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Abstract. We investigate the g-deformation of the BRST algebra, the algebra of the
ghost, matter and gauge fields on one spacetime point using the result of the
bicovariant differential calculus. There are two nilpotent operations in the algebra,
the BRST transformation δB and the derivative d. We show that one can define the
covariant commutation relations among the fields and their derivatives consis-
tently with these two operations as well as the ^-operation, the antimultiplicative
inner involution.

0. Introduction

It is an interesting question whether one can construct a ^-analogue of the gauge
theory by taking the quantum group [Dri,FRT, Jim, Worl] as a symmetry. One of
the interesting possibilities of such a ^-deformed theory is that the deformation
parameter q may play a role of a regularization parameter. Furthermore, since the
quantum group is provided by a noncommutative algebra, in such a theory
the noncommutative geometry [Connes] plays a basic role like the differential
geometry in the usual gauge theory.

There are some proposals to this problem [Are, Ber, Hira, IP, WuZ]. However,
it seems that there are still conceptual problems concerning the definition of the
gauge transformation when we take the quantum group as an algebraic object of
the gauge symmetry. Since the quantum group is formulated in the language of the
Hopf algebra, it forces us to formulate the whole theory in an appropriate algebraic
language [BM]. Thus the gauge transformation will be represented in an abstract
language and the term of the transformation parameter becomes obscure. Even
when we consider only the infinitesimal transformation, we have still the question
of the definition of the infinitesimal parameters.
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One of the alternative formulations of the gauge theory is given by the BRST
formalism [BRST,KO]. There, the gauge transformation parameter is replaced by
the ghost fields and becomes an object of equal level with the matter and the gauge
fields. Therefore, when we consider the ^-deformation of the gauge theory, it is very
natural to consider the ^-deformed field algebra starting with the BRST formalism.

In this paper we construct a g-deformation of the BRST algebra which is the
algebra of the gauge fields, the ghost fields and appropriate matter fields on one
spacetime point. The gauge transformation of the theory is replaced by the BRST
transformation which is represented by a nilpotent "differential operator" δB.

The paper is organized as follows. In Sect. 1, we give a collection of some results
of the bicovariant differential calculus on the quantum group which we need for the
later investigation. In Sect. 2, we discuss about the algebraic properties of the gauge
transformation and we give the general conditions that the ^-deformed BRST
algebra must satisfy. Following this general framework, we define the algebra and
prove various consistencies in Sect. 3. Section 4 is devoted to discussions.

For the notation concerning the Hopf algebra [Abe], we take: the coproduct A9

the antipode K and the counit ε (see also ref. [CW] for our notation). Through this
paper the upper case roman index, /, J, K, L runs 0, —, 3, + and the lower case
index like α, fe, c, d runs over the label of the adjoint representation, —, 3, +,
otherwise we specify explicitly.

1. Bicovariant Differential Calculus

Before we start to construct the BRST algebra, let us briefly recall some results of
the bicovariant differential calculus [Wor2, Rosso, Jur, CSWW]. The one-forms
are defined by the right invariant bases θ] ( i , j = 1, 2), where θ}* = θ{. Using the
spinor metric

we define θij = θl

kε
kj, then they have the commutation relation

VαeFunί(Sl/(2)).
L is the functional ¥\mq(SU(2)) -> C defined by

Lg = (!/_,*£'+*)<>*, (1.3)

where the functionals L± and the convolution product are defined in Appendix A.
[The functionals f± appearing in ref. [CSWW] equivalent to the L± in ref. [FRT]
which we use here. Thus, Lg is equivalent to the functional f l j ί d k i ° κ *n

ref, [CSWW].]
The right invariant bases θlj can be split into two parts as a left comodule: the

adjoint representation θa (a = —, 3, + ) and the singlet 0°. We use the g-Pauli
matrices σy and σ/ 7, where σ^ σy = δj (I = 0, -, 3, +) and

0 s
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where Q = q + q~l and ski = — εkl. With these g-Pauli matrices we can write the
projectors as

(1-5)

σ l a j σ a

k l , (1.6)

where 0>s (&A) is the projector for the g-(anti)symmetric product. Using these
g-Pauli matrices we define

Θ1 = σljθij . (1.7)

The g-deformed exterior derivative d is defined as a map from Fun^(G) to the
bimodule defined with the basis θ requiring that the nilpotency and the Leibniz rule
hold in the standard way [Wor2]. Such an operation can be defined simply as the
commutator with the singlet component θ° as [CSWW]

dα = -[00,fl]_ (1.8)
ω

for any element a e Fung (Sl/(2)), where ω = q — q 1,i = Λ y — 1 and g is a non-zero

real constant. The relation of the constant g with the constant N0 in ref. [CSWW]

is q = - ̂ - — . Since da is an element of the bicovariant bimodule, we can
J

expand it with the basis as

da = θI(a*χI), (1.9)

where the right invariant vector field χ^ is given by

χι = σhu = ̂ (σfjs - σ° I«) . (1.10)

We can consider the functional χ/ as a differential operator. The Leibniz rule is
given by the coproduct of χ/ :

)(b* χ j). ' (1.11)

One of the suggesting relations given by the bicovariant differential calculus is
the ^-analogue of the Maurer-Cartan equation. In ref. [CSWW], we gave the
expression in a more familiar form:

dθ° = 0 , (1.12)

~ c θ b *θc, (1.13)2 - 2 c ,

where Λ is the g-deformed exterior product. The f%c is the ςr-analogue of the
structure constants. Using the general formula for the structure constants in
ref. [CSWW] (See also ref.[Carow]), we obtain them for the Funβ(Sl/(2)) as

(1.14)



70 S. Watamura

The Maurer-Cartan equation and the definition of the χ/ given in Eq. (1.10), we
can deduce the commutation relation among the ^-vector fields χ/. We find that
χ0 is central and actually proportional to the second Casimir operator [Weich,
CSWW]. The commutation relations of others are given by

(1.15)
q - f q ~

where the functional p is central and

(See also Eq. (5.50) in ref. [CW].) The matrix PAd = (&S9 0>A) + (0>A, 0>s) is an
operator projecting the tensor onto the ^-antisymmetric part, where (@*r, &r>) is
defined in Eq. (7.4) of ref. [CSWW] (see Appendix B). P$dcd is the projector re-
stricted to the product of two adjoint representations. Thus l.h.s. of Eq. (1.15) gives
the g-analogue of the usual commutator of the generators.

For the Fung(SC7(2)) calculus we can write

pjfdcd = —~ _ fcdfa^ > (1.17)

where fb

a

c = —fa

bc . Therefore, it is straightforward to evaluate these projection
operators and using that result, Eq. (1.15) is written as

, (1-18)

- -q~1X-*X3 = -P*/- , (1.19)

χ + * χ _ -χ-*χ + -ωχ3*χ3 = p*χ 3 . (1.20)

In the limit q -> 1, the operator p is proportional to the counit and we get the
standard commutation relation of generators of SU(2).

2. Gauge Transformation and BRST Formalism

2.7. Gauge Transformation. As we explained in the introduction, we need to
represent the gauge theory using an appropriate algebra language which fits to the
Hopf algebra structure. Thus, let us first reconsider the gauge and the BRST
transformation in the non-deformed theory. We take SU(2) gauge theory as an
example but the result applies to the general group.

When we consider the usual non-deformed gauge theory with a symmetry
group 5 U (2), the matter like a lepton is represented by the field which is the section
of the associated fiber bundle of the structure group SU(2) with the spacetime as
a base manifold B. Thus the algebra of the matter fields is the algebra of all possible
sections.

Under the gauge transformation, the matter field Ψ is transformed according to
its representation. Giving the SC7(2) valued function g ( x ) e S U ( 2 ) on the base
manifold B 3 x, when the matter is of the fundamental representation the gauge
transformation of the matter ^'(x) can be written as

x), (2.1)



Quantum Deformation of BRST Algebra 71

where (i, j = 1, 2). We wrote the gauge transformation matrix as M](g(x)) to clarify
the algebraic structure. The matrix element M} maps the g(x) to the complex
valued function on the base manifold and thus point wise M} is an element of the
Fun(Sl/(2)). Therefore, the gauge transformation property of the matter field can
be translated into the algebraic language such that the algebra of matter fields is the
(left) comodule algebra, and there is a pointwise (left) coaction ΔL of Fun(SI7(2)) on
the field Ψ:

ΣTS®ΨS, (2.2)

where TsEFun(SU(2)) are matrix elements of the representation corresponding to
the matter Ψ. For the fundamental representation Eq. (2.2) is AL(Ψl) = M j ® Ψ j

and with the corresponding argument we get Eq. (2.1).
The infinitesimal transformation corresponding to the transformation (2.1) can

be written as

δ^Ψ^x)) = ξa(x)χa(Mί

j) Ψj(x) , (2.3)

where α = -, 3, + is the label of the adjoint representation of Sl/(2), ξa is the
gauge parameter which is the real function of the spacetime and χfl(M }) is a 2 x 2
matrix. In the non-deformed case we can identify χa with the right invariant vector
fields which are considered as the linear functionals Fun (S 17 (2)) -> C with the
evaluation

χβ(Mj) = L μ M}(0(<n)lat unity , (2.4)

where g(φμ) is the group element parametrized by φμ and Lμ

a is the component of
the right invariant vector field. The r.h.s. gives the Pauli matrix for the SU (2) case
and thus Eq. (2.3) is the familiar infinitesimal transformation. The above structure
can be translated into the algebraic language as follows:

The infinitesimal transformation δξ of the matter field Ψ can be represented by
the vector fields χa and the infinitesimal parameter ξa as

δξΨ = ξ a ( Ψ * χ a ) 9 (2.5)

where ( * ) denotes the convolution product of a comodule with a functional. For
detail see Appendix A. For the fundamental representation, using the definition
(A. 10) it is easy to show that the formula (2.5) is equivalent to Eq. (2.3).

Using the above algebraic representations, we may consider the ^-analogue of
the finite and the infinitesimal gauge transformation which we will discuss else-
where. Here we want to concentrate on the ^-deformation of the BRST algebra
which seems the most appropriate algebra to consider the g-deformation of the
gauge theory.

The BRST transformation of the matter field is defined by replacing the gauge
parameter ξa by the ghost field Ca [FP]. Thus the BRST transformation can be
written as

δBΨ = C*(Ψ*χa). (2.6)

For the fundamental representation this is

δBΨ
i = C a χ a ( M i j ) ψ J . (2.7)

Replacing the χα(M}) with the Pauli matrix this is a familiar BRST transformation.
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2.2. Definition of q-deformed BRST Algebra. After the above preparation we
specify the properties of the g-deformed BRST algebra which we will construct in
the next section. We extract appropriate properties from the non-deformed BRST
formalism and impose them as the condition which our algebra should satisfy. We
also require that in general in the limit q -> 1, we always get the algebra equivalent
to the non-deformed one.

The BRST algebra is the algebra which contains the matter fields Ψ and the
gauge fields A1 and the ghosts C1 which are the standard field contents of the BRST
formalism. The suffix / corresponds to the adjoint representation in the non-
deformed case. However, in the g-deformed case we only require that it contains
the adjoint representation and allow to add a singlet component like the right
invariant basis θ] in the bicovariant differential calculus.

In the field theory, we have the spacetime derivative d and therefore, we also
require the existence of the map d in the algebra which maps:

(Ψ, A1, C1) i (dΨ, dA1, dC1) i 0 . (2.8)

To construct the algebra we treat the fields dΨ, a A1 and dC1 as independent
generators and then require the consistency with the above map d.

Definition 1. The BRST algebra ^B is a comodule algebra over Fun^(G) which is
generated by the following set of the comodules:

j*B = C<C/, Ψ, A1, dC1, dΨ9 dAty/j? , (2.9)

where C1 represents the ghost, Ψ the matter and A1 the gauge fields. J* is a set of the
covariant commutation relations among these comodules, which we shall determine in
the next section.

In the non-deformed BRST formalism of the gauge theory there are two
nilpotent operations, the exterior derivative d and the BRST transformation δB.
We also require the corresponding structure in the algebra and that they keep the
following properties in the g-deformed case:

Condition A. The BRST algebra possesses the following operations:

1. There exists an operation δB in the algebra £#B such that

(a) the δB operation satisfies the Leibniz rule in the graded sense,
(b) δl = 0.

2. There exists an operation d corresponding to the exterior derivative such that

(a) the d operation satisfies the Leibniz rule in the graded sense,
(b) d2 = 0,
(c) the action on A1, Ψ and C1 is defined as Eq. (2.8).

3. The two operations are antίcommuting: dδB + δBd = 0.
4. There exists a ^-conjugation which is an inner involution of the algebra £#B and

antimultiplicative in the graded sense and also satisfies

(a) δ B o * = *oδ Λ

(b) do* = *od.
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5. The operations δB and d are covariant: For any element pe^/B they satisfy

(a) ΔL(δBp) = (id®δB)ΔL(p),
(b) ΔL(dp) = (id®d)ΔL(p).

In the non-deformed case the number of the ghost fields is the dimension of the
adjoint representation, i.e., three for SU (2). It is known that the property of the
ghosts under the BRST transformation is related with the invariant one-forms on
the group. In the g-deformed case, the result of the bicovariant bimodule calculus
implies that the number of the independent bases of the invariant one-forms is four
for the calculus on ¥unq(SU '(2)). They include both the adjoint and singlet repres-
entation. Although the ghost fields are not required to be the bimodule over
¥unq(SU(2)\ it turns out that when we consider the covariant commutation
relation with the different type of fields such as the matter fields, the projection
onto the adjoint components are not compatible with the commutation relations.
Therefore, in the ^-deformed BRST algebra, we introduce the four ghosts C1 where
the suffix / runs 0, — , 3, + .

For convenience in the following discussion, first we give here the definition of
the ghosts C1:

Definition 2. In the q-deformed BRST algebra based on the bicovariant differential
calculus on Funς(Sί/(2)), we define the ghost field as a comodule represented by
a 2x2 matrix C}. The left-coaction on it is

ΔL(Ci

j) = M\.κ(Mj

j')®Cί'j,, (2.10)

and under the ^-conjugation it transforms like a hermitian matrix:

(Ci

JΓ = Cj

i. (2.11*)

We also introduce the upper index object Cij for convenience by using the
spinor metric είj :

Cίj = C\Bkj " (2.12)

with this basis the coaction becomes simply

AL(Cίj) = M\,M{ ® Ci>jl . (2.13)

We can decompose the ghost fields into singlet and adjoint representation by
using the q-Pauli matrix given in Eq. (1.4) as

C1 = σl^C"* 9 (2.14)

where / = 0, — , 3, + . The singlet component C° is invariant under the left-
coaction.

Note that like Eq. (2.14), in the following we freely change the suffix /, J, . . .
with double suffix {Ma}? {7172} by using the σ matrix.

The ghosts are the anticommuting fields in the BRST formalism, and therefore,
to define the algebra of the ghosts CJ, we also impose the g-deformed anticom-
mutativity among the ghosts. For this purpose, we take the same definition for the
product rule as the one of the Λ product in the bicovariant differential calculus.

Finally, in the non-deformed case, the BRST transformation of the ghosts has
the same form as the Maurer-Cartan equation. Therefore for the g-deformed
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BRST algebra, we postulate that the BRST transformation of the ghost fields has
the same form as the Maurer-Cartan equation of the bicovariant differential
calculus (1.12) and (1.13).

Here we summarize the conditions on the ^-deformed ghosts:

Condition B.
1. As a comodule, they have the same properties as the right invariant basis

θ] appearing in the bicovariant differential calculus and consist of both adjoint
and singlet components.

2. They are q-anticommuting .
3. The BRST transformation δB of the ghosts has the same form as the

Maurer-Cartan equation obtained by the bicovariant differential calculus,

δBC
a= 2 ~^_ 2 /g c C b C c , (2.15)

<5BC° = 0, (2.16)

where g is an arbitrary non-zero real constant. The structure constant flcfor
Funq(SU(2)) is given in Eq. (1.14).

To define the g-deformed BRST transformation of the matter, we take the
algebraic representation in Eq. (2.6). Therefore, using the above ghost fields we
define the ^-deformed BRST transformation of the matter analogously to Eq. (2.6)
as

δBΨ = C'OP**,) = C«(Ψ*χa) + C°(y *χ0) , (2.Π)

where χIe^q(SU(2)) is the one given in Eq. (1.10). Although the last term does not
have the corresponding term in the non-deformed case, it goes to zero in the limit
q -> 1. The singlet component of the ghost is not desirable from the physical point
of view. On the other hand, as we shall see it seems it is necessary to include it in
order to put the algebra into a simple form. We come back to this point in the
discussion.

Therefore, for the g-deformed BRST transformation of the matter we have the
following condition:

Condition C. The BRST transformation of the matter fields is defined by the
q-analogue of the infinitesimal transformation with the ghost as the parameter:

, (2.18)

where the χ/ are the functionals given in Eq. (1.10).

Finally we require the existence of the co variant derivative which is represented
by the derivative d and the gauge fields A1. The coupling of the gauge fields to the
matter fields is determined naturally by the structure of the BRST transformation
of the matter fields given in Eq. (2.18). Therefore, our requirement concerning the
covariant derivative is:

Condition D. There exists a covariant derivative V which acts on the matter as

VΨ = dΨ + AI(Ψ*χI), (2.19)

where A1 are the gauge fields which satisfies

j)* = M - (2.20)
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The coυariant derivative transforms with the same rule as the corresponding matter

δBVΨ = CI(VΨ*χI). (2.21)

Under the ^-conjugation it has the property

V o * = * o V . (2.22)

In the following sections, requiring the above conditions and the co variance, we
define the comodule algebra j/β. The main part of the construction is to define the
commutation relations </. The relation «/ is defined by the following requirement.

Condition E.
1. The covariance, i.e. if the relation r = 0 then ΔL(r] = 0.
2. The consistency of the relations among each others.
3. Invarίance under ^-conjugation.

3. The BRST Algebra

In this section we give the commutation among the elements and the BRST
transformation of the gauge fields to complete the definition of the BRST algebra.
For convenience, we give all relations in the first part of this section. The proof of
the consistency of these relations are collected in the remaining part of the section.

3.1. Results. The commutation relation of each type of fields among themselves can
be defined by taking the ^-antisymmetric (^-symmetric) product to vanish if it is
a bosonic (fermionic) field in the limit q -* 1.

The ghost fields are g-anticommuting by definition. The gauge fields are also
g-anticommuting since they are spacetime one-forms in the limit of q -> 1. We
define the g-anticommutation relation of these fields using the same formula used
to define the Λ product in ref. [CSWW]:

(^s^s)κιC C = 0, (3.1)

(&s,&s)tLAKAL = 0, (3.3)

4L = 0. (3.4)

For the notation ( , ) for the pair of projectors see Appendix B.
The other relations including the derivative of the fields have also to be defined.

They must satisfy the consistency condition E. Furthermore, since the operation
d relates some of the relations, they are not all independent. The independent
relations are the ones between ({CJ}, {dC1}), ({A1}, {dA1}), ({C1}, {A1}),
({C7}, {Ψ}), ({A1}, {Ψ}\ ({ψ}9 {Ψ}) and ({Ψ}9 {dΨ}). The other relations can be
derived from them by requiring the consistency with the d operation.

When we require the consistency with other structures, we can also fix those
relations. The resulting relations except the ( { Ψ } , {Ψ}) and the ({Ψ}9 {dΨ})
relations are given by the following:

Proposition 1. Define the ordering of the fields as

{Ψ, dΨ} > {dA1} > {A1} > {dC1} > {C1} , (3.5)
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then if X > Y1, the commutation relation is given by

XY1 = ±YJ(X*LI

J), (3.6)

where the sign is taken as + (— ) if they are commuting (anticommuting) in the limit
q -> 1 and Lj is the functional defined in Eq. (1.3). Note that we take the l-form and
the ghost anticommuting with each other.

The relations ofdA1 and dC1 are

AL = 0, (3.7)

AL = 09 (3.8)

and

CL = Q , (3.9)

CL = 0. (3.10)

The last two relations simply mean that dA1 and dC1 are ^-commuting fields as
expected.

The algebra of the matter fields can be defined like a quantum plane, since the
quantum plane algebra is the algebra generated by the comodule imposing an
appropriate commutation relation [Manin]. The algebra depends on the repre-
sentation of the matter fields in the model. In our construction, we do not need to
specify the representations of the matter. The algebra of the ghost and gauge fields
which is defined in this section is applicable for any representation of the matter.
This property provides the flexibility to consider the model with various matter
fields. We give one example in Appendix C.

With the above relations we can find the BRST transformation of the gauge
field by using standard logic to define it in the field theory.

Proposition 2. The BRST transformation of the gauge field is given by

δBA° = dC°, (3.11)

δBA
a = dCa - ig(ωC°Aa + fa

bcC
bAc) , (3.12)

and it is nilpotent.

This completes the definition of the algebra. In the rest of this section we give
the proof of the consistency of the above relations and the nilpotency of the BRST
operation.

In the last part of this section we also define the field strength using the above
algebra. The result is

Proposition 3. The field strength is given by

Fa = dA" - 2

1^ _2f
a

bcA
bAc , (3.13)

F° = d4°. (3.14)

The field strength is covarίant under the BRST transformation:

δiF^C'φ' Xj), (3.15)
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and satisfies the Bianchί identity:

dF° = 2+ -Jlc[_AbFc - FbAc~\ , (3.16)

dF° = 0 . (3.17)

3.2. Algebra of Ghosts. Here we prove the consistency of the commutation relation
of the ghosts Eq. (3.1) and Eq. (3.2).

From the definitions (3.1) and (3.2), we obtain for the component of the adjoint
representation:

C+C+ = 0, (3.19)

CΓCΓ =0, (3.20)

C3C3 = ωC~C+ , (3.21)

C+C3 = -q2C3C+ , (3.22)

C~C3 = -q~2C3C~ , (3.23)

C + C~ = - C~C+ . (3.24)

The relations including the singlet component are

[C°, C']+ - ̂ 2~^- 2/LC bC c, (3.25)

or explicitly,

:+ , (3.26)

C3 , (3.27)

[C3, C°]+ =ωC + C~ . (3.28)

Finally we have

C°C° - 0 . (3.29)

Since the commutation relations among the ghosts are the same as the right
invariant basis of the bicovariant bimodules, Conditions Bl and B2 are satisfied.

We also require that the BRST transformation is given by Eqs. (2.15) and (2.16).
As in the case of the bicovariant differential calculus, the commutation relation
(3.25) implies that we can write Eqs. (2.15) and (2.16) as the commutator with C°:

Proposition 4.

5BCI = -[C°,C/]+ . (3.30)
ω

It is important that the BRST transformation can be represented by the
commutator, since it guarantees the Leibniz rule for the BRST operator (Cond.
Ala). The nilpotency of the BRST transformation (Cond. Alb) also holds on the
algebra of the ghosts due to Eq. (3.29).
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The covariance of the δB (Cond. A 5a) is also clear since C° is the invariant
element and thus

ΔL(δBp] = - ΔL(IC°, p]) = (id ® δB)AL(p) . (3.31)
CO

In order to impose the hermiticity of the ghost field, the commutation relation
(2.11) must be consistent with the algebra of the ghost fields defined above. This
means that the ^-operation which is antimultiplicative in the graded sense, i.e.,

(CICJ)*= -(CJ)*(CJ)* (3.32)

is a covariant inner involution of the algebra. This property is also clear since the
algebra of the ghost is the same as the algebra of the right invariant basis θ1. In the
present case, it is straightforward to prove these properties explicitly:

From the definition in Eqs. (2.11) and (2.14), we find

(C-)* = qC+ , (3.33)

(C+)* = q-lC- , (3.34)

(C3)* - C3 , (3.35)

(C°)* - C° . (3.36)

By using these relations we see easily that the relations (3.19)-(3.29) are invariant
under the * -conjugation. The last equation together with Eq. (3.30) implies also
Condition A4a.

3.3. Algebra of Matter and Ghost Field. Next we add the matter fields consistently
to the above algebra of the ghost fields. The commutation relation among the ghost
and matter fields can be derived as follows:

First of all, the requirement of the covariance implies that the commutation
relation is written in terms of linear combinations of the possible R matrix. Its
consistency with the ghost algebra as well as the matter algebra implies that the
matrix giving the commutation relation among the ghost and matter fields must
satisfy the Yang-Baxter like equations and it excludes the linear combination of the
R matrix like in the case of the other comodule algebra (see for example
ref.[CSW]).

Therefore, for example if the matter Ψ is bosonic and of the fundamental
representation Ψl as given in Appendix C, then we can take the ansatz:

y*C i l ί2 - - αR ^R/J'2^'2^, (3.37)

where oc is a constant which is 1 in the limit q -> 1. The ± attached to the R matrix
means that any combination is allowed and thus we have four possibilities. For the
general representation we can write the ansatz as follows:

ΨCίίi2 = ±aCM*(Ψ*(Li;h*Liίh)*κ) , (3.38)

where we take the + sign for the bosonic and the — for the fermionic matter. The
suffices σ, σ' = ±, and Ll

σj is the corresponding functional defined in Eq. (A.4). It is
easy to see that the relation (3.38) gives the commutation relation (3.37) for the
boson of the fundamental representation Ψl. Using this ansatz, we can prove the
following statement.
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Proposition 5. The commutation relation among the ghost and matter is given by

ΨC1 = ±CJ(Ψ*LI

J), (3.39)

where the + (— ) sign is taken for the bosonic (fermionic) matter.

Proof. First we impose the consistency with ^-conjugation (Cond. E3). The her-
miticity of C} in Eq. (2.11) can be rewritten using the convention (2.12) as

(Cy)* = C%εκ . (3.40)

Then the ^-conjugation of the above ansatz (3.38) with hermiticity (3.40) gives
the commutation relation between the Ψ* and Cij as

(C*1*2)«P* = ±α*(yW2*1ε£l*H^

= ±**(Ψ**si*k*Biίk*(κ-l*(L$J*κ-^

= ±α*(y**4? / 2*Lί-} 1)C I l l 2

9 (3.41)

where if σ = ± then σ = + and the same rule for σ'.
The above equation is equivalent to

ψ*C^i2 = ± ̂ -iChJ2(Ψ^(V2

Ί2^V,}ί)oκ) . (3.42)

The condition E3 implies that Eq. (3.42) is equivalent to the relation (3.38) for the
matter Ψ*. Thus we get that

4V = 4 and αα* = l . (3.43)

To fix the choice of the σ we check the consistency with the BRST transforma-
tion. For the BRST transformation of the matter we use the form given in Eq. (2.18)
of Cond. C. For this part of the proof let us write the index of the matter field
explicitly as Ψa, where a runs over the corresponding representation. Taking the
BRST transform of both sides of the relation, we get

l.h.s.) - - {C°ΨaCίli2 - CJ(Ψa*L°j)Cίίi2 ± ψ«C°Cίίί2 ± ΨaCίίί2C°} ,
ω

- * j

(3.44)

(3.45)

where L'^ = (L^2*Z4) oκ.
Using the ansatz (3.38) again for the ^(l.h.s.), we can see the first terms of

Eqs. (3.44) and (3.45) are equivalent and thus we get the condition from the
equivalence of Eqs. (3.44) and (3.45):

= -CJCκ(Ψa*LI

σJ*L°κ). (3.46)

Multiplying the matrix R«/
l)Lb _ -pσ/i f l ' f ϊ^fr /Q *~^
κα/ — κ αii K α'i2 ' (^'^ ' )

where Rσ^ is the R matrix of the fundamental representation (suffix i, j ) and the
representation of the matter field (suffix α, b). Taking the summation over a and
/ we get

Lσ

0

y)] = C1 Cκ[_a(Ψa^κ) - (<F«*L°)] .

(3.48)
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Since (Ψ * L^_ j) and (Ψxi^j) = (Ψ*l,j) terms are independent, we conclude that
σ = -, i.e.,

LI

σJ = LI_J = LIj (3.49)

and

α = 1 . (3.50)

q.e.d

We can deduce the following commutation relations immediately.

Corollary 1.

dΨC1 = + CJ(dΨ*Lj), (3.51)

ΨdC1 = dCJ(Ψ*LI

J), (3.52)

dΨdC1 = dCJ(dΨ*LI

J). (3.53)

Proof. Applying the derivative d on Eq. (3.39) and comparing the term propor-
tional to dΨ and dC1 we get Eqs. (3.51) and (3.52). Then taking again the derivative
of Eq. (3.51) or Eq. (3.52) we get Eq. (3.53).

q.e.d.

By using the definition of the operator χ/, the commutation relation in (3.39)
implies that we can write the BRST transformation of the matter field in Eq. (2.18)
as the commutator:

Proposition 6.

δBΨ = — [C0,Ψ~\+ , (3.54)
ω

where we take the commutator [ , ] -for the bosonic matter and the antίcommutator
for fermionίc matter.

Proof.

ΓC° ΨΊ — 19 (C°Ψ jl ΨCQ\ — (C°Ψ ΓJΨ*T°\— |_O , i J :p — — ^U i -f i Lx j — — ^L/ i — Lx i * l^ij )
ω ω ω

. (3.55)

Using the definition of χ/ in Eq. (1.10) we have Eq. (3.54).
q.e.d

Once the BRST transformation is written in the form of a commutator with C°,
the Leibniz rule (Cond. Ala) follows immediately. Conditions A4a? 5a are also
straightforward. The proof of the nilpotency (Cond. Alb) is

δ\Ψ = δB(C°Ψ - ΨC°) = - C°[C0lF - <FC°] - [_C°Ψ - <FC°]C0 - 0 .

(3.56)

We also show the consistency of Eq. (3.39) with the commutation relation of the
ghosts and of the matter (Cond. E2), although we required it when we derived the
ansatz (3.38):
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In general the commutation relation of the matter is given by multiplying the
projection operator on the product of two matter fields. Thus it is sufficient to
prove that any projection 3P\\ lζ of a tensor Ψil ip commutes with the relation
(3.39). Since any covariant projection operator is defined by a combination of the
R matrix, we have

όΰ^ ίpψh. .ipr1 1 -- \- Φll l'CJ~ί ^(M1.1 M l p } Ψh J*> C1

^i^.-ip* ^ — ± •'ί! . . . ιp <^ ^JV*1 ji ' ' ' m jp)Ύ ^ 9

= ± CJVj(M\\ . . . M^ ^ ^C' . (3.57)

This proves the consistency with the relation of the matter fields.
The consistency of Eq. (3.39) with the relation of the ghost in Eqs. (3.1) and (3.2)

can be proven as follows:

ΨC*CK = CJCL(y *L5*Lf ) . (3.58)

Thus the sufficient condition is that

(^Γ,^)ίLLf*U = Lί*Lί(^r,^)fί. (3.59)

This is equivalent to the condition

Lί = U*Lί(R*, ROfί (3.60)

for all combination of s and s', where s, s' = +, — , since each projector &r can be
represented by the linear combination of R±. Using the relation among L+ and L_
and the explicit form of (Rs, Rs ) given in Appendix B, it is easy to see that Eq. (3.60)
is satisfied.

Using the similar method we can also derive the commutation relation of

Proposition 7. The commutation relation among the ghosts and their derivatives is
given by

L J

K ) . (3.61)

Proof. The first half of the proof of Proposition 5 concerning the consistency with
the *-operation is also applicable here and we can set the relation as

dC*CJ = αC*(ί/C7 *LJ

σK) , (3.62)

where α*α = 1. The hermiticity of the dC] can be simply imposed and does not
require new relations.

Then we check the consistency with the BRST transformation. Taking the
derivative of Eq. (3.30) we get

\ CJ]_ + tdC1, C°]_} . (3.63)
ω

Using the R matrix representation of Eq. (3.62) we can see that if σ = — (σ = +)
then dC° (C°) is commuting with all elements of {C1} ({dC1}, resp.). Thus we get

C°]_ for σ = - , (3.64)
ω -

C']- for σ= + . (3.65)
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Now we see that if σ = — then the BRST transform of dC1 is the same as the
matter and thus the consistency follows from Proposition 5. On the other hand, if
σ = + we can show that it contradicts with the nilpotency of the BRST operation
as follows. Taking the BRST transform of the r.h.s. of Eq. (3.65) we get

<5β (r.h.s.) - d^δβC1 - dC^δβC1 *L+*j) . (3.66)

The above two terms do not cancel and thus δB

2 on dC1 is not zero with the choice
σ = + . Finally, to get the Leibniz rule of the BRST operation on the product of
dC1 we must set α = 1. Thus we get Eq. (3.61).

q.e.d

The consistency of the relation (3.61) with the algebra of the ghosts is as follows.
We use the projector expansion of the matrix (ft"1, R)ϋ in Eq. (B.2) of Appen-
dix B. Acting with ( ŝ, 0>s) and (0>A, &A) on both sides of Eq. (3.61) we get

L - CκdCL) = 0 , (3.67)
L - CκdCL) = 0 . (3.68)

These relations show the consistency of the relation (3.61) with Eqs. (3.1) and
(3.2) since Eqs. (3.67) and (3.68) are the derivatives of Eqs. (3.1) and (3.2), respec-
tively. Furthermore Eqs. (3.9) and (3.10) follow immediately.

Corollary 2. dC1 are q-commutίng and their commutation relation is defined by
Eqs. (3.9) and (3.10).

Proof. Taking the derivative of Eq. (3.61) we get

άClΛC* = (ft", RYK

J

LdCKdCL , (3.69)

where we have evaluated the functional Lj. Using the projector expansion (B.2) in
Appendix B, we get Eqs. (3.9) and (3.10).

q.e.d

3.4. Gauge Field. The BRST transformation of the gauge field can be derived by
the usual logic used in the nondeformed gauge theory. The derivative of the field is
not covariant under the BRST transformation. Its transformation is

δBdΨ=-dδBΨ9

χ/) . (3.70)

We define the covariant derivative V by introducing the gauge field A1 as
Eq. (2.19) and we require the covariance under the BRST transformation (2.21)
which can be rewritten as

= C'(dΨ*χι) + C'Λ'OP **,*£,) . (3.71)

On the other hand taking the BRST transformation of the r.h.s. of Eq. (2.19)
we get

δBVΨ = -dδBΨ + (δB

(3.72)
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The BRST transformation of the gauge field can be defined by requiring the
equivalence of Eqs. (3.71) and (3.72). Thus we get

+ (A'CJ + CMJ)(<F*χ /*χ j) . (3.73)

In order to separate the fields from the generators χ/ of the dual algebra we need
to reduce the (χ/ * χj) in the second term into a term linear in the generators χ/. In
the usual non-deformed case, we use the commutator for this purpose. The
corresponding relation in the g-deformed case is Eq. (1.15). Therefore, in our case
A1C3 -h C1 AJ need to create the projector PAd to apply Eq. (1.15).

Using the previous result we can prove that

Proposition 8. The commutation relation among the ghost and gauge fields is given by

A*CJ = -CK(A^LJ

K). (3.74)

With the above relation we can separate the algebra ofχf and the BRST transforma-
tion of the gauge fields. Then, the BRST transformation of the gauge fields is given by

δBA° = dC° , (3.75)

δBA
a = dCa - ig(ωC°Aa +fa

bcC
bAc) . (3.76)

Proof. We can apply the same argument of the proof of Proposition 5 concerning
the consistency with the ^-operation and we can set

AJCJ = -aCκ(AI^LJ

σK) . (3.77)

To fix the choice of σ we apply the BRST transformation of Eq. (3.77). The
hermiticity of A1 can be imposed simply and does not require any new condition.
We know from Eq. (3.73) that

δB A1 = dC1 + {other terms independent of dC1} . (3.78)

Thus comparing the dC1 dependent term of the BRST transform of Eq. (3.77) and
Eq. (3.61) we conclude that the relation of the ghost and gauge fields is Eq. (3.74).

Using the definition of the L, the relation (3.74) in terms of the R matrix is

A1C3 = -(R-\RYK

J

LCKAL . (3.79)

Substituting this into Eq. (3.73), we get

M'OP**/) = (dC')(y **/) + CKAL((1, 1YK

J

L - (ft'1, ft)g,)(y * χ / * χ j ) ,

= (dC°)(Ψ*χ0) + ίdC°-ig(ωC°Aa + fa

bcC
bAc)'](Ψ*χa) , (3.80)

where we have used Eq. (B.3) in Appendix B. Thus we get Eqs. (3.75) and (3.76).
q.e.d

Then applying the derivative d on Eq. (3.74), we get

Corollary 3.

άAlC3 = CK(dA^LJ

K) , (3.81)

AlάC3 = dCK(AI * L£) , (3.82)

άAlάC3 = dCK(dAI * L£) . (3.83)
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Proof. Applying d on Eq. (3.74) and comparing the terms proportional to dA1 and
dC1 we get Eqs. (3.81) and (3.82). Applying d on Eq. (3.82) we get Eq. (3.83).

To prove the nilpotency of the BRST transformation, we show that the BRST
transformation of the gauge field can be also written by using the commutator
with C°.

Proposition 9. The BRST transformation of the gauge field can be expressed as

δβA1 = dC1 + - [A1, C°] + (3.84)
ω

and the BRST operation is nilpotent.

Proof. Using the decomposition of the (R~, R) given in Appendix B, the relation of
A1 and C1 can be written in components as

A°C° = -C°A\ (3.85)

AQCa = -CM0 , (3.86)

AaC° = - (ω2 + ί)CQAa -ωfa

bcC
bAc, (3.87)

AaCb = - CaAb - faJ(ωCQAa> + fa

cdC
cAd). (3.88)

The third relation can be written as

- [Aa, C°]+ = -(ωC°Aa + fa

bcC
bAc) . (3.89)

ω

Comparing the above Eqs. (3.85) and (3.89) with Eqs. (3.75) and (3.76), we get the
formula given in Eq. (3.84).

The nilpotency of the BRST operation on A° is apparent. The BRST operation
on the gauge field Aa can be proven as

δB(δBA
a) = - dδBC

a + - \bBA\ C°]_ ,
ω

= -(</[C°, C"]+ - \άC\ C°]_ + ̂
ω ω

= - -([dC°, C*]_) - 0 . (3.90)
ω

q.e.d

Now using the BRST transformation of the gauge field given in Proposition 9 it
follows:

Proposition 10.

ΨA1 = ±AI(Ψ*LI

J) , (3.91)

where we take the + sign for bosons and the ~ for fermions.

Proof. Applying again the same argument concerning the ^-operation in Proposi-
tion 5 replacing C1 with A1, since A1 is also given by a hermitian matrix, we can set
the ansatz as:

ΨA1 = ± xAJ(Ψ * I^j) . (3.92)
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To fix the choice of σ we apply the BRST operation on Eq. (3.92). Comparing the
term proportional to dC1 of the result with Eq. (3.52), we conclude that σ = — and
α = 1.

q.e.d

Corollary 4.

dΨA1 = + A^dΨti'j) , (3.93)

ΨdAI = dAI(Ψ*LI

J)9 (3.94)

dΨdA1 = dA'(dΨ * Lj) . (3.95)

Proo/ Apply the derivative d on Eq. (3.92), then Eqs. (3.93) and (3.94) follow using
the independence of the terms proportional to dA1 and dΨ. Applying again the
derivative on Eq. (3.93) we get Eq. (3.95).

q.e.d

As a result of Proposition 10, we can also prove the following relations:

Corollary 5.

VΨ = dΨ + - [AQ, Ψ~\ + . (3.96)
CO

Proof. For the derivative part it is trivial. For the commutator part, replace the C°
in Eq. (3.55) with A° then we see that the second term in Eq. (3.96) is equivalent to
Af(Ψ*χι).

From this representation of the covariant derivative, the Leibniz rule and the
conditions Eq. (2.22) follow immediately since ^4°* = A°.

From the above results concerning the covariant derivative we can prove the
following relation.

Proposition 11. The BRST transformation of the covariant derivative of the matter is
written as the commutator with C°:

δBVΨ = -[_C°,VΨ]± , (3.97)
ω

and thus the nilpotency of the δB operator on VΨ follows.

Proof. From the representation of the covariant derivative given in Eq. (3.96), it is
easy to show the relation

VΨC1 = +C J (V!P*Lί). (3.98)

We show that each term in Eq. (3.98) satisfies the above relation separately. For the
first term of Eq. (3.96), Eq. (3.98) is clear from Eq. (3.51). Concerning the second
term, due to Eq. (3.85) A° simply makes the term opposite statistics and thus the
commutation relation follows from Eq. (3.39) with the opposite sign. Thus, we get
Eq. (3.98). Then, replace the Ψ with VΨ and use Eq. (3.98) instead of Eq. (3.39) in
the proof of Proposition 6.

q.e.d
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3.5. Field Strength. The field strength F1 is defined by the square of the covariant
derivative. When we apply it on the matter Ψ we get

(3.99)

Therefore, using Eq. (1.16) we get the field strength as Eqs. (3.13) and (3.14) in
Proposition 3. Using the commutation relation of the gauge field it can also be
written as

F1 = dA1 + - [4°, A J] + . (3.100)
ω

Using the co variance of the V2Ψ, we can prove the covariance of the gauge
fields and derive the following commutation relations.

Proposition 12.

F*CJ = CK(FI*LJ

K). (3.101)

Proof. It is straightforward to prove it directly using Eqs. (3.74), (3.81) and (3.100).
We can also derive the relation as follows: Since V2Ψ is covariant we can apply the
proof of Proposition 5 and thus

where we have used the coproduct of the functional Lj. On the other hand the r.h.s.
can be written as

r.h.s. = FICκ(Ψ*χI*LJ

κ). (3.103)

From the equivalence of these two equations we get Eq. (3.101).
q.e.d

Proposition 13. The field strength defined in Eq. (3.100) is transformed under the
BRST transformation as Eq. (3.15) in Proposition 3 and equivalently by the commuta-
tor as

δJ,ί
lI = -[C°,ίf/]. . (3.104)

ω

Proof. The BRST transformation of the field strength is

δBF
a = — dδBA

a H— ([.δβA0, Aa~\- + [δBA
a, A0']-) ,

ω

ia ia
_ Ό ί A Γ A a Λ~ΌΊ I r//£θ Aa~\ 4- ^dC° A® 1 H — ΓΓAa C 1 A Ί )

ω ' ' ' ω

ia*j /r"/^»θ Γ"1 a~\ i ΓJ/^Λ A0~ί \ /'i Ί Λ C \= —(\_C , F ]- -h \aC , A ]-) . (3.105)
ω
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Using the commutation relation (3.82) we get Eq. (3.104). Then using
Eq. (3.101), we get Eq. (3.15).

q.e.d

Proposition 14. The commutation relation of the fields A1 and their derivatives dA1 is
given by

άAlA3 = AK(dA^LJ

K) . (3.106)

Proof. Using the same argument concerning the ^-conjugation in the proof of
Proposition 5, they must satisfy

dAIAJ = aAK(dAI * LJ

σK) . (3.107)

Take the BRST transformation of Eq. (3.107) and compare the term proportional
to the derivative of the ghost dC1. Then, we find

dAIdCJ = adCκ(dAf^LJ

σK) . (3.108)

Since this must be equivalent to Eq. (3.83), we conclude α = 1 and σ = — . The
consistency of the Eq. (3.106) with the commutation relation among the A1 can be
shown analogously to the ghost case by replacing C1 and dC1 in Eqs. (3.67) and
(3.68).

q.e.d

Corollary 6. dA1 are q-commuting and their commutation relation is defined by
Eqs. (3.7) and (3.8).

Proof. Taking the derivative of Eq. (3.106) and use the same formula used in the
proof of Corollary 2.

q.e.d

Finally we give the formula which is the simpler representation of the Bianchi
identity in Eq. (3.16) of Proposition 3.

Proposition 15. The field strength F1 satisfies the following relation:

dF1 = -lFI,A°l- . (3.109)
ω

Proof. Taking the derivative of the field strength F1 given in Eq. (3.100), we get

dF1 = {[_dA0,AIl- + [dAI

9A°]-} = --[dAI

9A°]- . (3.110)
CO CO

On the other hand using the relation A°AQ = 0 we get

^A0-].. . (3.111)

q.e.d

ω

Thus we get Eq. (3.109).

3.6. Proof of Propositions 1-3 and Summary. We complete here the proof of
Propositions 1, 2, and 3:
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Proof of Proposition L All commutation relations among the fields given in
Propositions 5, 7, 8, 10, 14 and Corollaries 1, 3, 4, can be summarized as in
Eqs. (3.5) and (3.6). Corollary 2 and 6 prove (3.7)-(3.10).

q.e.d

Proof of Proposition 2. Substituting the explicit relations (3.85) and (3.89) into
Eq. (3.84) in Proposition 9, we get Eqs. (3.11) and (3.12). Then the nilpotency
follows from Proposition 9.

q.e.d

Proof of Proposition 3. As we mentioned Eq. (3.99) gives the definition of the field
strength as Eqs. (3.13) and (3.14). Using the commutation relation given in Proposi-
tion 12, the BRST transformation of F1 given in Proposition 13 can be written as
Eq. (3.15). The Bianchi identity in Proposition 3 can be derived as follows: As for
the F° it is trivial. To prove Eq. (3.16), we substitute Eq. (3.13) into the r.h.s of
Eq. (3.109). Since the commutation relations of A1 and C1 are given by the same
formula (3.1)-(3.4), we have the relation for the [4°, Aa]+ corresponding to
Eq. (3.25). Therefore we get

[F , Λ°]. = 2~™_

fa

bc(dAbAc -AbdAc)
<ί (.

+ -fbc(- LAb

9 A°]AC + Ab [>lc, 4°]) i . (3.112)
ω J

Using Eq. (3.100), we get Eq. (3.16).
q.e.d

Propositions 4,6,11,13 can be summarized as: the BRST transformation of the
fields except gauge fields can be represented by the commutator with C°. Concern-
ing the gauge field, Proposition 9 shows that the homogeneous term of the BRST
transformation is again a commutator with C°.

The above property is very important in the present construction of the BRST
algebra, since due to this property, the Leibniz rule of the operator δB is satisfied in
a rather trivial way. The nilpotency becomes also apparent since (C°)2 = 0.

4. Discussion

We have constructed the g-deformed BRST algebra which corresponds to the
q deformation of the algebra of the ghost, gauge and matter fields on one spacetime
point. To obtain the ^-deformation of the BRST formulation of the gauge field
theory, we have to take the structure of the base manifold into consideration. Using
the result here, one may take the base manifold as a usual spacetime, but a more
interesting possibility is the one when the base manifold is also described by the
non-commutative function algebra. In both cases, we have to reconsider the
meaning of the usual quantization so that it fits to the pure algebraic formulation.

In the latter case, we also have to consider the new theory of the gravity based
on the noncommutative geometry. Then we can ask the interesting question
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whether the new deformation parameter may play the role of the cut off of the
quantum gravity. Our result here may also shed some light on that direction, since
the local Lorentz symmetry can be treated as the usual gauge symmetry. It is
known that there is a quantum deformation of the Lorentz group [CSSW, PW]
and thus one may write down the g-deformed BRST algebra using the result of the
differential calculus on the quantum Lorentz group [CDSWZ,CW, SWW].

In the construction presented here, we used the singlet component in the
hermitian matrix. Especially the proof of the nilpotency and Leibniz rules became
simple, since all action of the δB operator is represented by the commutator with
C°. Nevertheless, it is very interesting if there is a ^-deformed BRST algebra
without singlet component.

Concerning the ghost algebra, it is possible to obtain the algebra without the
singlet component. First of all, the Maurer-Cartan equation does not contain the
singlet component and thus the BRST transformation of the ghosts does not either.
The algebra of χ/ contains the singlet component but it appears in the functional
p and this p is central in the algebra, therefore we can divide it out. Then we get the
algebra where the commutation relations are given by setting p = i in
Eqs. (1.18)-(1.20). With this new operator χa = χα*p - 1 we can write
δBΨ = Ca(Ψ*χa) and prove that δB

2 = 0. In this way we can remove the singlet
component in the BRST transformation and thus we do not need the singlet
component of the gauge field. The trouble occurs when we start to consider the
commutation relations among the different types of fields such as gauge and ghost
fields without the singlet component. We can not use the R matrix which is defined
in the standard way for the tensor representation. For example if we simply take

CaAb = fί%AcCd, (4.113)

where R^ is the R matrix of adjoint representation. If we take the ^-conjugation
and using the hermiticity of the fields,

AaCb = Ra

c

b

dA
cCd, (4.114)

and thus we can not impose the hermiticity condition.
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Appendix

A. Functionals and Convolution Product

The quantum matrix is denoted by M} and quantum group relations are defined by

Rg Γ MΪ'MJ f = M!,MJ,Ri7 f , (A.1)

ε yMiM/ = % , (A.2)

(M})* = κ(M{) . (A.3)
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There are functionals defined by the following relations

I4,(M?) = Rηίk , (A.4)

where the normalization of the R matrix is

R = q^s-q=r^A. (A.5)

They satisfy the following relations:

RίV£±ι*£±* = Lj

±j> * L V Γ R j y , (A.6)

R$l.L
l+l*Lk:k = Z/-r *LV Γ R*/ ' , (A.7)

(Lί

+j)* = ιc-1(^-ί). (A.8)

The convolution product of two functionals f,getftq(su(2)) is defined by

(A.9)

We use the convolution product * between a functional / over the Hopf algebra,
e.g. fG^q(su(2)) and a (left) comodule p as (see also the last section of [CW])

The * -operation is defined as

(P*/)* = (P* */*'*).

With these definitions we have the following associativity:

(p*/)*0 , (A. 12)

due to the relation (A (x) id)zJL = (id ® ΔL)ΔL.

B. R Matrix and Projectors

Given tensors Aft and Bβ we define

(A, B)'K
J

L = (A, B)i'/#£ = ft'iVMMi Bί^ftίί^ - (B 1)

Applying this notation the pair of the R matrix, (R~ 1, R) can be expanded by the
projection operators as

^^ (B.2)

Note that each term ( r̂, ̂ .') is a projection operator (see also ref. [CSWW]). Then
using the σ1 matrices we can prove the following relations:

(B.3)
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and

+ (q2 + ̂ P A d c X U ^ Γ 2 . (B.4)

Thus the product of the two hermitian fields A1 and CJ can be expanded as

AKCL((\, 1) - (ft, ft-))£(χ/*χj) - ̂ (-ω^°Cfl -/«c^Cc)χα . (B.5)

C. Algebra of Matter Fields

We give here an example of the algebra of matter fields. In general, once we define
the representation of the matter fields, we construct the corresponding g-antisym-
metrizer and g-symmetrizer. Then if one wants to define the fermions, we impose
the g-symmetric product to vanish and the ^-antisymmetric product to vanish for
the bosons.

When the matter is bosonic and of the fundamental representation Ψ\ the
algebra is defined like the differential calculus on the quantum space [Pusz, WZ]
(see also [CSW]), and we can set the following commutation relations:

0>iiMΨkψl = Q, (C.I)

dΨlΨj -q\ Ψk(Ψ^Lj

+k} = 0 , (C.2)

and the conjugated relation for the fields Ψ*1 and dΨ*1. The relation between the
Ψl and Ψ*1 can be defined for example as

ψ**ψJ = βψk(ψ^^Lj

+k), (C.3)

where β is a constant which is 1 in the limit q -> 1. Then, by the consistency with
derivative d, it is easy to show the following relations:

Ψ*ldΨJ = βdΨk(Ψ^^Lj

+k) , (C.4)

dΨ^dΨj = -βdΨk(dΨ^^Lj

+k) , (C.5)

^s^dΨkdΨl = 0, (C.6)

and their ^-conjugation.
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