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Abstract: We prove that the critical value βc of a ferromagnetic Potts model is
a strictly decreasing function of the strengths of interaction of the process. This is
achieved in the (more) general context of the random-cluster representation of
Fortuin and Kasteleyn, by deriving and utilizing a formula which generalizes the
technique known in percolation theory as Russo's formula. As a byproduct of the
method, we present a general argument for showing that, at any given point on the
critical surface of a multiparameter process, the values of a certain critical exponent
do not depend on the direction of approach of that point. Our results apply to all
random-cluster processes satisfying the FKG inequality.

1. Introduction

In the general study of phase transitions, it is commonly the case that the value of
the critical point is a monotone function of the strengths of local interactions (and
hence of the structure of the underlying graph). For example, the critical probabil-
ity of a percolation process cannot increase if new edges are added to the lattice.
Similarly, the critical temperature of an Ising model cannot decrease if the intensity
of any pair-interaction is increased. Such monotonicity, when true, is usually easy
to prove. Strict monotonicity, on the other hand, presents new difficulties. A gen-
eral approach to the problem of proving strict monotonicity of the critical point
was described by Aizenman and Grimmett (1991). Using this approach, the latter
authors obtained necessary and sufficient conditions for strict monotonicity in
percolation, and in addition proved strict monotonicity for Ising models with
pair-interactions. In this paper, we prove such a result for Potts models, thereby
generalizing the latter conclusion of Aizenman and Grimmett (1991).
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Research Office through the Mathematical Sciences Institute of Cornell University. H.K. was
supported in part by the N.S.F. through a grant to Cornell University
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Rather than working directly with Potts models, we shall work with the
corresponding random-cluster processes (sometimes known as Fortuin-Kasteleyn
processes), and our main result may be stated loosely as follows. For any random-
cluster process satisfying the FKG inequality (i.e., with cluster-weighting factor
q satisfying q ̂  1) the critical value is a strictly monotone function of the bond-
interactions. Since a Potts model with q states (where q is an integer satisfying
q^2) corresponds to a random-cluster process with parameter q, this result
implies strict monotonicity for the critical temperatures of Potts models.

Here is one example of the result applied to Potts models. Let q be an integer
satisfying q ^ 2, and write Σ = (1,2, . . . , q}^; we think of σ e Σ as an allocation of
a spin σ(y) to each point y e Zd, where σ(y) e {1,2, . . . , q}. Let ΣΛ be the set of all
elements σ ( e Σ ) that satisfy σ(y) = 1 if y $Λ, where A is some finite box of ΊLd.
Partition the set of nearest-neighbour pairs {u, v} of TLά into a union ExuE2 of
periodic classes (for example, E! might contain all pairs of nearest neighbours
which differ only in their first coordinates). Let J = (J1? J2) where J1? J2 > 0,
and let

{u,v}

where Juv = J± if {u, v} e Ex, and Juv = J2 otherwise; the sum runs over all nearest-
neighbour pairs {M, i;}, and δ i f j is the Kronecker delta. We then consider weak
limits as A j TLd of the Potts probability measures

πΛ,j,q(σ} = -;rexp( - βHΛ(σ)),

where /? > 0 and YΛ is the appropriate normalizing factor. There is a standard
definition of the critical inverse-temperature /?C(J, 4) for this model (see the dis-
cussion after Theorem 3 for more details). A special case of the forthcoming
Theorem 2 is that βc(J9 q) is strictly decreasing in J, i.e., βc(3, q) > βc(3',q) if J ^ J'
but J φ J'. Similarly, the critical value βc is strictly diminished if we add edges to
our graph in a periodic manner. As an example of this last operation, if the
summation in (1.1) were to include all pairs [u, v} which are either neighbours or
next-nearest neighbours, each extra summand having a factor J3 ( > 0), then the
corresponding value of βc would be strictly smaller than before.

For accounts of the relationship between Potts models and random-cluster
processes, see Aizenman, Chayes, Chayes, and Newman (1988), Edwards and Sokal
(1988), Grimmett (1993), and the references therein.

The general philosophy of Aizenman and Grimmett (1991) may be sketched in
the following way. Let us consider some process of interaction on the hypercubic
lattice TLd with d ̂  2, parametrized by a family J = (J/: 1 ̂  i ̂  m) of real variables;
we think of this family as a vector which takes values in a parameter space
/ ( ̂  Rm). Denote by θ = 0(J) the "order parameter" of the process (such as the
percolation probability, or the magnetization). Suppose that θ is a non-decreasing
function of J, and that, for all ίj e {1, 2, . . . , m}, there exists a continuous function
αί<7 (J) taking values in [0, oo] such that

**•#%,•
Uij is finite on int(/) , (1.3)
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where int(/) is the interior of /. It follows that the critical surface of the process
may be expressed in the form ^(J) = 0 for some function ψ which is continuous and
strictly increasing on intf^/).

It is not practicable to prove (1.2) directly, since (1.2) begs the question of the
differentiability of θ on Ίni(/), However, it suffices to prove (1.2) for finite-box
approximations to θ. Let (Λ(n): n ̂  1) be an increasing sequence of boxes in TLά such
that Λ(ri) 1 7ίd as n -> oo , and let ΘΛ be the finite-box approximation to θ associated
with a bounded box A. Instead of (1.2) it suffices to prove that

^Γ ^ αy(J)^~^, for all l^ij^m and for all large n. (1.4)

See Aizenman and Grimmett (1991) for further details of the general argument.
In the case of percolation, (1.4) may be established by way of Russo's formula,

which expresses the derivatives of ΘΛ in terms of the mean numbers of pivotal edges;
this method was first used by Menshikov (1987). Whereas the inequality of (1.4)
involves a global function (i.e., the function ΘΛ\ this use of Russo's formula enables
one to work with local estimates (i.e., to perform calculations on regions which are
small in size, uniformly in the value of n). In the case of the Ising model, Aizenman
and Grimmett (1991) obtained (1.4) by using the "random current" representation
rather than a version of Russo's formula ("random current" formulae have been
exploited very successfully by Aizenman (1982) and others). One of the two main
steps in our proof of (1.4) for random-cluster processes is a generalization of
Russo's formula which expresses the derivatives as sums of covariances (cf. Pro-
position 4 and Eq. (4.1)). These covariances are non-negative, and are "global"
quantities. A principal novelty of the present paper is a method for expressing these
covariances in terms of quantities which are still non-negative and which have
a "local" nature; in this way, we shall compare the contributions appearing in the
two sides of (1.4). The mechanism for doing this comparison is provided by
Proposition 5.

In Sect. 2 we present notation for random-cluster and Potts processes, and we
state our main results. This is followed in Sect. 3 by the new form of Russo's
formula, and in Sect. 4 by the remaining proofs. We note that inequality (1.4) has
some implications for critical exponents, given at the end of Sect. 2. Finally, many
of the arguments described here may be applied also to processes with many-body
interactions; this will be the subject of a forthcoming article, Grimmett (1992).

2. Notation and Results

We begin by defining the random-cluster process. As usual, TLά is the set of
all a-vectors of integers, where a ̂  2. For x e Zd, we generally write x =
(x1? x2, . . . , x<f). Let K be a finite subset of TLά', not containing the origin 0. We
place an edge between two points x, y e TLά if and only if either x — y e K or
y — x 6 K\ such an edge is denoted by <x, j;>, and the ensuing graph, called the
interaction graph, is denoted by G. We make the following assumptions about K:

i f x e K t h e n -xφK, (2.1)

G is connected . (2.2)
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Clearly the definition of G is unchanged by assumption (2.1), whilst assumption
(2.2) is more important. We write E for the set of edges of G, so that G = (Zd, E).

A configuration ω = (ω(e): e e IE) G (0, 1}E is an allocation of 0 or 1 to each edge
of G, and Ω denotes the set of all such configurations. With Ω we associate the
σ-field OF generated by the finite-dimensional cylinders. For ω e Ω, we write
η(ω) = [e eE: ω(e) = 1], the set of "open" edges. We shall sometimes confuse the
roles of ω and η (ω), and may speak of "ω containing the edge/" when we mean that
/Eη(ω). For subsets A and B of 2ζd, and configurations ω, we write A*-*B if there is
a path of (Zd, η(ώ)) joining some point in A to some point in B.

Let A be a finite box of TLά, i.e.,

a

A = Y[ [xf, yj, for some x, y e Tίd .
i = l

The boundary dA of A is the set of points x e A for which there exists yφA satisfying
<x, y> e IE. We write 1EΛ for the set of edges of G both of whose endpoints lie in A9

ΩΛ for the subset of Ω containing all configurations ω satisfying ω(e) — 1 if e φ E^,
and we write 3FΛ for the σ-field of all subsets of ΩΛ.

Let p = (px: x G K) be a real vector satisfying 0 ^ px g 1 for all x e K, and let
q be a positive real number. For e e E, where e = <M, u + x> and x e K, we define
Pe = Px The parameters p, g specify a random-cluster process in the following way.
For any finite box A, we let φΛ,^q be the probability measure on (ΩΛ, ^Λ) given by

where k(ω) is the number of components of the graph (2ζd, η(ω)\ and

ZΛ = Y J ΓT n«(β)π _ r,\l-ω(e)(> / 1fc(ω)

is the appropriate normalizing constant. Note that the measure φΛ,v,q contains
a "product measure" term together with a "Radon-Nikodym derivative" qk(ω]/ZA.
It is interesting to note that much of the contents of this paper may be generalized
to situations in which this "derivative" is replaced by one of a large family of
non-constant positive functions.

If q ^ 1 then φΛ,p,q satisfies the FKG inequality (see Aizenman, Chayes,
Chayes, and Newman (1988) for explanations of this and other general statements).
The case q = 1 corresponds to percolation and has been considered in depth by
Aizenman and Grimmett (1991). We assume henceforth that q > 1, and we shall
occasionally suppress explicit reference to q. It may be seen that the limit measure

Φ9tq = lull <t>A,p,q
A\Έά

exists in the weak sense, where the limit is understood to be taken along any
increasing sequence of finite boxes A. For any such box A, let

where {()<-> 00} is the event that the origin is in an infinite component; it follows
from the definition of φΛ>P,q that ^(p, q) = φΛ,P,q(Q^dΛ). It is the case that
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where

The quantities θΛfa q) and #(p, g) are non-decreasing functions of p when q ^ 1.
We sometimes write #(•) for θ( , q).

Let Λ(rc) = [ - n, ri]d, and let #M(p, g) = ^(n)(p, g). The following is our principal
calculation.

Theorem 1. Let q > 1. TTzere exzsίs α continuous function α: (0, 1 )*-*((), oo)
a positive integer N such that

» nA^- (2.4)
dpx dpy

for all p e(0, 1)*, a// n ^ AT, and a// pairs x, 3; eK.

Note that α depends generally on the value of q. It is curious to note that our
proof of Theorem 1 is invalid when q = 1 (the problem is that the forthcoming
expression (3.15) is insufficient to make (3.14) strictly positive). Nevertheless, the
conclusion of the theorem is valid if q = 1; see Aizenman and Grimmett (1991).

Theorem 1 has various implications for the nature of the phase transitions of
random-cluster processes. The first of these concerns the monotonicity of the
critical point. For p e(0, l)κ let

The set Cq = {p e(0, l)κ: yc(p) = 1} is called the critical surface of the process, and
the set SP^ = {p e(0, l)x: yc(p) < 1} the supercritical region. We shall prove that C^
has no "flat regions" in the sense that, if p e Cq and p ̂  p' but p φ p', then
θ(p', q) > 0. This, and slightly more, follows from the next theorem. Here and later,
a vector w e (0, ΐ)κ is expressed as w = (wx: x E K); we write p ̂  p' if px ^ p'x for all
x E K, and p < p' if px < p'x for all x E K.

Let U be the unit sphere of Rx, with the topology induced from the euclidean
topology on IRA We call an open subset Fof U full if it contains the set of all points
of U having non-negative coordinates (i.e., all points in the first orthant of Rκ).

Theorem 2. Let q > 1 and p G Cq. There exist positive constants δ, v, and ε0? together
with a full subset V of U, such that

0(p + vεe) ̂  0(p + εf) ̂  θ(p + <5εe) (2.5)

for all 0 < ε < ε0 and all e, f e V.

Note that δ, v, ε0, and V may depend on the value of p. Conclusions similar to
Theorem 2 have been derived for Ising models by Aizenman and Fernandez (1986);
see their Lemmas 2.2 and B.2.

It is easily seen from the definition of Cq that #(p + εf ) > 0 when p eCq and
ε > 0, f > 0 (i.e., fx > 0 for all x e K). The first consequence of Theorem 2 is
therefore the existence, for each p eCq, of a positive real ε: and a full subset V of
U such that p + εV c SP^ for 0 < ε < ε1. A result of the same general type was first
obtained by Menshikov (1987) in the case of percolation.

Before stating the next theorem, we introduce one piece of terminology. A func-
tion p: Rm -» R" is called increasing if p(x) ̂  p(y) whenever x ^ y, and strictly
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increasing if, for all pairs x, y with x ^ y but x φ y, it is the case that p(x) ^ p(y) but
p(χ) Φ p(y).

Theorem 2 has a further important consequence obtained by narrowing the
field of application to a one-parameter family of processes. Let J = (Jx: xeK)
e (0, oo )κ and let β > 0; we think of J as describing the strengths of the bond-
interactions, and β as being the parameter (or "inverse temperature") of the process.
Suppose that p is a function of the pair (J, β), say p = p(J, β), a continuous
increasing function of (J, β). The critical value of β is given by

&(J, q) = sup {β: θ(p(J, β), q) = 0} . (2.6)

An example of particular importance is the case when

px = l-e~βj*, ΐorxεK. (2.7)

Theorem 3. Suppose that the function p( , ) is continuous and increasing, and that,
for each β > 0, the function p( ,/?) is strictly increasing on (0, oo)*. If q > 1, the
critical value βc(J,q) is a strictly decreasing function of the pair-interactions J.

We now sketch the application of Theorem 3 to Potts models. Let q be an
integer satisfying q^29 and let J = (Jx: x e K) be a vector of positive reals. Write
Σ = {1,2, . . . , q}Έ\ and think of σ e Σ as being an allocation of a spin σ(y) to each
point y e Zd, where σ(j ) e {1, 2, . . . , q}. Let ΣΛ be the set of spin-vectors σ satisfy-
ing σ(y) = 1 if y <£yl\δA We consider the hamiltonian

HΛ(σ) = Σ Je(l-δe(σ))9 σeΣΛ,
eeE

where

1 if σ(u) = σ(v)
δ<u a>(σ) ~ (0 otherwise ,

and J(u,u+xy
 = Jχ f°r x e X . We are interested in the probability measure

πA^q given by

where β > 0, and YΛ is the appropriate normalizing factor. The weak limit

πj,q = lim πΛtJtq

Λ\TL*

exists, and is independent of the choice of increasing sequence of boxes Λ; see
Aizenman, Chayes, Chayes, and Newman (1988) for details. The order parameter is
given by

M(J, ]8, q) = - π j > q ( { σ : σ(0) = 1}) -

and the critical point by

Using the results of Fortuin and Kasteleyn (see Aizenman, Chayes, Chayes, and
Newman (1988) and Edwards and Sokal (1988)), the order parameter of the Potts
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model is related to that of a corresponding random-cluster process by the equation

9q}9 (2.8)

where the function p is given by Eq. (2.7). It follows that β*c ( J, q) = βc( J, q\ -whence
Theorem 3 implies that β* (J, q) is strictly decreasing in J. As in Aizenman and
Grimmett (1991), the derivatives of β*(J, q) with respect to the Jx may be bounded
above and below by continuous and strictly negative functions.

We turn now to the matter of critical exponents. The following discussion is
based solely upon the inequalities of Theorem 1; it applies equally to any process of
interaction whose order parameter θ is monotone in the strengths of pair-interac-
tions and whose finite-box approximations satisfy the conclusions of that theorem.
In the light of (2.8) and the results of Aizenman and Grimmett (1991), the discussion
is valid for all percolation, Ising, and Potts models.

Suppose that p e Cφ the critical surface of the random-cluster process with
cluster- weighting factor q. The behaviour of θ( ) = θ( , q) in the neighbourhood of
p may be described in terms of a critical exponent usually denoted by β. In the
multiparameter setting, the value of this critical exponent depends in general upon
the direction along which the point p is approached. That is to say, there is a family
of exponents Bv = (j8p(e): e e 17), where U is the set of unit vectors in Rκ; the
exponent jβp(e) is defined by

θ(p + εe) - θ(p) « e*(e) as ε j 0 . (2.9)

The asymptotic relation /(ε) « g(ε) should be interpreted in some reasonable way,
perhaps as log/(ε)/log #(ε) ->> 1 as ε J, 0 .

We restrict ourselves to directions e such that p + εe lies in the supercritical
regime for all small ε. For such a pair p, e, it is expected that /?p(e) takes on a value
which is independent of e, say j8p(e) = /?p. Theorem 2 helps us to go some way
towards proving the latter statement. Inequality (2.5) implies that βp(e) = j8p(f ), and
hence that /?p(e) is constant for e lying in the full set V of unit vectors. In particular,
since V includes all unit vectors lying parallel to the axes (in the directions of
increasing coordinate values), we obtain as a special case that the axial critical
exponents (i.e., those obtained by increasing exactly one px for x e K) are equal, at
any given p e Cq. Results of this kind have been obtained by Aizenman and
Fernandez (1986) for Ising models, and by Wierman (1992) for percolation processes.

Arguments similar to those of this paper are valid in principle for random-
cluster processes with other boundary conditions such as "free" boundary condi-
tions, rather than the "wired" conditions implicit in the definition of ΩΛ above (2.3);
see Grimmett (1993). Also, similar arguments are valid for certain other choices for
the order parameter than 0( , q). In the case of percolation, one may obtain in like
fashion results for the mean size of the open cluster at the origin, with implications
for the family of critical exponents corresponding to the quantity usually denoted
by γ. The method should be similarly applicable to random-cluster processes, but
our current state of knowledge is inadequate for this.

Finally, we note that the results given above may be obtained also in the setting
of many-body interactions, rather than pair-interactions, although the proofs are
rather more complicated. Also, the methods of the next sections may be applied to
graphs (7Ld, E) which are not vertex-transitive, but which are generated by periodic
families of translations of edges belonging to some "base set." Such extensions will
be the subject of the forthcoming paper of Grimmett (1992).
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3. Russo's Formula and Time-Evolutions for Random-Cluster Processes

As before, A is a finite box of Zd and 1EΛ is the set of edges (of IE) both of whose
endpoints lie in A. On (ΩΛ,^Λ) we construct a probability measure which is
slightly more general than that defined by (2.3). Let p = (pe: e eE^) be a vector of
reals each of which satisfies 0 < pe < 1, and define the measure φ on (ΩΛί 3?Λ) by

Φ(ω) = ̂  j Π P?(e)(l ~ PeY-ω(*\<f{ω\ ω eΩΛ, (3.1)
Δ UeEΛ J

where Z is the appropriate normalizing factor. The measure φΛ,P,q of (2.3) is
retrieved by setting p<u,u+xy = Px if xeK. Thus, in (3.1), each edge e has an
associated independent variable pe.

We write IA for the indicator function of an event A\ for e e E4, we write Ie for
the indicator function of the event (ω(e) = 1}, i.e., Ie(ω) = ω(e) for ω eΩ.

Proposition 4. Let 0 < q < GO , and let A E J .̂ Then

—rφ(A) = —- — cov(/e, IA) for all e e ΈA . (3.2)
Ope pe(l ~ pe)

Here, "cov" denotes covariance relative to the probability measure φ. In the
case q = 1, Eq. (3.2) is a version of Russo's formula for percolation, but in a form
first discovered by Barlow and Proschan (1965, p. 10); see Grimmett (1989, p. 38). It
is notable that (3.2) is valid for all values of q. Indeed, (3.2) is valid for any measure
of the form of (3.1) with the term qk(ω) replaced by a general function of ω which
does not depend on pe.

Proof. We may write

φ(A) = - Σ Mω)p?(e)(l - peΫ~ω(e) <*>(<*>), (3.3)

where

α(ω) = j Π P/ ( / )(l-p/)1~ω (

note that α is not a function of pe. Differentiate (3.3) to obtain

_
where E denotes expectation relative to the probability measure φ. Set A = ΩΛ to
obtain that

- (3.5)

We eliminate Z'1dZ/dpe from (3.4) and (3.5), and we arrive at (3.2). D
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Suppose that q ^ 1 and let A be an increasing event of (ΩΛ, J^) (that is, if ω eA
and ω ^ ω' then ω' e >4). It will be useful to have recourse to a representation for
dφ(A)/dpe containing only non-negative terms. Using (3.2), we may write

~Φ(A) = ~ u dΦ(«>(e) = ί \ A ) - φ(ω(e) = 1)} . (3.6)
We Pe(l ~ Pe)

The term in braces is non-negative (by the FKG inequality) and may be repre-
sented in terms of coupled time-evolutions of the random-cluster process. We show
next how this may be done.

We shall construct certain Markov chains on the state space ΩΛ. Let μ be
a probability measure on (ΩΛ, ^Λ\ and let G: ΩΛ x ΩΛ -» [0, oo) be the generator of
a Markov chain (i.e., for ω φ ω', G(ω, ω') represents the jump-rate of the chain from
ω to ω', while the diagonal element G(ω, ω) is chosen in such a way that
]Γ ,G(ω, ω') = 0). If the pair (μ, G) satisfies the balance equations

μ(ω)G(ω, ω') = μ(ω')G(ω', ω) for all ω, ω' εΩΛ , (3.7)

then the chain is reversible with stationary measure μ.
For ω eΩΛ and/eEΛ, we define the configurations ωf and co/ by

(0) if 0 Φ /

o i f f l f = / ,
ωfe) i f g r φ /

ι f f f = /

We denote by Df(ω) the indicator function of the event that the endpoints of/are in
different components of the graph (Έά, η(ωf)), i.e., the event that the endpoints of
/are not connected by any path of edges in η(oή\{f}.

There are two instances of (3.7) of importance for (3.6). When μ = φ, Eqs. (3.7)
are satisfied when we take for G the function H: ΩΛxΩA-> [0, oo) given by

H(ωf, ωf) = 1 , (3.8)

for ω eΩΛ and/eEΛ, where H(ω, ω'} is set to 0 for other pairs ω, ω' with ω Φ ω'.
In the second instance, μ = φ( \A), and in this case (3.7) is satisfied by the

generator HA given by

H A(ω, ω'} = H(ω, ω'}IA(ω Λ ω') if ω Φ ω' , (3.10)

where ω /\ω'(g) = min{ω(#), ω'(g)}.
These two instances give rise to Markov chains which can be constructed on

the same sample space in such a way that the first "lies beneath" the second. To this
end we argue as follows.

Let ΘΛ be the set of all pairs (π, ω) of configurations in ΩΛ satisfying π rg ω. We
define J: ΘΛxΘA~* [0, oo) by

J(πf9 ω; πf, ωf) = 1, (3.11)

J(π, α/; πf9 ωf) = HA(ωf, ωf) , (3.12)

J(vf, a/; πf, ωf) = H(πf, πf) - HA(ωf, ωf) , (3.13)



10 C.E. Bezuidenhout, G.R. Grimmett, H. Kesten

for all (π, ω) eΘΛ and/eE^; all other off-diagonal values of J are set to 0. Eq.
(3.11) specifies that, for πeΩΛ and/eE^, the edge /is acquired by π (if it does not
already contain it) at rate 1; any edge so acquired is added also to ω if it does not
already contain it. Eq. (3.12) specifies that, for ωeΩΛ andfeη(ω\ the edge /is
removed from ω (and also from π iίfeη(π)) at the rate given by (3.10). For/eτ/(π)
(£ τ?(ω)), there is an additional rate at which /is removed from π but not from ω.
Note that this additional rate is indeed non-negative, since

H(πf,πf) - HA(ωf, ωf) = ̂ —^ {qDf(π) - qDf(ω)IA(ωf)} ^ 0 , (3.14)
Pf

by (3.9) and (3.10); remember that q ^ 1 and Df(ώ) rg Df(π) when π ̂  ω. This
additional rate is strictly positive if and only if

either G)fφA9 or ωfeA9 D/(π) = 1, and Df(ώ) = 0 . (3.15)

We note also that the transitions referred to in (3.11)-(3.13) take pairs (π, ω)
with π ̂  ω onto new pairs (π', ω') with π' ^ ω'. Therefore, the function J is the
generator of a Markov chain (Xt9 Yt)t^o taking values in ΘΛ. We assume hence-
forth that (Xt9 Yt)t^o is such a chain, and we set (Xθ9 Y0) = (0,1) where i (eΩΛ) is
the configuration which takes the value i on every edge in EΛ. We write P for the
appropriate probability measure on the set of sample paths of this process.

By further examination of (3.11)-(3.13), it is easily seen that X = (Xt)t^o is
a Markov chain on ΩΛ with generator H, and stationary measure φ. Similarly,
Y = (Yt)t^o is a Markov chain on the subset^ of ΩΛ with generator given by HA

restricted to A x A9 and stationary measure φ( \A). Both these chains are irredu-
cible. This claim is trivial for X, since each edge has a strictly positive birth and
death rate in this process. The claim is also true for Y, as the following argument
indicates. If ω e A and Yt = ω, then the process Y can progress (with a strictly
positive probability) from ω to the state 1; this is valid because edges are acquired
by Y at rate 1, and furthermore 1 eA by virtue of the facts that ω eA and A is an
increasing event. If ω' e A9 then Y can progress from 1 to ω' by the removal of
exactly those edges e for which co'(e) — 0; such transitions have strictly positive
jump-rates since A is an increasing event.

It follows from the irreducibility of X and Y9 and from the facts that φ and
φ( \A) are stationary measures for X and Y respectively, that

lim P(Xt(e) = 1) = φ(ω(e) = 1), and lim P(Yt(e) = 1) = φ(ω(e) = 1 \A) ,
ί -* oo ί -* oo

(cf. Doob (1953, Thm VI.1.1)).
Finally we recall that Xt rg Yt for all ί, in the light of which (3.6) may be written

in the form given as follows.

Proposition 5. If A is an increasing event and e eE^, then

lim {P(Yt(e) = 1) - P(Xt(e) = 1)}-
Pe(l —

Φ(A} lim {P(Xt(e) = 0, Yt(e) = 1)} , (3.16)
Pe(l -

where (Xt9 Yt)t^o is a Markov chain on ΩA x A with generator given by (3Λl)-(3.13)
and satisfying (XQ9 YQ) = (0,1).
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Such couplings as that described above were used by Holley (1974) in his proof
of the FKG inequality (see also Fortuin, Kasteleyn, and Ginibre (1971), and
Preston (1974)). As shown by Holley's work, the coupled chain may be constructed
(in such a way that the paired process ( X t , Yt) satisfies Xt ^ Yt for all ί, and has the
desired marginals) precisely because φ satisfies the inequality

φ(ωvω')φ(ω/\ωf) ^ φ(ω)φ(ω') for ω, ω' eΩΛ , (3.17)

where ω vω'(e) = max{ω(e), ω'(e)}. The product-measure component of φ (see
(3.1)) makes no essential contribution to (3.17); it is the factor qk(ω) in (3.1) which
leads to (3.17) when q^l.

4. Remaining Proofs

Proof of Theorem 1. We have that A(n) = [ — n, n]d, and

δ#n v, 36>n (4.1)

where θw(p, q) = φn(0<-» oo) and (/>„ is given by (3.1) with Λ(n) in place of Λ. In
writing p = p, we mean the sum to be evaluated by setting pe — pe for all e eE^.
The sum in (4.1) is over all points ueA(n) with the property that at least one of the
points u and u + x lies in int(A(n)) = A(n)\dΛ(n). For all other u(<=Zd\ the
summand in (4.1) is 0, as the following argument shows. Certainly the summand is
0 if either u or u + x lies outside A, for then ω«w, u 4- x» = 1 for all ω e/l^).
Suppose then that u, u + x edA(n). We shall make use of the following claim:

for any two vertices v, w edA(ri), there exists a path of G from
i; to w using only edges in ENJE^). (4.2)

If (4.2) is valid, then the value of ω«w, u + x» influences neither k(ω) nor the
occurrence of the event {0<-» oo}, for ω eΩΛ(n). This holds since u and w -f x are
joined by a path of G using only edges in JE\JEΛ(n}9 and every such edge e is such that
ω(e) = 1 for all ω eO^. Therefore δθn/dp<u>u + xy = 0 when u,u + xe dA(n).

We turn now to the proof of (4.2). First we note that there exists a positive
constant D = D(K) such that any two vertices v, w eZd with |ι; — w| = 1 are con-
nected in G by a path which stays within euclidean distance D of v (by virtue of
(2.2)). It follows that, for any pair v, w e7Ld, and for any path π from v to w on the
graph TLά with the usual nearest-neighbour relation, there exists a path π of
G joining v to w which stays within distance D of π. Now, if v, w e dA(n)9 there exist
z l 5 z2 tTLd such that i; + z± φA(n), w + z2 £ Λ(w), and either z{ or — zf belongs to
K for each i. One may easily see then that v +jzι φA(n) and w + jz2 φA(n) for j ^ 1,
and that there exist jΊ and j2 such that the euclidean distances from A(ή) tov+ J1z1

and to w + J2z2 are each greater than D. Using the preceding observation, we may
connect v -f jίz1 and w -f 7*2^2 by a path π of G lying outside A(n). As a conse-
quence, there exists a path from v to w using only vertices of the form v -f jzi (for
0 :g 7 ̂  jΊ ), w + jz2 (for 0 ^ 7 ̂  72), together with the vertices of π; such a path uses
only edges in E\E^(n). This proves (4.2).
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Our target now is to show that there exists a continuous function
α: (0, l)Eyl(π> -> (0, oo) and a positive integer N such that

δθn ( dθn dθn \
-^z ^ α(p) — + — (4.3)

for all n ̂  N, x, y e K, and for all u such that either u or u + x lies in mt(Λ(n)). If we
are able to do this, then (2.4) follows immediately (with α replaced by 2α) by
summing (4.3) over u eA(n).

Here is a sketch of the proof of (4.3). Take A = {0«-> oo}, so that θπ(p, g) =
0Π(A). Let pfί? 7t) be the Markov chain constructed in Sect. 3 for this event A. Fix
x, y eK with x Φ y, and let e = <u, u 4- x> be an edge of G with at least one
endpoint lying in mt(A(ri)). If u 6int(/!(«)), then set/= <w, M + .y); if M edΛ(n) but
M + x Emt(A(n))9 then set/= <w + x, M + x -f y>. Then (4.3) will be implied by

—r^α(p)—r1 (4.4)

By Proposition 5,

30n / dθn „ limt^QO{P(Xt(e) = 0, Yt(e) = 1)}

for some continuous γ which is positive and finite when 0 < p < 1. We shall show
that there exists v(p), continuous and strictly positive when 0 < p < 1, such that

P(Xt+3(f) = 0, 7ί+3(/) = 1) ̂  v(f)P(Xt(e) = 0, Γt(e) - 1) for all t . (4.6)

This clearly implies that

* - — - - - — <

- 0, Yt(f) = 1)} - v(p) '

which in turn yields (4.4) with α(p) = y(p)/v(p), via (4.5). Inequality (4.6) will be
obtained by showing that

P(Xt + 3(/) = 0, 7ί+3(/) = ί \ X t ( e ) = 0, Yt(e) = 1) ̂  v(p) . (4.8)

We now prove (4.8). We introduce the ί°° norm on 2d, i.e.,

||x|| = m a x l l x f l : 1 gj f ^ d}, for x e Z d ,

and we fix m such that

| x | | : x E K } . (4.9)

Let <5M> be the collection of edges of G having both endpoints in fμ H- A(m))nA(n);
these are edges which are "near" to u but lying in A(ή). In particular e,fe <5M>. We
shall say that an edge gf is "present in process Z at time s" if Zs(gf) = 1. We introduce
the following events:

Vt = {̂ (̂ ) = 0, Yt(e) = 1} ,

Wt = {Xt(f) = 0, Yt(f) = 1} .
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In addition we define the events V\ i = 1, 2, 3, by

(i) F1 is the event that: during the time-interval (ί, t -f 1], all edges in <£M>
which are present in Xt are removed, and no edges in <£M> are added to X\
e remains present in 7,

(ii) F2 is the event that: during (t -f 1, t -f 2], the edges/ e', and/ are added to
X, but no other edges in <#„> are added to X; e remains present in 7,

where
e' = <w + y9 u + x -f j;>l
/•' \ ί

and

., ' > if u ecL4(ft) and w + x eint(/t(n)) .
j = <w, w + y) J

Finally,

(iii) F3 is the event that: during (t -f 2, t + 3], the edge/is removed from X but
not from 7.

Note that, due to the coupling of X and 7, the occurrence of F1 may force the
removal of some edges from 7 during (ί, ί + 1], However, on Fί? e is absent from
X and present in 7 at time ί. Thus, for F1 to occur, Xs(e) and 7s(e) must remain
constant for t < s ^ t 4- 1. Similarly, the occurrence of F2 will force the addition of
/ e'9 and /' to 7, if not already present at time t + 1, because Xs ^ 7S (see also
(3.11)-(3.13)). If either of the edges e' or/' lies outside ΈΛ(n)9 then it is automatically
present at all times in both X and 7, and the requirement on such an edge under F2

is vacuous. Note that none of the events Vt9 V1 for 1 g i :g 3, places any constraint
on the states of edges outside <£„>.

Clearly Fr n F1 n F2 n F3 c JFί+3. In order to prove (4.8) it therefore suffices
to show that

P(F1nF2nF3 |F ί) ̂  v(p) . (4.10)

Fix p e(0, l)κ and let π(p) = min{px, 1 — px: x eX}, and assume that all probabil-
ities are calculated for a vector p satisfying

-π(p) < pg < 1 - -π(p) for all g εΊEΛ(n) . (4.11)

Assume now that Vt occurs. According to (3.12) and (3.13), each edge g (e]EA(n))
that is present in X is lost at a rate which is bounded away from 0, uniformly in the
states of all other edges (and uniformly in all p satisfying (4.11)). Moreover, the total
rate at which changes occur within <5M> is no larger than the following upper
bound for the sum of birth and death rates,

m a x g eΈ,Λn ^ |<5U>| 1 + 2 q = M
Pg

(4.12)

by (3.8)-(3.13); the bound M does not depend on n but only on p. Therefore there
exists V i ( j p ) such that

F ί ) ^ v 1 ( p ) > 0 ; (4.13)
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the quantity v^p) (and quantities v f(p) to be defined soon) may be chosen to be
continuous and strictly positive when 0 < p < 1, and not to depend on the values
of n and u.

Underlying the argument of the previous paragraph is a small lemma concern-
ing Markov chains, which we choose not to state formally. Such a lemma amounts
roughly to the following. If, for each edge g belonging to some set ^ of bounded
cardinality, the jump-rate of some transition of the state of g is bounded away from
0, uniformly in the current states of all other edges, then the probability that the
appropriate transitions take place on all the edges in ̂  during a given time-interval
is uniformly bounded away from 0. Similarly, if the total jump-rate on a collection
<$' of edges is uniformly bounded away from oo , then the probability of any change
at all on <$' is uniformly bounded away from 1. A simple way of seeing this is to
construct the chain in terms of "exponential alarm clocks" sitting on the edges of
^ (or ̂ '), so that each edge examines its state whenever its alarm clock rings, and it
changes its current state according to a probability distribution which may be
a function of the current states of the other edges. The "graphical representation" of
Harris (1974, 1978) is such a representation for the contact process, and is one of
the main techniques for its study.

Suppose that the event Vt n F1 occurs, and consider the event V2. Each edge
g ( e <£M)) is acquired by X (and also by Y if not already present there) at rate 1 (see
(3.11)); therefore there exists v2(p) of the required form such that

P(F 2 |F ί nF 1 )^v 2 (p)>0. (4.14)

Suppose that Vtr\Vlr\V2 occurs, and consider F3. At time ί + 2, the only edges
of <£M> which are present in X are/ <?', and/'. In general Yt+2 contains more edges
than does Xt+2, and certainly at least e, f, e'9 and/'. We have therefore that
Df(Xt+2) = 1 and Df(Yt+2) = 0. It follows by (3.13)-(3.15) that the rate at which
/is removed from Y but not from X is at least

note that f eJEΛ(n)9 since by construction / has at least one endpoint in mt(Λ(ri)).
This implies that

P(V3\VtnVlnV2) ^ v3(p) > 0 (4.15)

for some suitable v3(p). This in turn implies (4.10) with v(p) = V1(p)v2(p)v3(p); as
described before, (4.3) follows with α(p) = y(p)/v(p). D

_!_

Proof of Theorem 2. It suffices to prove (2.5) in the special case when f = \K\ 21,
the unit vector with equal coordinates (here, \K\ denotes the cardinality of K). The
case of general pairs of unit vectors follows by comparing each of the two directions
with f. Suppose then that f is given in this way.

Let q > 1, and let p eCβ and e e U. Certainly

Θ(P + αe) ̂  θ(p 4- εf) (4.16)

if p + αe ^ p + εf, which is to say that

τ f o r a l l x e K . (4.17)
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_i
Now ex ^ 1 for all x eK, and therefore (4.17) holds with α = s\K\ 2. This estab-
lishes the left-hand inequality of (2.5) for suitable v.

We turn to the other part of (2.5). Fix N such that (2.4) holds for n ̂  N. Choose
in addition a real positive η such that 2η ̂  px ^ 1 - 2η for all x e K, and find
a (e[l, oo)) such that

α(p') ̂  a for all p' satisfying η ̂  p'x^ I — η ϊor all xeK. (4.18)

Finally, choose δ large and ε0 6 (0, 1) small such that

ε 0 , and (1+ δ)ε0 ^ ly , (4.19)

and let
V = {w e 17: wx > - ε0 for all .xeK}.

Clearly V is open in C7, and full. Let e e F, let ε satisfy 0 ^ ε rg ε0, and define
p'(ί) = (p'x(t): XeK) = p + tεf+(l- t)δεe for 0 ̂  ί ̂  1. We have by (4.19) that
\px-p'x(t)\ ^η, and hence

f/ ^ p;(ί) ̂  1 - η for 0 ̂  ί ̂  1 and x eK .

It follows that α(p'(f)) ^ α for 0 <ς f ^ 1, by virtue of (4.18). From (2.4), we now
obtain that θn( ) = θn( , q) satisfies

Σ (fx-tex)^θn(p'(t))+ Σ (fχ-δeχ)A-θnW(t))
fx^δex °Px x:fx<δex

 ΰPx

x:fx^δex

 u x:fx<δex

*';{"+nϊ' -sL }i ««» (4 20)

where u is any fixed member of K; in the last inequality, we used the assumption
that a ̂  1, together with the fact that dθn/dpu ^ 0 (by the FKG inequality, as
observed in Sect. 2). Moreover, since ex > — ε0 for all x eK, we have from (4.19)
that

whence (using (4.19) again)

xeK



16 C.E. Bezuidenhout, G.R. Grimmett, H. Kesten

From these observations, it follows that the right-hand side of (4.20) is non-positive,
and hence, after integrating with respect to t from 0 to 1, that

0B(p + εf) - θn(p + εδe) = 0n(p'(l)) - θπ(p'(0)) g 0 .

We take the limit as n -> oo to obtain the right-hand inequality of (2.5). D

Proof of Theorem 3. Let q > 1. It is evident that βc( 9 q) is non-increasing, since
θ( , q ) is non-decreasing. Suppose that j8c(J, q) = βc(J', q) ( = βC9 say) for some
0 < J ^ J' < αo. Then p(J, βc\ p(J', βc) eCq and p(J, βc) <. p(J', βc); therefore
J = J' by Theorem 2 and the remark immediately afterwards. D
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