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Abstract: Let A", .# be von-Neumann-Algebras on a Hilbert space ##, Q a com-
mon cyclic and separating vector. Assume Q2 to be cyclic and separating also for
N M. Denote by J 4, J4 the modular conjugations to (#, Q), 4 , and 4, the
associated modular operators. If

AL N M)Ay (N M) forallt 20,
A (N N MVAG (N M) forallt 20,
and
JyN Ly=N,

these data define in a canonical way a conformal quantum field theory on a circle.
Conversely, the chiral part of a conformal quantum field theory in two dimensions
always yields such data in a natural way.

1. Introduction

It is well known that conformal quantum field theory in two dimensions factor into
two chiral conformal theories on the lightrays, see [S]. In the framework of
Algebraic Quantum Field Theory, see [6], they are described by a net «/(I) of
von-Neumann algebras, indexed by the set # of proper intervals I = S, with

1. (1)< L(J) ifI < J (isotony)
2. A(I)c L) if InJ =0 (locality),

acting on a Hilbert space #. On # there is given a strongly continuous unitary
positive energy representation U of SI(2, R)/Z, with a unique invariant vacuum
vector Q. The net transforms covariantly under this representation.
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Let 4 = 4 ( ) be the algebra of the upper half circle and A/ = .#( <) be of
the left half circle. Assuming the net to be generated by Wightman Fields, which
generically seems to be case, [7], we may apply the results of Bisognano and
Wichman, [1], to # and Q. They showed that the modular group o', associated
with (., Q) acts geometrically as a Lorentz boost. Especially one gets

a) o N nMycNV M forallt=0,
moreover by the Reeh—Schlieder property
b) @ is a standard vector for &/ N A .

By the SI(2, R)/Z,-covariance this is also true for .# exchanged by A" and
t £ 0. The work of Borchers, [2], shows that J, acts on the net like a reflection.
Especially one gets

) JyMIy =M

In this paper we conversely show that any pair of von-Neumann-algebras 4" and
# with a common cyclic and separating vector Q obeying the above relations in
a canonical way gives rise to a conformal field theory on the circle in the sense
described above. The crucial observation is that half-sided modular inclusions
carry a rich symmetry. For the reader’s convenience we recall some results ob-
tained in [9, 10].

2. Half-Sided Modular Inclusions and Symmetries

Assume .# < . to be von-Neumann-Algebras acting on a Hilbert space #, and
Qe a common cyclic and separating vector. Let 4 "’/l 4% < M for all t = 0.
We call such an inclusion (.4 < .4, Q) —half-sided modular see [9, 10]. If one
changes t 2 0 to t <0, we call it + half-sided modular, abbreviated by F-hsm.
Denote by 4 4, 4 7 the modular operators associated with (.#, ) and (A, Q),
respectively. For such a situation we proved in [9] the following

Theorem 1. Let (M < M, Q) be a F-half-sided modular inclusion, A ,, A ; the
modular operators associated with (M, Q) and (M, Q), respectively. Assume

A MA < M forall Ft=0.
Then

1
a) 7 (In(4,7) —In(4,) 20

is essentially selfadjoint. Denote U (a), a€ R, the unitary group on 3 with generator
1
Z(ln (4 7) —In(4,))". Then

b) A% U(a) 4 = A% U(@)A;" = U(e¥*™a) for all t, aeR,
¢) JoUW@Jy=J7U(@@Jz=U(—a) forall aeR,

d) AGMAF = M forall Ft=0,

e) M=U(+1)MUCTF ).
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Proof. See Theorem 3, Cor. 6 and Cor. 7 of [9]. |

This theorem shows already that in the case of half-sided modular inclusions of
von-Neumann-algebras their modular operators yield a representation of the two
dimensional subgroup of SI(2, R)/Z, generated by the translations and dilatations.

Theorem 2. Let M, #,, #, be von-Neumann-algebras on a Hilbert space #, Qe H
a common cyclic and separating vector. Denote by A 4, 4 4, 4 4, the modular oper-
ators to (M, Q) (M1, Q), (M, Q). Assume

1. (Myc M,Q) — hsm,
2. (Myc M,Q) + hsm,
3. (Myc M,Q2) — hsm,
where the prime indicates the commutant. Then
Ay, A%y, A%t seR

generate a representation of the universal covering group SI(2, R). Denote by ¥ this
representation. For the image of the rotation by m in the first sheet of SI(2, R), denoted
by rot(w, 1)e SI(2, R), one computes

¥ (rot(m, 1)) = J,,,(A;IZ,I%I—ZJJ,,ZA%) . (1)

Proof. See [10, Lemma 3 and Lemma 4 ff].

In the next section we will apply these results in order to formulate a von-
Neumann algebraic characterization of conformal quantum field theories on
a circle.

3. Half-Sided Modular Inclusions and Conformal Field Theory

Let A, M, /" M be von-Nenmann algebras on a Hilbert space, 2 a common
cyclic and separating vector. Assume

1. (N M) M, Q)is — half-sided-modular,
2. (N nM)yc N, Q)is + half-sided-modular,
3. Iy MIy = M,

where the modular objects are indexed by the related von-Neumann algebra as
before.! Such a situation naturally occurs in Bisognano-Wichmann nets of con-
formal quantum field theories on a circle, as was mentioned in the introduction.
 denotes in this case the observable algebra of the upper half circle, A4~ of the left

! The importance of the third relation was already noticed by B. Schroer in [8], where the reader
can find some preliminary ideas on the representation of conformal field theories from pairs of
von-Neumann algebras
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half circle. We will show that conversely such a pair of von-Neumann algebras
yield in a canonical way a conformal quantum field theory on the circle.?

Theorem 3. Let (AN, M, Q) be as above. Then these data define in a canonical way
a local net of von-Neumann algebras on S*, which transforms co-variantly under
SI(2, R)/Z,. The representation is of positive energy, i.e. we get a conformal quantum
field model on S*. This net fulfills Haag Duality and the Reeh-Schlieder property.

Proof. We will prove this theorem in several steps. Firstly we will show that
A.t}{, A.i/;/ﬁ.llﬁ A?f’rwl{; L, seR

generate a representation of the group SI(2, R)/Z,. This will be done by apply-
ing Theorem 2 to My =N M, My = NN M. Secondly we will define a
S1(2, R)/Z y=covariant net on S' by using the modular representation of the
Moebius group together with defining .# to be the algebra associated to the upper
half circle. In the last step we will show that this net is isotonic and local.

In order to apply Theorem 2 we have to prove

a) (N M)y M,Q)is — hsm,
b) (N M) M,Q)is + hsm,
(N nM)y=(N' v M) Q)is — hsm.

a) is just one of the assumptions, (1).

b) Notice that by assumption 3 we get [Jy, 4 ,] = 0. Applying Ad(J,) to the
— hsm inclusion a), one immediately obtains b).

c) is the most difficult one. Applying Theorem 1 to the + hsm inclusion
(N M) = N, Q), one gets a one parameter group

Ua):= exp<2—1na(lnAﬂnﬁ — lnAJV)) )

with
Nl =U(-1)/T(Q) 3)

and
Aty ay=U(=1)a770(1) = U(— 1 + e 2™) 43" @)

Therefore we get
Ad(A% )N ) = Ad(U (=1 + e 2475 (N A M)
=Ad(U(— 14 e 2™ A7 ) (N N M) (5)
by assumption 3, and using Theorem 1c),
=Ad(J,U(l — e 2 A7) (N A M) . (6)

2 In an earlier version of this paper the author proposed different conditions on the relative
position of two algebras A", ./, in order to characterize uniquely a conformal net on the circle.
D. Buchholz pointed out to us a serious error in the previous construction of the net. The author
thanks D. Buchholz warmly for his valuable comments
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By assumption 2 (/" N M) < N, Q) is + hsm, and Theorem 1b), €) shows

AdU@) (N A M) (N M) fora<O. 7)
Putting everything together we get
Ad(A8y v ) (N M) = Ad(Jy ) (N M)y =N M 8)

for t < 0. Therefore we can apply Theorem 2.
In order to reduce the symmetry to the Moebius group SI(2, R)/Z,, we make
use of (4) and calculate

—iln2

A5 N O MBS = AT T(— 1) (N M)
= AdUFT(— DI (N (M)

= AU F 10N ) . )
By Theorem 1le) we get
= Ad(AZ L) (W) = N . (10)
Therefore
AE o AT oy =1y . (11)

By assumption 3 we have [J, J4] = 0,i.e. by Theorem 2 the rotation by 2= lies in
the kernel of the representation of SI(2, R). The symmetry reduces to the Moebius
group SI(2, R)/Z,.

Let us denote the representation of the Moebius group SI(2, R)/Z, by 7. The
above calculation especially shows

¥ (rotation(n)) = J4 J 4 , (12)

where rotation is the 1-parameter subgroup of rigid rotations in SI(2, R)/Z,. Next
we want to define a net of algebras indexed by the proper intervals of S*.

Let (a, b) = S* be a proper interval. There exists an element g, 5 € SI(2, R)/Z,
which maps the upper half circle (1, — 1) onto (a, b),

Jan((l, — 1)) =(a, b). (13)
Let us define
M(a, b) =V (Ga,p) MYV (Ja.r)* - (14)

This definition does not depend on the special choice of g, 5 € SI(2, R)/Z, with the
above property. To see this notice that elements of the Mobius group which map
the upper half circle onto itself are dilatations. Starting from g( + 1) = + 1 thisis
a one line calculation. Then it is easily seen that two elements ¢,, g, €SI(2, R)/Z,
mapping the upper half circle onto (g, b) can only differ in the dilatation factor. But
the dilatations are represented by the modular group of A,

¥ (dilatation(1)) = 4 &, (15)

which proves the well definedness of #(a, b). By the very construction the net
A (a, b) transforms covariantly w.r.t. to the representation ¥~ of SI(2, R)/Z,.

Let us make a simple but crucial observation. By the above calculation we
know ¥ (rotation(rn)) = J,-J,. Moreover it is easily seen that

9 »,a) = 9@, rotation(r) (16)
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maps the upper half circle onto the complement S*\ [a, b]. This yields
M (b, &) =V (9p.0) AV (9p.0)*
= ¥ (gup)? (rotation(r)) A ¥ (rotation(m))* ¥ (gep)*
=Y () LIy My Ju ¥ (Gap)*
=Y (9ap) MV (9iary)*
=V (9@n) AV (Jup)*) = (M(a, b)) . 17)

Let us prove isotony of the net. For this one notices that the translations are
represented by

¥ (translation(a)) := exp(%(lnAﬂmﬂ — lnAJ,,)) , (18)
and Theorem 1 implies
Ad(¥ (translation(a)))(H#) <= M fora=0. (19)
Therefore
M@, —1)cMb, —1) for (@, — D)<=, —1), (20)
and using the rotations this proves
M(a, c)= M, c) for (a,c)c(b,c). (21)

Passing to commutants and making use of relation (17) completes the proof of
isotony,

M(c, a) = M(c,b) for (c,a)c=(c,b). (22)

What is left to be proven is locality. But now this is nearly trivial. Let
(a, b), (c,d) = S* be proper intervals with empty intersection. Then (a, b) = (d, ¢),
and by isotony and relation (17),

M(a, b) = M, c) = (M c, d)) . (23)
The rest of the theorem follows easily. (]
Let me finish with two remarks.

Remark 1. Consider (A", 4, Q) as in Theorem 3. Then in particular (A" N .#)
c M, Q) is a half-sided modular standard inclusion, ie. @ is also cyclic and
separating for (/" N M) nM. We can apply Theorem 2 to M, =N M,
My=(N MY M, M =M, as it was shown in [10]. Again we get a repres-
entation of SI(2, R)/Z, by the modular groups 4.4 ~ xy> 4w ~.ay na> 4.4 5€€ [10].
Define

Ui=Jynadwnauyna- 24
Using the various commutation relations one easily sees that
[# (translation(a)), U] =0 for all aeR . (25)
Furthermore one gets
U=sles(W"nd)y=(N"vH)Yn M, (26)

i.e. strong additivity of the net, see [3]. Let me prove the second part.
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Denote
U(a) = exp(ia(lnd y n 4 —1n4d ,)),

U(a) = explia(lnd s v aynu — Ind ) . 27)
Then we get from Theorem 1 and the assumptions,
Ay vy o = U(= DA% U()
= A5 0(- 244,04 (28)
But from U = 1 we conclude
UQ) = dwr ey nada =Ly nad
=UQ), (29)
and therefore
Ay nayom =A% na (30)

Now (N N M) (N M) M, and the above equality proves equality of the
algebras.
The converse is trivial.

Remark 2. We did not use any factor property in this work. In the case ./ is
a factor we proved in [9] that .# has to be of type I11,. It was also shown in [9]
that in this case the associated conformal field theory has a unique translation
invariant vector, i.e. a unique vacuum vector.
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