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Abstract. The self-dual Yang-Mills equations play a central role in the study of
integrable systems. In this paper we develop a formalism for deriving a four
dimensional integrable hierarchy of commuting nonlinear flows containing the
self-dual Yang-Mills flow as the first member. We show that upon appropriate
reduction and suitable choice of gauge group it produces virtually all well known
hierarchies of soliton equations in 1 + 1 and 2 + 1 dimensions and can be con-
sidered as a "universal" integrable hierarchy. Prototypical examples of reductions
to classical soliton equations are presented and related issues such as recursion
operators, symmetries, and conservation laws are discussed.

1. Introduction

In recent years there has been considerable interest in the self-dual Yang-Mills
(SDYM) equations. Originated from the non-perturbative approach to the quan-
tum theory of gauge fields [1], SDYM system became useful also in general
relativity [2]; in mathematics it was a major tool for achieving dramatic progress in
the theory of four-manifolds [3]. Moreover, SDYM equations turn out to be an
integrable system in the sense that associated with them there exists a compatible
pair of linear PDE's from which significant information about the SDYM equa-
tions can be deduced, e.g. solutions via the Riemann-Hilbert factorization prob-
lem, Backlund transformations, conservation laws, hierarchies, etc. [4, a, b, c].

More recently, many well known soliton equations solvable by the inverse
scattering transform (1ST) have been found as reductions of the SDYM system
which has led to the conjecture that perhaps it contains "all" integrable soliton
systems [5]. Indeed by extending the notion of SDYM system to encompass the
higher flows we give more credence to this possibility. In particular, we show that
the SDYM equations can be embedded naturally in a hierarchy of integrable
equations of which they can be considered as the principal starting member.
Significantly, the classical soliton hierarchies are constructed in a similar way and
to stress this point further we show how the resulting four dimensional "universal"
hierarchy reduces to the standard 1 + 1 dimensional soliton hierarchies. In order
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to incorporate the 2 + 1 hierarchies into the basic formalism as well we introduce
a SDYM system with a suitable choice of infinite dimensional gauge group.
Examples discussed include the ΛΓ-wave equations in 1 + 1 and 2 + 1 dimensions,
the Korteweg-de Vries (KdV) and Kadomtsev-Petviashvili (KP) equations, and
the nonlinear Schrόdinger (NLS) and Davey-Stewartson (D-S) equations and their
associated hierarchies.

The paper is organized as follows. In Sect. 2 we briefly review the basic
background information for the SDYM equations on R4. In Sect. 3 we derive
a four dimensional hierarchy associated with the SDYM equations. Our approach
is based upon the concept of intertwining operators and uses algebraic analysis; we
treat these operators as formal series in the "spectral" parameter appearing in the
linear system of the SDYM equations. We also discuss the recursion operators,
symmetries and conservation laws associated with this hierarchy. In Sect. 4 we
illustrate how to obtain the hierarchies and local conservation laws for classical
1 + 1 soliton equations as reductions of the SDYM hierarchy. In Sect. 5 we show
that by considering the SDYM system with an infinite dimensional gauge algebra
of formal pseudodifferential operators it is possible to treat 2 + 1 dimensional
integrable equations and their hierarchies as a reductions of our formalism.

While we have taken a rather formal point of view in the text of this paper we
have added numerous explanatory remarks which are also intended to describe
different aspects of the "universality" of the SDYM system. We have also indicated
different methods to prove a result whenever we felt that it would be beneficial for
the reader.

2. SDYM as an Integrable System

In this section we briefly recall the basic definitions and properties of the SDYM
equations (see [6] and references therein). Formally speaking these are equations
for the self-dual unitary connection in a Hermitian vector bundle E associated with
the principal G-bundle over a Riemannian four-manifold M. The corresponding
Lie group G is called the gauge group and its Lie algebra g - the gauge algebra.
Introducing the curvature form F = dA + A Λ A of the connection A and the
Hodge star-operator *, we can write SDYM equations as

F = *F. (1)

The SDYM equations are gauge invariant, i.e. the self-duality property (1) is
preserved under the gauge transformations A ι-> Af = /4/~1 + d//"1, where
/eMap(M, G).

Leaving aside the global considerations, we will assume here that £ is a trivial
vector bundle over the Euclidean space R4 with fibers isomorphic as linear spaces
to the Lie algebra g. In standard coordinates x = (xμ\ μ = 0,1, 2, 3, on M = R4

the connection A and curvature F are realized by the following ̂ -valued differential
forms: A = Σμ = 0Aμ(x)dxμ, F = Σϊ>v = oFμv(x)dxfl Λ dx\ where

Fμv = dμAv - dvAμ -[_Aμ,Av~\ . (2)

The g-valued coefficients Aμ(\) and Fμv(x) are called Yang-Mills potentials and
Yang-Mills fields respectively. Equation (1) can be written down explicitly as the
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following nonlinear system of first order PDE's:

^01=^23? F 0 2 = F 3 ί , ^03 = ^12

for the Yang-Mills potentials Aμ (defined up to a gauge transformations
Aμ*->A'μ=fAμΓ*+dμfΓ

l).
The SDYM equations have the important property that they result from the

compatibility condition of a certain auxiliary linear problem [7, 8]. Namely,
introducing on R4 the complex coordinates y = x1 + be2, y = x1 — ix2,
z = x° + DC3, ϊ = x° — DC3, the SDYM equations can be rewritten as

FyZ = F-yz = 0, F# + Fa = Q (3)

and are the compatibility condition for the following linear system:

D1Ψ = A1Ψ, (4)

D2Ψ = A2Ψ, (5)

where

Dί = dy + λdz, At=Ay + λAz,

D2 = Sz — λdy, A2 = Az — λAy,

and the variable A e P 1 = C u { o c } plays the role of the spectral parameter.
Indeed, the compatibility for this system (for all values of A) has the form

D2A1-DlA2 + ίAl9A2]=Q9 (6)

and yields Eqs. (3) as vanishing coefficients of the quadratic polynomial in λ in (6).
The representation (6) indicates that SDYM equations are "exactly solvable."

More precisely, using the auxiliary system (4)-(5) it is possible to construct SDYM
solutions with the help of a Riemann-Hilbert factorization problem [8]. Namely,
let Aμ(x) be a solution of (3) and Ψ0(x9 λ) and Ψnfa λ) be two G-valued solutions
of (4)-(5), holomorphic in the neighborhoods 170 of 0 and 17 «, of oo in P1

respectively. Then the "ratio"

Ψ=Ψ~1Ψo (7)

satisfies, in a common domain of analyticity U0 n 17 ̂  the equations

DiΨ = D2Ψ = 0

so that

z9λz + y 9 λ ) (8)

is a G-valued holomorphic function. Conversely, let UQ and 17 ̂  be the covering of
P 1 and S be the function above. Define Ψ by (8) and consider (7) as a family of
Riemann-Hilbert factorization problems, parametrized by y, y, z, z, for determin-
ing G-valued functions Ψ0, Ψ^ from a given Ψ defined in the intersection
l/o π U oo. Then functions Ψ0, Ψ ̂  satisfy, with proper /Udependence, the linear
system (4)-(5) and the corresponding Yang-Mills potentials Aμ(x) obtained from
Dι,2 ΨoΦo1 = Dι,2 Ψ«> ^i1 satisfy the SDYM equations.

With suitable conditions [8] a solution of the Riemann-Hilbert problem (7)
exists; subject to a proper normalization it has a unique solution. Different
normalizations lead to the left action of Map(R4, G) on ΨΌ, Ψ^ and give rise to
gauge equivalent Yang-Mills potentials Aμ .
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3. SDYM Hierarchy

It is significant that the SDYM equations share many common properties with
1 + 1 dimensional integrable solitonic equations. In this section we will show that
there exists a hierarchy of "commuting higher SDYM flows" (cf. the well known
KdV hierarchy) with related symmetries and recursion operator.

We start our construction by choosing a convenient gauge.

Lemma 1. By a suitable gauge transformation any SDYM connection admits the
form where the components Ay and Aζ are represented by two arbitrary ^-independent
commuting elements in g so that in this gauge the SD YM system reduces to

Proof. Equation F^ = 0 implies that connection A has a zero curvature in the
yz-plane, so that the Yang-Mills potentials Ay and AΈ are (locally) "pure gauge":
there exists /0 e Map(R4, G) such that Ay = 3y/0/o S ̂  = δ*/o/o i . Therefore
under the gauge transformation /= exp^i + zα2)/6"1

5 where α l 9 α 2 e ^ ,
Oι>f l2] =Q9A$ = al9 A{ = a2. D

We will use this particular gauge choice throughout the paper unless otherwise
stated explicitly. This choice makes it possible to treat the coordinates y, y, z, as the
"spatial" variables and z - as the "time" variable.

Our approach to the SDYM hierarchy is based on the general concept of
intertwining operators which goes back to Schur [9] (see discussion in [10]) and
was introduced into the theory of integrable systems by Sato [11] and extensively
used thereafter (see, e.g., [12] and references therein). The intertwiners transform
"bare unperturbed" auxiliary linear systems into "perturbed" ones and according
to the rules of algebraic analysis we will treat them as formal power series in A" 1 .
Specifically for our problem these intertwiners will be nonlocal functionals of the
Yang-Mills potentials. Therefore we introduce the following notation.

Denote by g the Lie algebra of g-valued functions R4 and their "primitives"
with respect to the following first order differential operator with constant coeffic-
ients: dΈ — &dAΈ, where ad is adjoint 0-action: &dAΈ(B) = \_A^, B~\. In other words,
elements in g consist of polynomials of the Yang-Mills potentials and their partial
derivatives together with nonlocal expressions obtained by successive applications
of the inverse of d ̂  — adAΈ to such functions. One can pass from formal to rigorous
theory provided the action of (dΈ — ad^)"1 is well defined in certain functional
classes (say periodic or rapidly decreasing). Furthermore, let

be the Lie algebra of formal semi-infinite (finite at + oo ) Laurent series in λ with
^-valued coefficients and " + " and " — " be the complementary projectors on the
polynomial part: g\+ — £o^& « ooφ^fc and the "pure Laurent" part: g\_
= Σfc^-ι©$^ fe *n M^"1)) respectively. Finally, denote by G|_ the Lie group
corresponding to the Lie algebra g \ _ .

Lemma 2. There exists W(x,λ)eG\- such that the corresponding multiplication
operator W is the intertwiner for the SDYM linear problem, i.e.

Dl - A1 = W(Dl - λAΈ) W~ l . (10)
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Proof. Rewrite (10) in the form

D! WW~l = Al- λWA-zW~l (11)

and look for the expansions

°° W (\}
- (12)

n = l

where Vn, Wneg. Substituting them into Eq. (11) we obtain
Wn = — Vn-ι, n > 1. Now consider the differential equation

which produces the recurrence relation for Wn

(d-z-zdA?)Wn + 1 = -(dy-adAy)Wn, n ^ l , (13)

with the initial condition

Hence coefficients Wn and therefore, Vn, can be determined recursively and the
existence of W(\9 λ)eG\- follows from the differential equation (11) via the
"exponential map" since the right-hand side in (11) belongs to g\-. D

Remark 1. Equation (11) reads

so that Wfa λ) has a meaning of a formal (A-dependent!) gauge transformation
relating "unperturbed" and "perturbed" Yang-Mills potentials λAΈ and A{.

Remark 2. There exists another proof of Lemma 2 for the case when the gauge
group G = GL(n). Namely, let g = n+ ®h®n- be the Cartan decomposition of
the Lie algebra g — gl(n). Assuming that Ay, AΈ e h (i.e. are diagonal matrices) we
have the following representation for the intertwiner W(x, λ):

^=(l + M)expZ, (14)

where 1 stands for the unit matrix, M(x, λ) 6 ή\- (n = n+ φ n _ is the nilpotent
subspace in g) and Z(x, λ) e /ι |_ (in other words, M and Z are off diagonal and
diagonal matrices respectively). Indeed, substituting representation (14) into
Eq. (11) and "separating diagonal and off diagonal parts" we obtain the following
system

D±M = (Ay + AyM)n - M(Ay + AyM)c + λ[_A-z, M] , (15)

D1Z = (Ay + AyM)c, (16)

where the subscripts "n" and "c" denote the projectors onto nilpotent and Cartan
subspaces respectively. Now consider the expansions

Mt(x) « Zt(x)
L —JI

k=l A k=l A

t
M= λ —i-' Z= L —I
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and substitute them into the system (15)-(16). We obtain the following recurrence
relations

(d-z - a<Uz)Mk+1 = - dyMk + (AyMk)n - Mk(Ay)c - £ Mk(AyMk.t)c , (17)
1 = 1

1 = -dyZk + (AyMk)c, fc>l, (18)

with initial conditions

(S- _ a<U5)M ! = μy)π, δjZj = (Ay\

for determining the coefficients Mk, Zk (cf. [12]).

Remark 3. Define f = WΨ0, where Ψ0 satisfies the "unperturbed" part of Eq. (4)
with Ay = 0, i.e. D1ΨQ = λAzΨ0) and W is given by Lemma 2. Then f formally
satisfies (4) with A1 = Ay + λAz and can be considered as a "WKB solution" of (4)
as λ -> oo . For a certain class of boundary conditions (e.g. rapidly decreasing or
periodic cases) Ψ(x,λ) is indeed an asymptotic solution of (4).

Remark 4. If, in addition, Ψ0 satisfies (5) with Az = 0, i.e. D2 ΨQ = - λAy Ψ0

W also intertwines D2 - A2 and D2 + λAy, i.e. D2 - A2 = W(D2 + λAy) W~\
then Ψ also satisfies Eq. (5) with A2 = Az - λAy. This is the essence of the "dressing
procedure" which starts from the "bare" SDYM solutions: Ay = Az = 0, Ay and
Az are commuting constants, and yields a new SDYM solution Ay, Az (with the
same gauge choice for Ay and AΈ). [Dj - λAΈ, D2 + λAy~\ = 0 is valid by construc-
tion (commuting Ay and AΈ) whereas [Dx — A^ , D2 — A2~] = 0 is due to Lemma 2.

Next set

dj + Φ= W(dy-Ay)W~l ,

or

Φ= W(d-y-Ay}W-l= -dyWW~l- WA-yW~1= f ,̂ Φneg,
n = 0 *

where Φ0 = —Ay and PF is given by Lemma 2.

Lemma 3. Coefficients Φn G g,n^. 1, are uniquely determined by the initial condition
#0= -Ay.

Proof. We have dy + Φ = W(dy — Ay)W~l

9 so that by the intertwining property

[D! -Al9dy + Φ] = W\Pι - λA-Zί dy-Aj]W-l=09

which yields the differential equation for Φ:

Substituting into it the expansion for Φ, we get that the linear term in λ vanishes
identically because of Φ0 = — Ay and commutativity of Ay and Az, whereas
vanishing of the non-positive powers of λ lead to a recurrence relation

(dz - adA-z)Φn + 1 = ~(dy- adAy)Φn - dyAyδn0, n^O. (19)

Π
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Notice that all constructions in Lemmas 2-3 involve only the values of the
Yang-Mills potentials at a "time slice" z = constant, i.e. for fixed z. This important
property allows us to define naturally a SDYM hierarchy by introducing infinitely
many "times" zfc, k = 2, . . . , where z2 = z is the usual SDYM "time." Namely, set

Definition 1. A SDYM hierarchy is defined by the infinite sequence of flows with
respect to the "times" zk, with the fcth member given by the equation

A1,Dk-Ak ]=Q, k^2, (20)

i.e.

DkA1-DlAk + lA1,Ak^=0,

which arises as a compatibility condition for the linear system

D1Ψ = A1Ψ,

DkΨ = AkΨ.

Remark 5. For k = 2, we have A2 = (λΦ)+ = Φi 4- λΦQ = Az — λAy since Eq. (19)
for n = 1, which determines Φ± , coincides with the second SDYM equation in (9) if
one identifies Φ^ and Az. The compatibility condition yields Fyz = 0 - the remain-
ing equation in the SDYM system (9) for the "time" variable z2 = z. The higher
SDYM flows are given explicitly by the equations of motion (the fcth flow)

dZkAy - dyΦk., + lAy, Φfc-J = 0 , (21)

where Φk-ι are defined recursively by (19) and contain (for k > 2) the inverse
powers of dz — ad^; they are, therefore, nonlocal.

Remark 6. Using recurrence relation (19), we have for k ̂  1

Φk+1=RΦk,

where R = — (dz — adAz)~1(dy — adAy) and may be considered as a recursion
operator for the SDYM hierarchy. Although this definition is formal (the inverse
should be properly defined), under SDYM reductions R yields well known (and
well defined) recursion operators for integrable systems.

Remark 7. The /cth flow in the SDYM hierarchy can be considered as a "dressing"
of a "bare" solution by the intertwiner W, i.e.

D1-A1 = ̂ (D.-λA^W'1 ,

Dk-Ak= W(Dk + λk-lAy}W~l .

The latter equation implies

Since Ak = (λk~1Φ)+ and dZk WW~ 1 e g\ _ , it yields the z^-evolution of the inter-
twiner W\

The corresponding evolution equation for Φ is given by

D*Φ = [Λ,Φ]-δjΛ, (22)



296 M.J. Ablowitz, S. Chakravarty, and L.A. Takhtajan

since, by the definition of Ak9 Φ and the intertwining property,

lDk - Λ, dj + Φ] = W\Dk + λ"-*Ay9 dy-AylW-^O.

Theorem 1. The SDYM hierarchy consists of commuting flows, i.e. there exists
a common intertwiner W for all higher SDYM equations.

Proof. It is sufficient to show that there exists a common solution to the following
infinite system of equations:

dZkW=U(k-}W, k^2, (23)

where U(k) = — λk~ * Φ (see Remark 7). Indeed, the compatibility condition for (23)
reads

dzlU
(k) - dZkU

(» + [l/w, [/<!>] = o (24)

and should be valid for all k, I ^ 2. Multiplying Eqs. (22) for the "times" zk and zl by
λk~ί and λl~l respectively, subtracting and finally projecting the difference onto
g\- we get that

Thus we can rewrite the left-hand side of (24) by using this last equation, the
formulas Ak = - C/ψ, Al = - 17 <? and the fact that U(k) and t/(/) commute:

_ = 0 ,

which completes the proof. D

Remark 8. This proof can be considered as a "universal proof" of commutativity
for all hierarchies of integrable equations, i.e. it covers all possible SDYM reduc-
tions including the well-known cases of ]V-wave, NLS, KdV and KP hierarchies.

Remark 9. Let Ψ0 be the common solution of the following (obviously compatible)
"bare" system of equations:

Then Ψ = WΨ0 is the common solution of the following "dressed" system

In other words, Ψ(y, y, z, z2, . . . ) is a common (formal) "wave-function" for the
entire SDYM hierarchy.

Remark 10. It follows from the definition of the SDYM hierarchy that its two
successive flows are related by

(Dk+1 - A + i) ~ λ(Dk - Ak) = dzk+l - λdzk - Φk ,

where the right-hand side is linear in λ. Due to the Theorem 1 ^D1 — Al9

dzk+i ~~ λdzk — Φfc] = 0, so that we have a compatible linear system
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which is similar to the SDYM original system (4)-(5). In fact, if we introduce the
auxiliary space-time C4 with coordinates y, z, zk, zk + ί, then Ay, AΈ, 0, Φk play the
role of Yang-Mills potentials and satisfy the complexified SDYM equations in C4.
Thus there exists an infinite set of complexified SDYM connections embedded into
the SDYM hierarchy. Conversely, it is possible to reconstruct the SDYM hierarchy
by considering appropriate linear combinations of the infinite set of SDYM
connections (whose "space-time manifolds" have common two-dimensional part).
A similar approach was used in [13] to obtain the KdV and NLS hierarchies from
the Bogomolny equations.

Remark 11. The gauge transformation A\-*Af, fe Maρ(R4, G) (see Sect. 2)
results in the left action on the intertwiner W\-* Wf =fW and (since /is λ-
independent) in the gauge action on Φ: Φ\-^Φf — — d y f f ' 1 + fΦf~1. This
remark will be useful in the next section, while discussing the KdV equation, where
we use a gauge choice different from that in Lemma 1.

Now let us consider symmetries and conservation laws for the SDYM hier-
archy.

Definition 2. A symmetry {δAk}™=1 associated with the solution {Ak}k

)

=1 of the
SDYM hierarchy is a solution of the linearized equations of motion, i.e.

DkδAl - DtδAk + lδAh Λ] + LAl9 δAh-] = 0, fc, / £ 1 .

In other words, symmetries are tangent vectors to the (infinite dimensional)
solution manifold A of the SDYM hierarchy, i.e. they are vector fields on A. (We
note that the "variations" δAk are polynomials in λ of one order less than that of Ak

since δAy = δA^ = 0.)
Let {Λ}fc°=ι be the solution of the SDYM hierarchy and {<HJfc°=ι be the

symmetry with given δA1 = δAy. Denote by δW the linearized ("infinitesimal")
intertwiner W and set J = δWW'1.

Theorem 2. i) The element J e # | _ ,

n=l *

is uniquely determined by a given δAy:

Jn = Rn~ίJ1, n^l (d-z-adAΈ)J1=δAy.

ii) The "time" -dependence of J is given by the equations

iii) The symmetries δAk admit the representation

Proof. Linearization of the "dressing" formulas (see Remark 7) immediately proves
iii); the " — "-component of iii) yields the evolution equations in ii). In order to
prove i), consider the equation in iii) for k = 1, i.e. δAy = D±J — [^41? J], and
expand it in negative powers of λ. D

Remark 12. Due to Theorem 2 any choice for J produces symmetries. A particular
family of symmetries can be obtained by a special choice for / given by

jf = φk 9 k ̂  1 .
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Comparing Lemma 3 and Theorem 2 we see that in this case it is possible to solve
recurrence relations for J^ explicitly:

so that for the generating function J(fe) = Σ«°=ι J(n}λ~n of this family we get
j(k) = μ*-iφ)_ = _ uwt These symmetries for the SDYM hierarchy are the
extension of those introduced in [14] for the SDYM system (k = 2).

Now let K be a common solution of the equations DkK = 0, k ̂  1, then
l=WKW~l satisfies

Assume, in addition, that on the Lie algebra g ( ( λ ~ 1 } ) there exists an invariant
bilinear form ( , ) and define Ik = (/, δAk).

Theorem 3. The family {Ik}^=1for an arbitrary "starting" symmetry δAy gives a set
of conservation laws for the SDYM hierarchy, i.e.

Proof. We have

Dkl, = Dk(I9 δAi) = ([Λ, /], δAt) + (/, DkδAt) ,

or, using the definition of symmetries and the invariance of ( , ),

Dklι = (LAk9 II δAt) + (/, DlδAk + [δAk9 A{\ + [Λ, δA{\)

= (/, DtδAk) + (IA19 /], δAk) = Dt(I9 δAk) = Dtlk.
D

The following two remarks will be useful in deriving the standard conservation
laws for 1 + 1 integrable systems.

Remark 13. Another construction of conservation laws is based on the operator dλ .
Namely, consider the dressing equations from Remark 7 and differentiate them
with respect to λ. Introducing J = dλ WW~ 1 we get that

δAk = dλAk + (k - \}λk-2(dyWW'1 + WAyW~l\ k ̂  2 ,

are "generalized" symmetries in the sense that they satisfy linearized equations of
the SDYM hierarchy but, in addition to a polynomial part in λ, contain an "infinite
tail" of negative powers of λ. The latter statement is obvious whereas the former
one follows from the representation

δAk = DkJ-ίAk9Jl fe^l, (25)

and the definition of δAk and J. By Theorem 3 the family Ik = (/, δAk) gives another
set of SDYM conservation laws.

Remark 14. Assuming the conditions of Remark 2 (i.e. G = GL(n) and Ay,AΈε h\
one can further specialize the construction of conservation laws given in Theorem
3. Namely, using the representation (14):

W=(l + M)expZ,
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where Mεh\- and Z e / ι | _ (see Remark 2), we conclude that the family
Ik = (K, DkdλZ) provides additional conservation laws. Indeed, introduce another
function

J = WdλZW~^ = (1 + M)dλZ(l + M)-1

in (25) and use the intertwiner property of W (see Remark 7) to obtain

δAk = (1 + M)DkdλZ(l + M)'1 .

Now using Theorem 3 with K belonging to a Cartan subgroup of G and the
invariance property of ( ,) we get

Ik = (I, δAk) = (WKW~\ WDkdλZW~1) = (K, DkdλZ) .

In the next two sections we will demonstrate how these "universal" formulas
yield all known results on hierarchies, conservation laws and symmetries for the
integrable equations in 1 + 1 and 2 + 1 dimensions.

4. Reductions to 1 + 1 Dimensions

In this section we discuss three well known 1 + 1 dimensional reductions of the
SDYM equations: the N-wave system, the nonlinear Schrόdinger (NLS) equation
and the Korteweg-de Vries (KdV) equation (see [15]). We will demonstrate how
the appropriate reductions of the general scheme developed in the previous section
yield these equations, their hierarchies, symmetries and conservation laws.

4.1. The N-Wave Reduction. Consider the SDYM equations with the gauge group
G = GL(n) and assume that the Yang-Mills potentials Aμ(x) do not depend on the
variables j; and z (in the complexified version of the SDYM equations). Denoting
the remaining variables y and z by x and t respectively, so that DI = dx and
D2 = δt, and choosing the gauge where AΈ = A, Ay = — BE h (i.e. are diagonal
matrices) and Ay = U9 Az = Ve n (i.e. are off diagonal matrices), we can rewrite the
SDYM linear system (4H5) as

(26)

dtΨ = (V+λB)Ψ. (27)

The reduced SDYM system, i.e. the compatibility condition for (26)-(27), reads

dtU-dxV+lU,V]=0, [4, K] = [B, 17] .

Assuming that ad A, ad B are non-degenerate linear operators (while acting on off
diagonal matrices), the second equation above can be easily solved: U = [A, β],
V = IB, β], β e n, and the resulting nonlinear system of PDE's:

IA9 dtQ] - [β, δxβ] + [[A β], IB, β]] = 0

is called the JV-wave system. Here N = n(n — 1) is the number of "elementary
waves." Physically interesting cases require additional involutions of (26)-(27), and
reduce the number of independent "waves" to N = n(n — l)/2 (for further details
see, e.g., [12,16-18]).

This reduction of the SDYM system to the ΛΓ-wave system is quite natural and
was presented in [19]. In addition to that, all general constructions for the SDYM
system from Sect. 3 admit a natural reduction to this case.
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Theorem 4.
i) The reduced SDYM inter twiner W(x, λ) has a representation

W=(l + M)expZ,

where

**ί n V M*M N -, n v Z*M zΓiM(x,λ)= X — jr-en)-, Z(x,λ) = X -T^eftμ ,
fc=l Λ k = l A

and Mk(x) are local in x, i.e. are polynomials of matrix elements of Q(x) and its
derivatives.

ii) The SDYM hierarchy reduces to the N-wave hierarchy given by the following
evolution equations, which are local in x:

where Φ&(x) are defined by

φ ^ WBW~l = (1 + M)B(1 -1-

are local
iii) TTze common wave function Ψ for the N-wave hierarchy is the reduction of

that for the SDYM hierarchy and satisfies the system

where t^ = x, A^ = U + /L4, and

Ak = (λk-iφ)+=kΣ
1 = 0

iv) Higher N-wave flows commute:

v) The formal recursion operator R for the SDYM hierarchy reduces to the
N-wave recursion operator A such that

Proof. Statement i) follows from the recurrence relation (17) (see Remark 2), which
in this case has the form

and obviously admits a unique solution local in x. Equation (16) in this case reads

dxZ = (UM)c

and determines Z(x, λ). Statements ii)-iv) now follow from i) and general results in
Sect. 3. In order to prove v), consider the reduction of recurrence relation (19):

, k^l, (28)

where Φ^ = B. Formally Φk+1 = R(Φk), where R = (ad^)'1^ - ad U). How-
ever, in our particular case it is possible to "properly invert" the operator adA
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Namely, consider (28) and separate its Cartan and nilpotent components; one
immediately concludes that for determining the Cartan part of Φk + ι the operator
ad ,4 can be properly inverted whereas for determining the Cartan part of Φk+ 1 one
needs to apply the operator d^adU to its nilpotent part. This results in the
formula Φk + 1 = Λ(Φk) with the integro-diίferential operator A. However, since all
Φk are local, quantities adU((Φk)n) are total derivatives in x so that 8X can be
canonically inverted. D

Remark 15. The construction of the SDYM connections from the members of the
hierarchy, as shown in Remark 10, can be carried out here and in other 1 + 1
reductions as well. Thus one obtains nontrivial self-dual connections in C4 out of
solutions of 1 + 1 soliton hierarchies (cf. [20] ).

In addition, we have

Theorem 5.
i) The family of symmetries δ(k}Aι associated with the generating function

J(k) = (λkΦ)- reduces to δ(k)Al= — dtkAt, where the starting symmetries
δ(k}Aι = δ(k} U are given by

δ(k}U = adAΛk"l(adAΓl(δ(l)U)9 δ(l}U = [17, β] .

ii) The N-wave hierarchy can be written as

dtkU = -

iii) Conservation laws associated with the symmetries δ(k) Al become trivial under
the N-wave reduction, i.e. they are total derivatives of functions local in x. The family
of nontrivial local conservation laws is given by a reduction of the family constructed
in Remark 14, is parametrized by element Kfrom a Cartan subgroup ofG and has the
generating function

Proof. Starting from the definition of the symmetries δ(k} Al (see Theorem 2), the
following calculation, which uses commutativity of higher flows and the differential
equation for Φ (22):

(5<fe)A = dtl(λk~lΦ)- + [(λ'^Φ)-, A,-]

= dtl(λk-iφ-Ak) + lλk-*Φ-Ak9A{\

- λk'l(dtlΦ- [A, Φ]) - dtlAk + [4,4k]

proves i). Statement ii) follows from the calculation (see Theorem 2, Remark 12 and
Eq. (19)):

δ<®U = δ(k)A1 = - [A Φk] -

since <5(1) U = - [ΛΦι]
To prove iii), consider the definition of conservation laws I(k) = (/,

where ( , ) is the invariant bilinear form and the differential equation dxl = [Al9 /].
Writing

, = - dtkA, = - dxAk + [A19 A] ,
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then yields

/?> = -dx(I,Ak).

Since / = WK W~ 1 and W is local in x it shows the triviality of the conservation
laws I ( ι } . To obtain the nontrivial ones use the construction from Remark 14,
which yields the generating function

for the family of conservation laws parametrized by Cartan element K. Although
they are total derivatives they are nontrivial due to the differential equation (16)

dxZ = (UM)C .

Z and dλZ are non-local in x so that densities in expansion of I ι ( λ ) produce
nontrivial integrals of motion (integrals over the period for the periodic case or
over 1R in the rapidly decreasing case). D

Remark 16. It is instructive to note that N-wave hierarchies parametrized by
different elements B e h commute; the "universal" proof of Theorem 1 applies
verbatim to this case. This shows that there is a N — 1 -"infinite" family of different
higher ΛΓ-wave "times" according to the dimension of h (the unit element in h gives
trivial flows). In particular, the hierarchy which corresponds to the choice B = A
starts with the linear equation

which describes the translation invariance of the ΛΓ-wave system.

4.2. NLS Reduction. The NLS equation

can be obtained as a second member of the 2-wave hierarchy with appropriate
choice of A, B, U and V and, therefore, may be considered as a reduction of the
SDYM hierarchy (with higher NLS flows obtained from higher SDYM flows).
However, there is also a way of getting NLS directly from SDYM system. Namely,
consider the following SDYM reduction [15]: the gauge group G is SL(2) and
Yang-Mills potentials are independent of the variables y — y and z. Denoting the
remaining variables y and z as x and t, so that D^ = dX9 D2 = dt — λdx, and
choosing the gauge Ay = 0, A? = H e h, Ay = Όe n, Az = VG g, the SDYM linear
system (4)-(5) takes the form

dxψ = (U + λH)Ψ9 (dt - λdx)Ψ = VΨ ,

and its compatibility reads

Using the second equation and the Cartan component of the first, one can express
Fin terms of U and its x derivatives (the result will be local in x); the nilpotent part
of the first equation in the compatibility condition yields the nonlinear evolution
equation for U. When
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so that

-IΆP
the compatibility condition yields the NLS equation.

If one replaces x-derivatives in the second equation in the linear system by the
first equation the result will be the standard linear system for NLS equation (see,
e.g., [12, 18, 21]). All constructions of Sect. 3 go verbatim into those for the NLS
case: hierarchy, symmetries and conservation laws can be derived immediately. We
omit the derivation, since it repeats that for the Λ/-wave system.

4.3. KdV Reduction. The KdV reduction is obtained by imposing the same coordi-
nate dependence and the choice of gauge group as for the NLS reduction. Namely,
denote by E+ and £_ the s/(2) roots, and choose the Yang-Mills potentials to be

1

0

Az= Fe#, Ay = Eeή ,

where w(x, ί) is the KdV field. The SDYM linear system (4)-(5) takes the form

Bxψ = (U + λE-)Ψ, (dt - λdx)Ψ = (V- λE)Ψ ,

whose compatibility reads

Using the second equation in (29) and Cartan and n+ components of the first one
can express V and E in terms of u and its x-derivatives:

1 / dxu — 2u \ u
~4\-2u2 + dxu -dxu)9 ~2 " '\ X X /

so that the remaining n_ component of the first equation yields the KdV equation:

dtu = τ(d*w — 6udxu).
I ^\ X X >

Remark 17. Notice that the gauge choice for the KdV reduction is different from
that in Lemma 1: although [̂ , A?] = 0, the gauge potential Ay is not constant.
However, according to Remark 11, this gauge choice differs from that in Lemma
1 by a gauge transformation A h-> Af~l with /= 1 + ̂ d~luE-. In this gauge

Remark 18. Choosing the gauge from the previous remark, we can use the general
construction from Sect. 3 based on the intertwiner W. However, in Lemma 2 the
"bare" SDYM solutions were chosen to be Ay = Az = 0 so that the "bare"
A i = A g . In KdV case, due to the special choice of the potential Ay = U, natural
"bare" solution is Az = 0, Ay = E+ so that one needs to use A = E+ + λE- as
a "bare" A± in Lemma 2. These peculiarities show that KdV equation is a rather
special reduction of the general formalism of the 1ST method contrary to the
TV-wave and NLS cases, which are generic in their classes (cf. the discussion in
[12]).
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These special features of the KdV reduction result in the following form of the
intertwiner

00 W (Ύ\
w(x,λ)=wQ+ Σ^P,

n = l Λ

where

(cf. Remarks 11 and 18), which "dresses" the "bare" SDYM hierarchy Al = A,
Ak = 0, k ̂  2. It satisfies the equations

W(dx-A)W-1 = dx-A1 = dx-UQ-A, U0 = U-E+, (30)

and

W(dtk - λk~ldx) W-1 = dtk - λk~ldx - Ak , (31)

where

which determine the KdV hierarchy. The coefficients Wn are determined via
dxW = A i W — WA9 which is obtained from (30). Replacing the x-derivatives in
evolution equations with the help of the first equation in the KdV linear system, we
can rewrite the KdV hierarchy as

where

Ak = dtJΓl + (A*'1 Φ)+ + λ^A, = (λk~1Φ)+

and

Remark 19. Setting in the previous formula k = 1 we get

A^Ai-E + dtJΓ1,

which results in the equation

dtίu — dxu

- the trivial "starting" member of the KdV hierarchy.

Remark 20. Defining A± = B{ , Ak = B { , k ̂  2, and Φ = Ωf =fΩf~ 1 - a gauge
transformation by/(cf. Remark 11) - we obtain for the new potentials Bk

Bk = (λ*-10)+, fc^l,

Since A2 = λl, we can rewrite the last formula as

which shows that KdV hierarchy contains only "odd" flows - "even" ones are given
by the potentials Ω2k = λkl and result in trivial (static) equations.
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Contrary to the coefficients Wn> the coefficients Φn are local in x and can be
obtained from the recurrence relation

[E-,ΦB+ι] = S*Φ B -[U,Φ«], (32)

which follows from the differential equation

δxΦ = [^,Φ]. (33)

In terms of these coefficients the higher KdV flows have the form

where Vk = Φk-, + StJΓl.
Denoting by Φc, Φ± the Cartan and n+ components of Φ, one can easily

recover from (32) the well known recursion operator for the KdV hierarchy, which
can be considered as a specialization of the formal expression
R = (adE-)~1(dx - ad 17). Namely, using Eq. (32) we get

where the integro-differential operator I,

3 1

V 4 x ~U x~2 *

is the well known recursion operator for the KdV hierarchy (see [25, 26]).

Remark 21. It is instructive to compare this approach with the standard one based
on the Schrόdinger equation. Namely, the first order linear system

3 ψ _ (JJ I 0 I? \ψ
(Jχ -Γ — I C/ r^ A,LLι — I X

is nothing but the canonical Frobenius form of the second order differential
equation

(Schrόdinger eigen- value problem with the energy E = — λ). Denoting by/! and/2

the two linearly independent solutions of the Schrόdinger equation, we have
explicitly

ψ =

so that by choosing fλ = Qxp(kx)φ1(x, k\ f2 =fι(x, — k) = exp( — kx)φ2(x, k\

where φ2(x, k) = φι(x, — fc), k = ^/I, and φ l s 2 are power series in fc"1, we get

w/yy — - I

- φ2) dx(φ, - φ2)
It follows from this representation that W(x9 λ) is even in k and indeed admits
expansion in integer negative powers of λ = k2. Moreover, from this representation
it can be shown that even if the coefficients Wn are nonlocal in x, the coefficients Φn

are local. (Recall the standard fact from the Schrόdinger equation that logarithmic
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x-derivative of φ(x,k) admits expansion in k"1 whose coefficients are local in x;
expressions of this type enter in Φ.)

Using the previous remark we can relate our approach to KdV hierarchy, based
on the general intertwiners for the SDYM system with the standard one by
Gelfand-Dikii [22] and Adler [23]. Namely, using (32) we see that Φc

k = -%dx Φfc

+

so that the KdV hierarchy can be written as

dtku= -2aA+,

where Φ^ satisfies the recurrence relation

Φ k

+ =ί(Φ k

+ _ 1 )

with I = dx

lldx. Moreover, it follows from Eq. (33) that the function Φ + (x, λ)
satisfies a third order linear equation

dl$+ = 2(dxu)Φ + + 4(u + λ)dxΦ
 + ,

which is the well known equation for the restriction of the resolvent kernel of the
Schrόdinger operator L = dx — u on the diagonal (actually this equation goes back
to Hermite [24]; see also [22]). One of the main results of Gelfand-Dikii's
algebraic analysis of fractional powers of the Schrόdinger operator is that

where here + denotes the differential part of the formal fractional power of L.
Therefore we can rewrite KdV hierarchy as

which is a key formula from Adler's approach.
Consequently the framework we have exhibited for the SDYM symmetries and

conservation laws contains those for the KdV, which are well known. For example,
the conservation laws for the KdV hierarchy can be obtained from the SDYM ones
by using Remark 13 and are given by

where ( , ) stands for the Cartan-Killing form for gl(2). The same applies to the
symmetries and we will not repeat arguments presented in JV-wave and NLS cases.

These examples illustrate an essential point of this paper; namely integrable
1 + 1 systems are obtained from SDYM as reductions. Similarly, the Riemann-
Hilbert factorization problem for SDYM system reduces to all these cases as well
yielding the standard Riemann-Hilbert problem of the 1ST formalism for the 1 + 1
systems.

5. Reductions to 2 + 1 Dimensions

The basic examples considered in the previous section admit a generalization to the
case of two spatial and one time variables and it is instructive to see how these
multidimensional systems can be obtained as SDYM reductions. It is well known
that the spatial variables in 2 -f 1 integrable systems are treated differently and this
difference is central in the 1ST method [27]; (see also [28, 29]). These features are
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also manifest in the SDYM reductions and to the best of our knowledge there is no
natural way to obtain these systems as SD YM reductions with a finite dimensional
gauge group (the second spatial variable does not come naturally from the SDYM
space-time variables).

Here we outline an approach which allows us to obtain multidimensional
systems as SDYM reductions for a special choice of an infinite dimensional gauge
group. Namely, we assume that the gauge Lie algebra g is the infinite dimensional
Lie algebra of all formal matrix pseudodifferential operators in auxiliary variable s:

ί
l <ξ oo ")

Σ <^<
Z = - o o J

where at belong to a ring of n x n matrix-functions of s. Clearly g is an associative
algebra with a multiplication given by a standard composition of pseudodifferen-
tial operators with matrix coefficients, so that g has a natural Lie algebra structure.
As in Sect. 3, we define g to be a Lie algebra of ^-valued functions on 1R4 involving
the "primitives" with respect to the certain first order differential operator with
constant coefficients: dz — Ads (see below). One can pass from a formal to the
rigorous theory provided one specifies appropriate functional classes. The Lie
algebra g admits the decomposition

where the subalgebras $_ and g+ consist, respectively, of power series in
δs~

 1 without a constant term, and of polynomials in ds .
Now our claim is that it is a SDYM system with such a choice of gauge group

that realizes reductions to 2 + 1 integrable systems, where the second spatial
variable is obtained from the "fiber" variable 5!

More precisely, we choose the gauge as Ay = Az = 0 and assume that two
remaining Yang-Mills potentials Ay, Az e g+ are first order in dS9 i.e.

where A and B are commuting matrices independent of x and s. In this special
gauge the linear system (4)-(5) takes the form

(dy + λdz) Ψ = (U + Ads) Ψ , (34)

(dz - λdy)Ψ = (V + Bds) Ψ . (35)

The equation, Fy^ + Fzz = 0, which arises as the coefficient of λ in the compatibility
condition of (34)-(35), can be satisfied by setting U = dzC, V = — dyC for certain
C £ g. A special class of solutions for the remaining SDYM equation, Fyz = 0, can
be now obtained by considering a solution of the linear system (34)-(35) corres-
ponding to a particular choice of the spectral parameter λ, e.g. λ = 1. In this case
concrete representations for the solution Ψ can be obtained by the 1ST technique.
It is worth noting that the "fiber" variable s plays a crucial role even within the
framework of solving the remaining equation Fyz = 0 as the various coefficients of
the Fyze g+ produce a system of nonlinear PDE's. Keeping these remarks in mind
we will consider the linear system (34)-(35) for λ = 1:

(dy + 02) Ψ = (U + Ads) Ψ , (36)

-.(V+Bds)Ψ. (37)
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All general constructions in Sect. 3 can then be adapted to this case. Namely,
now the intertwiner We g has the form

00

/ -ί K y
k=l

and satisfies the equation

D1 _ Al = W(D± - Ads) W~1 , (38)

or

D1W -\- WAds = Av W, (39)

where D± = dy + d? and "bare" Ai is Ads. The SDYM hierarchy can be introduced
by dressing the "bare" Yang-Mills potentials Bdk

s~^:

Bdk

s-^W-^ (40)

where Dk = dzk — δy, so that

DkΨ = AkΨ, k^2, (41)

where

Ak = dtk WW~ l + Φ(fc) = Φ(k) I + , (42)

(cf. Remark 7) and

'"1, Φ(

0

k) = B . (43)
z = o

From (39) one finds that Φ(k) satisfies the differential equation

DlΦ
(k^ = lU + Ad89Φ^ . (44)

Remark 22. Since ^ acts on the elements of #, which are the (formal) pseudodif-
ferential operators in the vriable s, using terminology from [30] we can call it an
operand (operator acting on operators).

Remark 23. For k = 2 we get from (42) and (44) that the second Yang-Mills
potential has the form A2 = V + Bds, thus recovering the original SDYM system
with this infinite dimensional algebra g.

Remark 24. Although Φ(k} satisfy the same differential equation (44) they are
different elements in g (since ds is now a derivation in g) and all of them are needed
for the construction of the hierarchy (cf. the usual case in Sect. 3 where, because
λ was the central element in g, a single function Φ generated the entire hierarchy).

Other constructions in Sect. 3 can be adapted in a similar manner; we only
mention that if A and B are Cartan elements in gl(n)9 then the intertwiner W admits
a representation similar to that of Remark 2:

(45)

with appropriate M and Z.

5.1. The N-Waυe Reduction. The main idea for 2 + 1 SDYM reductions is to
consider SDYM potentials depending only on two spatial variables j; and z, which
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will be denoted by x and t respectively; the "fiber" variable s, denoted as y, will
provide the second spatial variable for 2 + 1 systems. What is important is that in
this reduction there is no spectral parameter λ anymore so that the linear system we
get from (36)-(37) reads

dxΨ = (U + Ady)Ψ 9 (46)

dtψ = (V + Bdy)Ψ , (47)

which is the well known linear system associated with the JV-wave equations (see,
e.g, [27]).

Remark 25. The reduced SDYM system is equivalent to the compatibility condi-
tion of the system (46)-(47), which is a single "zero curvature" equation. Neverthe-
less, due to the infinite dimensional fiber g, this system is meaningful and the
examples presented clearly illustrate this.

Choosing the coefficients in the linear system (46)-(47) in the same way as
for the 1 4- 1 case (with additional dependence on y\) we get the compatibility
condition

dtU-dxV+lU, F] - BdyU + AdyV = 0, \_A, F] - [β, £7]

which results in the nonlinear PDE

LA9 dtQ-] - [β, 3XQ] - BLA, dyQ~] + AIB, dyQl + [[Λ β], [β, fl]] = 0 ,

where U = \_A, β], K= [β, β].

Remark 26. The linear system (46)-(47) can be obtained from that for the 1 -f- 1
case - (26)-(27) - by formally replacing the spectral parameter λ by dy. This is
a standard procedure for deriving the 2 + 1 integrable versions of the 1 + 1
systems. However, in the full SDYM case one can not simply replace λ by δs,
because then the differential operators D1 and D2 being second order would not
satisfy the derivation property (Leibniz rule) which was essential for our construc-
tions in Sect. 3. One can formally use this procedure only after reduction, when D1

and D2 would still be of the first order.
Proceeding in the same manner as in the previous section one can derive all

known features of the N-wave hierarchy in 2 + 1 case. In particular, using this
approach it is especially clear why higher TV-wave equations are nonlocal in x and
y. Namely, in the expansion (45) of the intertwiner W the coefficients Mk will be
local in x and y whereas the coefficients Zk will be nonlocal since one needs to
invert the first order differential operator with constant coefficients dx + Ady. In
the 1 + 1 case Φ = WBW~l = (1 + M)B(1 + M)"1 and has coefficients Φk which
are local in x, whereas in this case, since δj"1 does not commute with expZ, we
have

M)expZβδJ- 1exp(-Z)(l + M)"1 .

This formula shows that nonlocal terms are present in Φ\k} as well as in the higher
flows. However for the N-wave case the coefficient A2 = Φ(2}\ + is still local as
expected since A2 is one of the Yang-Mills potentials.

From Eqs. (43) and (44) one can write down the following recurrence relations
for determining the coefficients Φf°:

X Ck

p

 lΦ\klpdξU ,
P=l
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where Ck

p'
1 are certain binomial coefficients. From these it is possible to give

a precise meaning to the formal recursion operator R introduced in Sect. 3 consis-
tent with the known results [31, 32].

The evolution equations for ΛΓ-wave hierarchy can be explicitly written as

^
p=l

where the last equality follows from the recurrence relations for the Φj f c ). One can
further pursue along these line obtaining symmetries, conservation laws, etc., from
those for the SDYM case. We believe that previous examples demonstrated how to
do it so we will omit these routine (though sometimes lengthy!) calculations.

5.2. The D-S Reduction. The D-S system is a natural 2 + 1 generalization of the
NLS equation and can be obtained as a second member in the 2-wave hierarchy.
Namely, assume that

ί _?) »-(• i
and consider the linear system

8xψ = (U + Hd,)Ψ ,

where V ̂  = κU and

2Rί
V2 2\-κ(dx-dy)r 2R2

with R1 and R2 satisfying the equations

(dx-dy)Rί= -^(8x + dy)(qr),

(dx + dy)R2=^(dx-dy)(qr).

The compatibility condition results in the following system of PDE's for q and r:

where

, - R2) = - κ(dl + 8 2 ) ( q r ) .Jyl

This nonlocal (after eliminating R1 — R2) system of nonlinear PDE's for q and
r is called the D-S system. The physically interesting cases correspond to the special
reductions q = ψ, r = ± ^ (after the rescaling dy t-> σdy and setting K = i/σ2, where
σ2= ± I).
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All general constructions in Sect. 3 are valid in the D-S case and the results
concerning its hierarchy, conservation laws, symmetries and recursion operator,
follow.

5.3. KP Reduction. The KP reduction is similar to that of KdV in the previous
section with the only difference that now the "fiber" variable s, denoted by y, is the
second spatial variable for the KP field u(x, y, t\ We can write down the KP linear
system as

8χψ = (U + £_ dy) Ψ = Ay Ψ , (48)

dt ψ = (V- Edy + Aydy)Ψ = Az Ψ , (49)

where 17, E_ and E are the same as in Sect. 4.3 and V has the form

α + ίLw — 2u

where α satisfies

dyu α — dxu

3dyu .

Eliminating α from the compatibility condition for the system (48)-{49) one gets the
KP equation

8tu = -(dlu - 6udxu + 3dx

1(d2u)) .

Using the general construction at the beginning of this section one can derive
the KP hierarchy. In doing this one should keep in mind the special features of the
KP gauge, which were already present in the KdV case (see Sect. 4.3). Namely,
consider the bare potential in (48) to be Ay = A = E+ + E- dy which satisfies an
important property A2 = dy. Choose the bare potentials Ak from the SDYM

hierarchy to be Λdy'1 = A2k~l, k ̂  2; then the SDYM hierarchy reduces to the
higher KP flows expressed as

dtkU = dxΦφ - [£7 + E-3,, Φ(ί>] , (50)

where

Note that the right-hand side of (50) has order zero, i.e. is a function since the higher
coefficients of dy vanish due to the recurrence relation for the Φf\ These higher KP
flows are generalizations of higher KdV flows. However, they do not constitute the
complete KP hierarchy as there exists another set of flows. To obtain them from
our scheme, note that (50) deals with

. φ2k 1^ φ __

Now consider even powers of Φ:
00

Φ<k> = Φ2* = Wdk

s IV-1 = X Φj»S*-',
1 = 0
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with the corresponding flows (which become trivial in the KdV case) given by

dΐkU = δxΦ
(? - [17 + E- dy, Φ(f>] , (51)

which, together with (50), constitute a commuting KP hierarchy.

Remark 27. For completeness one should include into this hierarchy linear equa-
tions dtl u = dxu and d~tlu = dyu, which can be obtained, respectively, from (50) and
(51) by setting k = 1.

Remark 28. Starting from our scheme one can recover Sato's approach [11] to the
KP hierarchy. To make this connection more transparent, introduce Bk = (Φk)+
and τk = t(k-^j2 for odd fe and τk = tk/2 for even k. Then Φ satisfies the differential
equation

δ τ kΦ = [£fe,Φ]

and the KP hierarchy is given by

These formulas are essentially the same as in [11] now written in "matrix form."
More precisely, using the fact that linear equation (48) is equivalent to the
"y-dependent" Schrόdinger equation

we can "trade off" dy in W for dX9 so that from W one can recover Sato's
pseudodifferential operator in dx. Recall that in Sect. 4.3 we used the same method
to show how our approach coincides with the Gelfand-Dikii and Adler schemes.

Remark 29. Consider once again the differential equation

Decomposing it into Cart an and nilpotent parts (cf. Sect. 4.3) we can obtain
a recursion operator for the KP hierarchy. It gives a precise meaning to the formal
expression R and coincides with that obtained in [30]. In addition, considering the
polynomial and Laurent parts with respect to dy of the above equation we get
another form of the KP hierarchy

d τ kt/ = ad£_(ResΦ ( k )),

where Res is the "non-commutative" residue - the coefficient in front of the d y

 1 in
the pseudodifferential operator Φ(k).

Similarly, we note that one can also recover symmetries and conservation laws
for the KP hierarchy.

6. Concluding Remarks

Thus we have seen how the general theory of intertwiners, developed for the
SDYM system, produces, under reductions, many of the known results for integr-
able systems in 1 + 1 and 2-1-1 dimensions. For the 1 -f- 1 case our approach
yields, in addition to the hierarchies, conservation laws and symmetries, also
a method of solution based on the underlying Riemann-Hilbert factorization
problem. We expect that similar statements for the special SDYM system discussed
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in Sect. 5 will produce nonlocal Riemann-Hilbert and 3-problems for solving
multidimensional systems.

An important feature of integrable systems which we did not address here is
their Hamiltonian structure as a reduction of an appropriate "universal" structure
for the SDYM equations. Considering several simple examples we conjecture that
the underlying gradient flow structure of the SDYM equations may be exploited to
generate the Hamiltonian structure for integrable equations. An intriguing prob-
lem in this direction is to understand possible connections between the "universal"
SDYM structure and the formalism of classical r-matrix for 1 + 1 integrable
systems.
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