations we see that the characteristic polyno-
mial of H is

(z + l ) n = Φ2(z)n n odd
P ( Z) \ (z - l ) n = Φx(z)n n even.
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Using (8.4) we get

(2(z) = Φ2(z)n + (z + l) n = Y^ ( 7 )zk .

fc=o V / c y

Comparing with (8.6) we get the (solitonic) mass spectrum

(k= 1, . . . , n - 1), (8.11)

which saturates the bound (8.7). The value of the masses of each kind of solitons can
be easily computed from the vacuum geometry in W-space getting [25]

mii+k =

where the coupling t is defined by the chiral ring relation Xn = t (here X is the
chiral primary associated to the hyperplane class).

The result (8.11) can be understood as follows. Since nothing depends on the D-
terms, we can take them to correspond to the usual symmetric metric on CPn~ι (i.e.
the Fubini metric). Then the isometry group SU(n) is realized as a symmetry of the
mass spectrum. Then the /c-solitons belong to the k-folά antisymmetric product of the
defining SU(n) representation.

With this symmetric choice of the D-term the model becomes exactly solvable and
the S matrix has been computed [26]. The mass spectrum extracted from the exact
solutions is just (8.11). (Notice that the solitons give the full particle spectrum for
these theories. This is typical in solvable models). We stress that the CPn~ι models
are confining theories with a very subtle IR structure, see [25] for a discussion.

8.3. Grassmannian σ-Models

Next we consider the σ-models with target space the Grassmannian

G(N, M) is an NM dimensional complex manifold. Its Poincare polynomial reads

, M)) = £ h

Since the corresponding σ-model is AF, the classical cohomology fixes the UV
behaviour. Hence

TrΛ[ί J°ί J°]|u v l i m i t = (ttrNM/2^t,t(G(N, M)) •

By construction, t r ϋ " m is the limit of this quantity as(tί) —> e2πιrn. Then

( Ό N\Ml '

(M + N\
Then the Witten index is I J and the characteristic polynomial of H reads

= (z - ί_
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However, the situation is much subtler than in the CPn~ι case. First of all, in
this case we have not a Z(N+M)\/(N\M\) s y m m e t r y as above. Even worse, the general
theory discussed in this paper does not apply as it stands. In fact we deduced our
main formulae under the "genericity" assumption that no three vacua are aligned in
VF-space. Usually we can choose a suitable arbitrarily small perturbation such that
any alignment is destroyed. However there are special "rigid" cases in which the
alignment cannot be undone - since all the formal perturbations which would do the
job correspond to non-renormalizable interactions which just make no sense in the
quantum case. The Grassmannian σ-models are such a "rigid" case. This is not at all
a surprise. It is just the physical counterpart of the fact that the G(N, M) are rigid as
complex manifolds - i.e. the moduli space is just a point. This rigidity phenomenon
may, in principle, lead to a non-completeness of our classification scheme. However it
is not a real problem. In fact, on one hand we can extend our theory to these "aligned"
situations just by taking into account a few more terms in the IR expansions of Sect. 4.
On the other, the rigidly aligned models have a tendency of being so magical that
they can be discussed by direct means, as we do below for the Grassmannian case.

From a direct path integral analysis (summarized in Appendix A) one learns that

G(N,M) = (CPN+M~ι)N//SN , (8.12)

where = means equivalence56 as QFT's for the corresponding σ-model. The RHS
of (8.12) is a tensor product of TV copies of the QPN+M~ι σ-model reduced by the
action of the replica symmetry SN. The double slash in (8.12) is there to remind
the reader that it is not the SN orbifold. Rather (topologically speaking) it is the
set of maximal SN orbits, i.e. orbits whose elements are not fixed by any non-trivial
subgroup of SN. This construction is what was called the "change of variable trick" in
[10] (unfortunately this name is appropriate only for the LG case). Morally speaking,
(8.12) is the QFT counterpart of the standard description [49-51] of the quantum
cohomology ring of G(TV, M) in terms of TV copies of the (perturbed) AN+M minimal
model.

Let us recall how the "change of variable trick" works. One has a map /

which identifies isomorphically (as J^-modules).% with its image. Then the tt* metric
for % is the pull back via f of that for M^. This construction differs in many respects
from an orbifold. In particular it changes the central charge c. One has [10]

c = &*-2q*(J), (8.13)

where q*(J) is the U{\) charge of the Jacobian J = det[<9/] computed in the * theory.
In the present case the * theory is just TV copies of the QpN+M~ι

 σ-model.
Let Xa(a = 1, . . . , TV) be the chiral primary associated to the hyperplane class

of the α t h copy of CPN+M~ι. Then the map / reads

f i ( X a ) = σi(Xa) i = 1 , 2 , . . . , TV,

where σi is the ith elementary symmetric polynomial. Its Jacobian is

J = Δ(XJ=
a>β

5 6 More precisely, equivalence up to a deformation of the D-term
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We know from the previous subsection that the UV charge of the QPN+M~ι operator
Xa is 1. Then

Using (8.13), the UV central charge of the rhs of (8.12) is

cu v = N(N + M - 1) - N(N - 1) = NM,

which is the correct result for G(N, M) (i.e. its complex dimension).
Let \ka)a be the canonical vacuum for the α t h copy of QPN+M~ι at the ka

th

critical point, i.e.

XjkJ = ̂ /(iV+M) exp[27ΓikJ(N + M)] (ka = 0,1, . . . , N + M - 1).

Then the canonical vacua for the σ-model on (QpN+M-\^N a r e j u s t

N

To get the canonical vacua for the model in the rhs of (8.12) out of those in (8.14)
we have to perform three elementary operations [10]:

i) Kill the states (8.14) which are in the kernel of the chiral field J . Since in the
present case J is just the Vandermonde determinant, this means that we must keep
only the states (8.14) such that the N numbers ka are all distinct,
ii) Project into the appropriate subsector projectively-invariant under SN. This is

done just by summing over all permutations with signs as prescribed by the Jacobian

N Δ(k ) N

Σ ® 4fy iw = ± ΣΣ ® 4fy iw« = ± Σ
s£SN α=l V a ) sβSN α=l

where σ(s) is the signature of the permutation s. Such a state is determined by the
unordered A^-tuple k^ Since the A '̂s can take N + M values, in this way we get

'N + M\
j states, i.e. as many as the Witten index for the G(N, M) σ-model.

iii) Normalize the states so obtained. Then the canonical G(iV, M) vacua are

1 N

y α ) (8.15)
v seSN a=\

with 0 < fej < k2 < k2 < . . . < kN < N + M - 1.
Then the G(N, M) tt* metric reads

s,teSN a=\

Γa\kβ)], (8.16)

where (h \ k) is the (7V + M) x (N + M) matrix giving the ground state metric for the
QpN+M-ι σ _ m o ( j e i m a canonical basis, and detrr-i / t x means the determinant of

β

the N x N minor obtained by selecting the rows (hι,h2, . . . , hN) and the columns
(fc1}fc2, . . . , kN). Of course G(M,N) = G(N,M) but the rhs of (8.12) is not
manifestly invariant under N ^ M. Instead the final answer (8.16) is manifestly
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"duality" invariant. We begin to show this in the simpler case G ( 1 , M ) = CPM.
Consider then G(M, 1). Its tt* metric is given by the M x M minors of the usual
QpM m e t r i c g^m L e t | £ ^ — I I ^ ^ . . . ? fc^ . . . ? kn}) (where hat means omitted).

Rewriting the minors in terms of the inverse metric g^\ one gets

where we used that g is orthogonal. This shows duality invariance for N — 1 (the signs
(—iγ+J can be absorbed in the definition of the states). The general case G(M,N)
is handled analogously using well known properties of minors.

To get the IR (resp. UV) behaviour of (8.16) we have just to insert the known
asymptotics for the C P * case. For instance, for large β we have

where

mkh=4(N + M)\t\ι/iN+M)sin, ^ + M

which inserted into (8.16) gives the G(TV, M) mass spectrum.

8.4. Applications to "Polytopic" Models

One of the nicest aspects of the tt* equations is that, once you solved a model you
easily generalize your result to a whole family of models having the same vacuum
geometry in W-space. This strategy was exploited in [14] for the "Zn-models," i.e.
theories whose critical values form the vertices of a regular n-gon. In the same way,
the solution (8.16) generalizes to a family of models with a certain "polytopic" vacuum
geometry [52]. The general model in the family is obtained by replacing in (8.12) the
QpN+M-i σ _ m o ( j e i by another member_of the same (TV + M)-gon family. The tt*
metric is still given by (8.16) but with (ha | kβ) replaced by the metric for the given
ZN+M model.

The simplest model in this family is the Kazama-Suzuki Grassmannian coset at
level 1 [53] perturbed by the most relevant operator. One has [49, 51]

) N

where AN+M denotes the minimal model deformed by the most relevant operator.
Then the mass-spectrum for this model is obtained by inserting example 1 of Sect. 8.1
in the rhs of (8.16). The result has the properties expected on various grounds (see
e.g. [52]).

9. Conclusions

We have initiated a program to classify massive TV = 2 supersymmetric theories in
two dimensions. This classification is up to variation in D-terms, and may be viewed,
by considering the UV limit, as a classification program for TV = 2 SCFT's (which
admit massive deformation). The central object in this classification program is a
generalization of "Dynkin diagram" each node of which represents a non-degenerate
TV = 2 vacuum, and the number of lines between the nodes just counts the number
of solitons (which saturate the Bogomolnyi bound) between the vacua.57 We saw
57 As we discussed before, there is an additional sign which is important
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that perturbations of the theory change the soliton number and modify the Dynkin
diagram by the action of Braid group (which is generated by the generalized "Weyl
reflections")- We discussed what are the restrictions on these generalized Dynkin
diagrams in particular by the condition of reality of £7(1) charges of Ramond ground
states, which is computable from the Dynkin diagram. We classified all massive N = 2
theories with up to three vacua. We also rederived the classification of TV == 2 minimal
models. We saw that the Dynkin diagram corresponding to the minimal N = 2 models
turns out to be just the usual A-D-E Dynkin diagram.

As a sub-classification we can use these methods to classify (up to mirror
symmetry) Kahler manifolds with diagonal Hodge numbers with c1 > 0. We discussed
how this works in a particular example (which leads to a known mathematical
theorem). It would be very interesting to continue this line of thought and obtain
a complete classification of such Kahler manifolds.

We can also use the above models to construct new string vacua. All we have to
do is to make sure that c = integer and use an orbifold method [46].

The most important open question is "reconstruction." In other words for each
of the generalized Dynkin diagrams which are allowed for us can we construct a
quantum field theory with that solitonic spectra? Some of the examples we discussed
in the main text suggests that this may be possible in the form of "generalized" Toda
models constructed from the corresponding generalized Dynkin diagrams. This may
also suggest that there is always an integrable deformation of the N — 2 theory, with
a particular choice of D- and F-terms. This would be very interesting to develop
further. In particular it would be interesting to see if these models are related to
(supersymmetric version of) RSOS-like models which have our Dynkin diagram as
target space.

Another direction worth investigating is the study of tt* equations directly in the
conformal case (in the case of three-folds this is known as special geometry [54]).
One generically studies the moduli space of these theories, which is the analog of wi

for us here. In our case the natural degeneration point of moduli space are the UV and
IR limits, whereas in the conformal case we will have a number of degenerate points
(or submanifolds) on moduli space. The solution to the tt* equation will undergo a
monodromy around each of these degeneration points. Then what we should do is to
classify all possible representations of the monodromy group that are consistent with
the existence of global regular solutions to tt*. This would mean that we begin to
classify all the Calabi-Yau manifolds at once by studying all the possible consistent
monodromies on the degeneration points of their moduli spaces. This would be the
massless analog of the classification program we have initiated in the massive case
here. We intend to return to this idea to classify N — 2 SCFT's (and thus Calabi-Yau
manifolds up to mirror symmetry) in future work.

Appendix A. Exact Path-Integral Computations for σ-Models

In this appendix we want to show Eq. (8.12) by exact path-integral computations.
Since the "change of variable trick" has a simple meaning in the LG case, it will
be helpful if we could write down "LG" models58 which are exactly equivalent (as
QFT's) to our σ-models. For the CPn~ι case this was done long ago by the authors

5 8 We put LG in quotes because it is not really a Landau-Ginzburg model. For the purposes of the
present appendix the naive interpretation of the effective theory as a LG model is good enough and
we shall stick to this naive viewpoint
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of [55]. In this appendix we extend their resul to the Grassmannian case. As an aside,
this will give us a rigorous path-integral proof of the quantum cohomology ring5 9

for Grassmannians as predicted on general grounds in [49-51]. However here - as
well as in [55] - one looks for an equivalence at the full QFT level, not just for its
topological sector.

In the old days when the authors of [55] obtained their result little was known
about JV = 2 field theories and computations were quite hard. In those days [55] was
quite an analytic triumph. Luckily enough, nowadays N = 2 theory is so developed
that even more sophisticated models can be analyzed without real effort.

Let us begin by a (modern) review of their work. Then we shall generalize to the
Grassmannians G(iV, M).

The CPn~ι Model. The starting point [55] is the "homogeneous coordinates" formu-
lation of the model. The Lagrangian reads

0 . , (A.I)
2π. i=\

where S{ are chiral superfields which map into the homogeneous coordinates on
Qpn-i a n ( j y j s a Legendre multiplier real superfield. In (A.I) we have denoted the
coupling constant by A because it has the geometrical interpretation of the area of
the basic 2-cycle generating the homology of CPn~ι. The field V gauges the C x

acting diagonally on C n , so the physical degrees of freedom are C n / C x = CPn~ι.
Explicitly, eliminating V using its equations of motion one gets

έ/Λi°\,=l
that is the usual formulation of the σ-model (for the Fubini metric). From its equations
of motion we see that V is nothing else than the susy version of the pull back of the
U(l) part of the Fubini spin-connection. Then its field-strength superfield

nX = D+D~V, (A.2)

(which is a (c, a) field in the notation of [49]) is the susy analog of the (pull-back
of the) trace part of the CPn~ι Riemann tensor, i.e. it is the (c, a) primary operator
associated with the first Chern class. Since cι(CPn~ι) = n, the observable X in
(A.2) is the basic chiral primary associated with the hyperplane class. This is most
easily seen by looking at the last (i.e. auxiliary) component of the superfield X. Up
to a normalization coefficient this is

(D + i*φ*R), (A3)

where D is the auxiliary field of the real superfield V, and φ*R is the pull-back to
the world-sheet fo the Ricci form.

Now the idea [55] is to perform the Gaussian integral over the S^s exactly.
Denoting the result by exp{—JS[V]}, this gives an equivalent formulation of the
quantum model in terms of the (super)field V with action S[V]. We stress that this

5 9 Similar results have been obtained from a more mathematical standpoint by F. Franco and
C. Reina (to appear)
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procedure is exact. By gauge-invariance the action should depend on the field-strength
superίield only. Then it should have the general form

S[X, X] = ί d2ΘW(X) + / d2θ W(X) + L>-term. (A.4)

A priori we are not guaranteed that S[X, X] is local. However any non-locality is in
the D-term.60 Since for the purposes of this paper we can change the .D-term at will,
we can forget about any problem the action (A.4) may have. By the same token, we
do not need to compute every detail of the rhs of (A.4) either. Computing W(X) is
good enough. In order to extract W(X) from S[X, X] notice that the D-terms either
contain higher powers of the auxiliary field D or derivatives of D. Instead the term
linear in D (at vanishing momentum) reads

dW dW\

so to extract W it is enough to get the term linear in D in (A.4). By the same argument,
we can as well assume that all fields are constant (and the fermions vanish). Then the
computation reduces to that of the determinants of differential operators with constant
coefficients. Despite this dramatic simplification, the computation is still exact!

Expanding out the action (A.I) in components, we get

Ϋlll - v-AfcfθX/lπl L V^ ° / J ) f Λ c\
, A JJI vanishing - β J I / ( A > )

t
momentum \ Det[ — OL + \D + X X)\ /

[the exponential prefactor is the classical value of the action at S% = 0; see the last
term in (A.I)]. Taking the derivative of the rhs with respect D and setting D = 0,
we get

A Γ 1 1
+ τ [ \ (A 6)

The trace in the rhs is easily evaluated by ζ-regularization

1 WTxW

As s —> 1 this has a pole; comparing with (A.5) we see that the only effect of
this infinity is to renormalize the coupling A. We can just forget about this infinity
provided we replace A by its running counterpart A(μ). After having subtracted the
infinity, take s —> 1. Notice that the rhs of (A.6) is a harmonic function of X as it
should; this is a nice consistency check. Integrating (A.6) we get [55]

2πW(X) = X(log Xn - n + A(μ) - iΰ), (A.7)

where ϋ is a real parameter. Comparing with (A.3) we see that ϋ is the usual instanton
angle. The quantum cohomology ring of CPn~ι is just

M = C[X]/dW = C[X]/(Xn -

which is Witten's result [56].

6 0 Why? Because if you do the same analysis in the TFT case you do not have any problem with
non-locality
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Grassmannian σ-Model. Now we generalize the above approach to the Grassmanni-
ans G(N, M). Again we have a "homogeneous" formulation. Now the chiral fields
Sιa have two indices, a "gauge" U(N) index i, and a "flavour" SU(N + M) index
α. The Lagrangian reads

where now V is a AT x N matrix of superfields which gauge U(N). Also the
field-strength superfield X belongs to the adjoint rep. of U(N), and then is gauge
covariant rather than invariant as before. The basic gauge-invariant objects are the
Ad-invariant polynomials in the field-strengths X. Their ring is generated by the
superfields Y{(i = 1,2, . . . , N) defined by

N

det[* - X] = tN + J2(~ι)ttN~kγk -
fc=l

Contrary to the X9s9 the F's are bona fide (c,a) superfields. They generate the
(quantum) cohomology ring JB for G(N, M) (as it can be shown by going to the
classical limit). A priori computing the determinants is now quite a mess, since
everything is non-Abelian. Anyhow we shall use the same strategy as before, i.e.
to use our non-perturbative knowledge of the N — 2 theories to replace the actual
computation with a trivial - but still exact - one.

Again we can take all the background fields constant (and fermions vanishing).
Then we make the following observation: at the TFT level the X's and the X's do
not talk to each other (in fact the X's are just gauge-fixing devices) and we can
assume, with no loss of generality, that X and X (as matrices) commute. Then X is
diagonalizable

X 2 , . . . , X N ) . (A.8)

Moreover, with probability 1, all Xi are distinct. Consider the superfield Za =
dW(X)/dXa (a is an adjoint rep. index for U(N)). Obviously it belongs to the
adjoint rep. of U(N). By gauge invariance, W(X) is an Ad-invariant function of
the X's. But then, in a Cartan background like (A.8), also Za belongs to the Cartan
subalgebra (by invariance under the corresponding maximal torus). Given that the
terms in S[X, X] which are linear in the auxiliary fields Da should have the form
(DaZa + h.c), we see that no information is lost if we restrict Da too to the Cartan
subalgebra (= U(l)N). But then the full background is Abelian and the functional
determinants are just the same as in the CPn~ι case.

Therefore, in a Cartan background, W(X) is just the sum of N copies of what we
got for the QPN+M~ι model. But the Cartan background fixes the theory completely.
Then

N

2πW(X{ ,X2,...,XN) = Σ *fcOog Xj?+M - n + A(μ) - iΰ).

Again we have the relations χN+M = const. However, this time the good gauge-
invariant fields are the Ad-invariant polynomials in the Xi9 which are generated by the
elementary symmetric functions, that is the fields Yt. Thus the quantum cohomology
ring of G(N, M) is the ring generated by the symmetric functions in N indeterminates
Xi subject to the relations χ^+M = l.
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This result is not new (at least as far as the classical part is concerned) and was
obtained (or found to be very plausible in the quantum case) in [49-51] from quite
different considerations. However here we have shown a much stronger result than just
computing $%. In fact, we have considered a topological truncation of a computation
(that of S[X, X]) which makes perfect sense in the full QFT. To put it differently,
our "topologicaΓ map from ^ G r a s s to <g)^CP/'/SN is induced by a map between the
corresponding QFT's. Of course, we have no explicit form for the parent QFT map.
However, the pure fact that this map exists and restricts nicely to the topological one,
has quite dramatic implications. It shows that both the tt* differential equation and
their boundary data agree on the two sides of the "dotted"-equality (8.12). In view of
the theory we have developed in the main body of the paper this is enough to fix the
(solitonic) mass-spectrum of the G(N, M) σ-model.

Appendix B. Subtleties with Collinear Vacua: An Explicit Example

In Sect. 4 we saw that special phenomena take place when three vacua are aligned:
a) We have the "half-soliton" mechanism of Eq. (4.45). When we deform slightly the
picture by putting the middle vacuum on one side of the line connecting the other
two vacua the number of solitons connecting these two vacua change. For the exactly
aligned situation the large β asymptotics looks as if we had

\ (Mi3 + MB) >

where μ1 3 and μ'13 refer to soliton numbers // the middle vacuum was perturbed
one way or another. Of course, there is no such a thing as a "half-soliton." This
discontinuity in the IR asymptotics just signals that the IR asymptotic series is not
uniform (as always). This is clear from the analysis of Sect. 4.
b) We have various possibilities for the power of β in front of the Boltzmann
exponential, see e.g. Eqs. (4.46), (4.47). Physically this is a consequence of the fact
that there are states with different numbers of solitons and the same energy. These
states have the same Boltzmann exponential but a different phase-factor.

The purpose of this appendix is to illustrate these two points in a concrete example
where explicit computations are possible. Consider the LG model with superpotential

(B.I)

In X space the critical points are Xo = 0 and Xk = iktk/Λ, (k = 1, . . . , 2). They
are at the vertices and center of a quadrate. The critical values are

We have only three distinct critical values, and these three points are collinear. The
naive picture of solitons would suggest that the "fundamental" solitons are the inverse
images of the segments connecting the Wk

9s to Wo, i.e. the half-diagonals of the
square in X-space. All other pairs of vacua are connected by a multi-soliton process
only. Is this naive picture correct? It better be wrong, since it leads to paradoxes when
compared to our general theory. Luckily we can do exact computations to see what
is going on.

The ground-state metric for (B.I) was computed in [10]. There it was also checked
that this is the only regular solution and that it reproduces the known results in the
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UV limit. The non-vanishing elements are [10]

ίϊ I I) ~u(z)

(B.2)

(X~4 I X 4 ) = \t\ cosh[u(z)],

where u(z) is the regular PHI transcendent (cf. Sect. 6.1) with r = —2/3 and

(X~2\x2) = h

Let |/fe) (k = 0,1, . . . , 4) be the canonical vacuum associated with each critical point
Xk. Then in the canonical basis (B.2) becomes (r, s ^ 0)

(/o I /o) = c
- i

(/o I Λ ) = 2 s ί

(fs \fr) = \ \}i

Let us study the large z asymptotics of this solution. One has (r,

2
u(z) = K0(z) •

Then one has (r, s Φ 0)

(Λ J { ^ ) [ I ] ( ) [ I ^
+ [1 + (-l) ( 5 ~ r ) ] + ^ K0(z

So,

(Λ I /j>L=cx) = δij

From (B.3) we see that in the IR expansion of (fs \ fr) with r φ s and r , s ^ 0 there
are two kinds of contributions of order O(exp[—2z\), those of the form K0(2z) and
those of the form K0(z)2. The power-law in front of the exponential is β~1/2 and
β~ι respectively as expected on the basis of Eqs. (4.45), (4.47). This is phenome-
non b).
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To get the phenomenona a), just extract "μ^ " as the coefficient of the leading
terms with a β~χl1 power-law. Then

^ 1 ir Λ Λ Λ

— 2 for s = r + 1 mod 4,

" μ r s " = 1 [i<«O - (-i)<* r>] = J 0 for β = r + 2mod4,I I I

- for s = r -\- 3 mod 4.

This shows how the a) phenomenon appears.

Appendix C. Conjectures on the OPE Coefficients

From one point of view our work here may be seen as a generalization of the
connection formula for PHI as discussed in Sect. 6.1. However for PHI the authors
of [18, 22] did a better job, since their result not only allows us to compute the
UV f/(l) charges but also the UV ground state metric, or equivalently the absolute
normalizations for the OPE coefficients (see [10] for a number of explicit examples).
Then it is natural to ask what we can do in the direction of computing OPE coefficients
for the general case.

In this appendix we show how the number-theoretical nature of our classification
program may reduce the computation of these normalization factors to the so-called
standard conjectures of number theory and algebraic geometry. Here we present
some preliminary thoughts in this direction. It may seem that there is not much
point in building conjectures over "facts" which are themselves conjectures. However
sometimes conjectures may be deeper than established facts!

In order to formulate our fancies we should rephrase our Diophantine problem in
more abstract terms.

The crucial point is to realize that we have a lattice S% 6 3%. A chiral primary
operator & belongs to 3? iff

(9 — α 1e 1 + α 2e 2 + . . . + anen , α ^ e Z ,

where eτ are the idempotents of M, i.e. the elements of the "point basis." Then the
integral elements in the topological Hubert space 3$ are those of the form

\Θ) = ax \e{) + α2 |e2) + . . . + aN \en), α ^ Z ,

where the map ei —> \e%) is the spectral-flow as realized by the topological path-
integral. We denote this Z-module as β$z and consider the Q-space J ^ Q = J ^ z 0Z Q.
The most important fact about the lattice β&z is that it is preserved by the monodromy
H as a consequence of the integrality of the number of soliton species. We can
introduce a natural "Hodge decomposition" of the space β$. In general it is a
mixed one. To make things as easy as possible, here we assume that this additional
complication is not present in the model of interest. More concretely, we assume that
the characteristic polynomial P(z) has the form

= Π
distinct

The Hodge decompositon is defined by declaring that the subspace Hv^~v C
consists of the states \&) with UV behaviour

) ~ β~2p as β -> 0.

For a σ-model on a CY space this definition of "type" (p, q) corresponds to the usual
one (up to "mirror symmetry") but in general p and q are not even integral (however
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they are always in Q). As it is well known, the data X — {β$Q,®pH
p>d~p} is a

Hodge structure (specified up to isogeny).
Among all Hodge structures there are special ones having peculiar number

theoretical properties. Let & be an Abelian extension61 of the field Q, and let /
be its transcendency degree. We say that a Hodge sub-structure M C X has complex
multiplication by 3^ if it has rank / as a Z-module and there is an injection of .^
into E n d ( ^ z ) ® z Q.

In this language the statements around Eq. (6.3) can be rephrased by saying that to
each cyclotomic factor there corresponds a Hodge sub-structure Mm of rank φ{m )

with complex multiplication by the cyclotomic field Q(e 2 π ϊ / m ^). Over Q (i.e. modulo
isogeny) the subspace M m . is defined by

Φmj(H)Mmj=0.

The product is defined as follows: The element (here ζ = elΊVl/rnj and zi G Q)

ô + z£3 + *A + ••• ^ - i C " 1 e Q(O

acts on Mm as the linear operator

z + zH + z2z2H
2 + . . . zm._λH

mi-1 e End(.^fz) 0 Z Q. (C.2)

The interest of this point of view for physics stems from the fact that in the
presence of complex multiplication there are standard results (conjectures) for the
corresponding period maps. In the N = 2 language this means that we can predict
the normalized UV OPE coefficients in terms of characters for the cyclotomic fields.

This is done as follows. Consider62 an operator $[,

satisfying (to save print we write m for m ; )

e2πιr/rn0ι, (r,m)=

Such an operator always exists as discussed in the main body of the paper. Let
p(l) be the "type" of | ^ ) . From (C.2) we see that the one-dimensional subspace
spanned by |^j) carries a representation φλ of the cyclotomic field Q(Cm) Let
I G (Z/mZ) x = Gal(Q(ζm)/Q) be an element of the Galois group of this cyclotomic
extension. Since I corresponds to an automorphism of Q(Cm)> Φι — I ° Φ\ is also a
one-dimensional representation of Q(Cm) on Mm. Let \^j) be a state spanning the
corresponding representation. This state has also a definite "type" p(l).

For a e Z, we write (a) for unique number 0,1,2, . . . , m — 1 congruent to
αmodra. Then we introduce a function /(o):Z/mZ -» Q by 6 3

^ m— 1

p(l) = - V /(α) (la). (C.3)
m α=o

6 1 I.e. a Galois extension whose Galois group is Abelian
6 2 As usual Q denotes the algebraic closure of Q
63 This definition does not fix /(α) uniquely but the ambiguity is immaterial. The existence of /(α)
is a consequence of PCT together with a lemma by Deligne
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Then the general period conjecture can be restated as follows. We fix the moduli wi

in such a way that wi — Wj £ Q for all i,j. Then as β —> 0,

U(a)-f(-a)]
(C.4)

where z is a "trivial kinematical factor" belonging to Q.
It is tempting to conjecture the validity of this statement in general. As evidence

for this we discuss the An minimal models.

Example: The An Minimal Models. As an example consider the LG models W =
χn+\ _̂_ j o w e r degree, where the coefficients are assumed (for convenience) to be
rational numbers. To make things even easier, we assume n + 1 to be an odd prime 6 4

p. Since H2p = 1, (C.2) will give a complex multiplication by Q(C2P) Of course this
is the same as Q(CP). To rewrite the action in a canonical Q(CP) form it is sufficient
to change sign to H, since Φp(-H) = 0. Then ^g = {Xk \ k = 0,1, . . . , p - 2} and
the U(l) charge of the Ramond state \Xk) is

_ fc + 1 1
qk~~~p 2'

The "type" of this state is

_ 1 _ k+1
Pk — % + 2 = ^ '

where the extra ^ arises because of the chiral anomaly. 6 5 Now we apply the above

conjecture to this situation. One has m = p. As <9γ we take the operator Xk~ι, which

is associated to the eigenvalue (ζp)
k of —H. Under the action of the Galois group

F this element generates the full ring 6 6 JE. The corresponding operators ^ are just

and (C.3) becomes

p " ' " if a = k

6 4 In fact, this is the only case one needs. A s s u m e that W — Xab + Then the change of variables
Y = χa reduces to W = Yb + In this way we can always (choosing special submanifolds of
moduli space) restrict to odd prime powers
6 5 T h e " a n o m a l o u s " combinat ion qk + - is the natural one from the singularity viewpoint too
6 6 T h e element - 1 of the Galois group corresponds to spectral flow. So complex multiplication can
be seen as a fancy generalization of spectral flow
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Thus from (C.4) we have for the UV OPE coefficients

— Γ(-)

τ
for some algebraic numbers zk. (C.5), with zk = 1, is the well known answer for
these coefficients.
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