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Abstract: Classical ^-algebras in higher dimensions are constructed. This is
achieved by generalizing the classical GeΓfand-Dickey brackets to the com-
mutative limit of the ring of classical pseudodifferential operators in arbitrary
dimension. These WK-algebras are the Poisson structures associated with a higher
dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-
hierarchy). The two dimensional case is worked out explicitly and it is shown that
the role of DiffS'(l) is taken by the algebra of generators of local diffeomorphisms
in two dimensions.

1. Introduction

PF-algebras play a prominent role in two dimensional physics. They first appeared
in the context of integrable models (although under a different name) as Poisson
structures associated with generalized KdV hierarchies [1-3], but their "popular-
ity" dramatically increased after the work of Zamolodchikov. He showed in [4],
using the bootstrap method, that the simplest extension of the Virasoro algebra by
a field of spin 3 required the introduction of a nonlinear associative algebra,
denoted since then by W^. Soon after, Fateev and Lukyanov [5], using the
formalism developed by DrinfeΓd and Sokolov [6], which relates to each gener-
alized KdV hierarchy a loop algebra, were able to generalize the results of
Zamolodchikov to construct W^-algebras, i.e. conformally extended algebras with
fields of integer spins from 3 to n.

Before continuing any further, we should clarify some notational issues. In what
follows, we will use the name PF-algebras for the quantum algebras. These are the
ones realized in a conformal field theory via operators acting on a Hubert space.
The GeΓfand-Dickey algebras and their reductions will be considered classical
realizations of ^-algebras. We will reserve the name classical (one-dimensional)
PF-algebras for nonlinear extensions of DiffS(l).

Recently an unexpected connection has been unveiled between GeΓfand-
Dickey algebras (and their associated integrable hierarchies), 2-D gravity, and,
through their matrix model formulation, noncritical strings coupled to c < 1
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matter [7]. In particular, it has been shown in [8] that the planar limit of these
theories, in which only manifolds with the topology of a sphere are considered, is
directly related to the Khokhlov-Zabolotskaya (KZ) hierarchy [9, 10] and its
reductions. This hierarchy is also known as the dispersionless or classical KP-
hierarchy, where the deformation parameter that takes us from the dispersive
to the nondispersive case happens to be, in the context of noncritical strings,
nothing but the renormalized string coupling constant. Moreover, the Poisson
structure associated with the KZ-hierarchy (wκp) was shown to be the universal
PF-algebra associated with the wn-series, i.e. the classical limit of the ^-algebras.
We believe that this makes classical W-algebras a very interesting and fruitful field
of study.

Nevertheless, as interesting as all this may be from the physical point of
view, for example, the theory of 2-D surfaces, domain walls in 3-D, or critical
phenomena in 2-D systems, from the point of view of a particle physicist, all these
developments are little more than toy-models for the relevant higher dimensional
case. It is the aim of this work to generalize some of these structures to higher
dimensions. The hope is that they will be helpful in understanding topics such as
nonperturbative gravity in D > 2 and even noncritical strings coupled to c > 1
matter.

We should also point out that the generalization of the GeΓfand-Dickey
formalism to higher dimension comes as a little surprise. It has been repeatedly
claimed in the literature that an essential ingredient in the one dimensional case
was the existence of an invariant splitting compatible with the Adler trace, a prop-
erty that disappears when one moves to higher dimensions. We will show, at least
in the classical limit, that we can proceed without it.

The plan of the paper is as follows:
In Sect. 2, the required formalism to extend the usual one dimensional results

for classical PF-algebras to arbitrary dimension will be developed. This general-
ization will be shown to be quite straightforward, although it will require the
introduction of some nonstandard machinery such as Guillemin's symplectic trace
[11,12], which we will discuss briefly.

In Sect. 3, we will revisit the one dimensional case. This is important because the
generalization to higher dimensions will require the introduction of a splitting in
the space of pseudodifferential symbols which does not reduce to the standard in
one dimension. Nevertheless, we will prove that the induced algebras are nothing
but the standard w^ and the n -> oo limit of the wn series.1

In Sect. 4, we will explicitly display the algebras associated with the space of
classical pseudodifferential symbols in two dimensions. We will show that the role
of DiffS'(l) is taken by the algebra of local diffeomorphisms in two dimensions. We
expect this connection with diίfeomorphism algebras to extend to arbitrary dimen-
sion although we have not yet proved it so.

In Sect. 5, we will show how these Poisson structures are associated with a very
natural generalization of the KZ-hierarchy in higher dimensions. We will also
briefly discuss their integrability.

1 These two algebras should not be confused. This is nothing but another example of the poor
notational conventions that plague this field. In fact, w^ is nothing but a particular contraction
of w_
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Finally, in the conclusion we will recapitulate our results and also comment
about deformations of these structures. We will explain why the standard deforma-
tion which takes wn to Wn in one dimension is not directly applicable to the higher
dimensional case.

2. General Formalism

The higher dimensional PF-algebras are going to appear as Poisson structures in
the space of pseudodifferential operators (ΨDO) of the classical type, so before
going any further we will introduce the necessary concepts to deal with such objects
[13, 12].

A ΨDO a is said to be of the classical type if J>: C?omp(X) -> C°°(Z) can be
expressed locally as

Λf(x) = J f e'<*-»<M(x, ξ)f(y) ~ dD y + f f ( x ) , (2.1)

where D is the dimension of X and &~ is an operator with a smooth kernel2, and
Λ(x9 £)eC°°(Γ*Jf\0) (i.e. smooth functions on the cotangent bundle without the
zero section) admits an asymptotic expansion for \ξ\ -> oo of the form

Λ = £ δ»-7 > (2 2)
7 = 0

with

δm-Xx,ίί) = ίw" 'fim-Xx,ί) ί > 0 (2.3)

which implies that

, (2.4)

where θ stands for the angular variables in RD.
From now on when we refer to a ΨDO or its (smoothed) symbol, the reader

should assume that it is of the classical type unless stated otherwise.
We will further restrict ourselves to ΨDO's with um equal to a constant, which

we will take equal to one in order to simplify the notation, and m e Z. Then, Mg will
denote the space of formal series of the form (2.2) with the above constraint.

We can equip the space of ΨDO's with a Lie algebra structure by defining the
Lie bracket for any two symbols A and B by

01,B] = Aoβ-BoA, (2.5)

where ° denotes the usual composition of symbols given by

2 This roughly means that A is uniquely defined up to terms that decay faster than any power of
If I when |f I-* oo
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where α is a multi-index, and a "nasty" factor of — i has been absorbed in the
definition of dx.

Although, it would be very interesting to keep the full noncommutative struc-
ture of this space (see comments about deformations in the conclusions), in
this paper we will restrict ourselves to the commutative limit, which we define
below.

The Classical Limit of the Ring of Pseudodifferential Symbols. Let RD denote the
ring of pseudodifferential symbols in dimension £), where multiplication is defined
by the composition of symbols. It is possible to define a degree in RD as follows. Let
the degree of a monomial be given by its degree of homogeneity,

deg δ(x, ξ) = j o δ(x, tξ) = tju(x, ξ) (2.7)

for any t > 0. We can now define the degree of a polynomial as the degree of the
leading term. Let us denote by Rp the subspace of all symbols with degree equal to
or smaller than p. It is clear from (2.6) that

R°oRD = R°+q9 (2.8)

making RD into a filtered ring. Starting from any filtered ring we can define its
associated graded ring as follows. Let

QTPR
D = R^/R^. (2.9)

The multiplication in RD induces a multiplication in GrRD = @pGrpR
D. The

reader can easily check that the composition

RD

P x Λ?-JU R°p+q J!̂  Grp+qR
D (2.10)

induces a unique map

GrpR
D x GτqR

D -> Qrp+qR
D , (2.11)

converting GrRD into a graded ring. Moreover, this induced multiplication is
nothing but the usual commutative multiplication of symbols as formal series. This
would not be very interesting as it stands were if not for the fact that GrRD can be
given a natural Poisson algebra structure.

The commutator \_A, B~\ in RD induces a Lie bracket on GrRD as follows. Let
A eRp andBeRq. It is then easy to see that [X, £] eR p + q -1 The part in #£+4 has
to vanish since it corresponds to the commutator in Gr RD, which is a commutative
algebra. Therefore [A, 5] defines an element in Grp+q-ιRD. Furthermore, this
element only depends on the class of A modulo R$-l9 for if AeRp-l9 then
[A, B]eRp+q-2. Similarly, it only depends on the class of B modulo Rq-ι.
Therefore the composition

Λ?xR?-^*?+,_1-?ϊi!^Gr1,+β_1/?J) (2.12)

induces a unique map

{,}: GrpΛBxGrβRD-*Gr J ( +,_1R
I ) . (2.13)
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The fact that [ , ] is a Lie backet for RD means that { , } is a Lie bracket for Gr RD

9

but it has more structure. It turns out that it is a derivation over the commutative
multiplication on GrRD. In fact, let ,4e#£, BeRq, and Ce#f . Then

{grpμ), gr,(£)grs(C)} = {gτp(A)9 gτq+s(BC)}

= ffp+q+s-ι(LA9 B]C) + grp+q+s-,(BlA, C])

= grp+q-,lA,B]grs(C) + grβ(B)gτp+β_1[Λ C]

= {grp(A)9 gτq(B)}gτs(C) + [ f f p ( A ) 9 gτs(C)}gτq(B) . (2.14)

In summary, this turns GrRD into a Poisson algebra. The reader will recognize that
the Poisson bracket so defined is nothing but the canonical Poisson bracket on
a 2rc-dimensional phase space with canonical coordinates (xl

9 &).
We can also define this classical limit in a more "physical" way as follows. Let

us introduce the formal parameter ft in (2.6),

A flxfξ

• <2 15>
interpolating from the commutative multiplication for h = 0 to the noncom-
mutative composition of symbols for ft = 1. For ft different from zero we
can reabsorb it by rescaling ξ. This implies that °h remains associative for all values
of ft.

The classical limit is given by the leading term in the ft -» 0 limit. This implies
that composition of symbols goes to standard commutative multiplication.
However, notice that for the bracket, the leading term is already of order ft,
therefore

,2.6)
δ-+o n 7=1 \vζjθx oςjCX j

as we found before.

Formal Geometry. The space M # can be given the structure of an infinite dimen-
sional manifold, but we will not need this machinery for our purposes. It will be
sufficient to endow M£ with a formal geometry or algebraization of the strictly
necessary geometric concepts. Our main goal is to define Poisson brackets on M£.
The geometrical objects we should define are: the class of functions on which we
define the Poisson brackets, the vector fields, and 1 -forms together with the map
sending a function to its associated hamiltonian vector field.

We will define Poisson brackets on functions of the form:

where /(w) is a polynomial of the M/S and their derivatives. The precise meaning of
the integration will depend on the particular context, i.e. what kind of functions the
w's are or in which particular space they live. In what follows, we will only use the
fact that J is a map which annihilates exact forms, i.e. there are no contributions
from boundary terms.
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The tangent space TAM% at A is isomorphic to the infinitesimal deformations
of Λ. These are clearly pseudodifferential symbols belonging to R^-i.lf AeR^-i
is of the form A = Σj ^ « - i aj(χ> θ) I £ K then the vector field DA acting on a function
F is defined by

d " "' x (2.18)

The cotangent space T\ M g will be defined as the dual of TΛM -g with respect to
a nondegenerate inner product. The required inner product is supplied by Guille-
min's symplectic trace [11,12].

Symplectic Trace. Here we will adapt the general discussion of [12] to our
somewhat restricted interest.

Let Y be a symplectic manifold of dimension 2D and ω the corresponding
nondegenerate 2-form. Then the Poisson bracket for any two functions in Y is
given by

{f, g} = <?Hfg = ω(Hf, Hg) = i(Hg)i(Hf)ω , (2.19)

where

ω(Hf, •)= -df. (2.20)

In our particular case Y = X x RD and ω is given locally by

D

ω = ̂  dxj Λ d ξ j . (2.21)
7=1

As we have already seen, there is a natural action of the multiplicative group of
the real numbers on Y given by

χ,:ξ^tξ, (2.22)

where ί e R + . This action is conformal, that is

χ f ω = tω . (2.23)

The infinitesimal action defines the Euler vector field

'= Σ^ (2-24)
j=ι °ζj

Now we can define

α = i(σ)ω and μ = α Λ (da)D~1 . (2.25)

Notice that doc = dί(σ)ω = di(σ)ω + i(σ)dω = <$fσω = ω, where the last equal-
ity is obvious because σ is the vector field generating the flow induced by χexpt. This
implies that α is nothing but the canonical 1-form of classical mechanics.

It is now clear that

χ?α = ία and χ*μ = tDμ, (2.26)

therefore

J^a = a, dμ = ωD, £>σμ = Dμ. (2.27)
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We will now proceed to prove a couple of technical lemmas which will be
required in what follows.

Lemma 2.28.

Proof.

0 = ί(Hf)i(Hg)ωD+i = -(D + l)i(Hf)(dg Λ ωD)

= -(£>+ ί)(i(Hf)dg Λ ωD - dg Λ i(Hf)ωD)

= -(D + l)(dg(Hf)ωD + Dag Λ df Λ ω0'1)

= (D + ί)(Ddf ΛdgΛω"-1- {f, g} ω°).

Lemma 2.29.

{/ g}μ = d(gi(Hf)μ) -(D- ί)gdf Λ ω0'1 - &.(gdf) Λ co^1

Proof.

Using the previous lemma this can be written as

~ί

where we have used £Ήfω = 0 in the last line. From this we have,

{f, 9}μ =

= - &,(gdf) Λ ωD'1 - (D - ί)gdfΛ ω"^ + d(gi(Hf)μ) .

From now on we will only deal with homogeneous functions on Y. If
feGτpR

D, then

&.f=pf (2.30)

The following lemma will prove to be fundamental.

Lemma 2.31. IffeGrpR
D and geGrqR

D,

{f, g}μ = d(gi(Hf)μ) - (p + q + D - ί)gdf Λ ω^1 .

Proof. It follows immediately from the two previous lemmas and Jz^ (gdf) =
(p + q)gdf. m
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Now we can define the symplectic residue by

if/eGr-^ (2.32)
otherwise. v *

In order to define the symplectic trace notice that F is a principal R + -bundle
with base Z, i.e. F/R + = Z. The natural projection Y -» Z will be denoted by p.
Notice that/μ is a R + invariant form (because fεGΐ-DRD => £*σ(fμ) = 0) and
since it is always horizontal (i.e. annihilated by i(σ)\ a unique form/μ on Z must
exist such that

p*fμ=fμ
The symplectic Trace is then defined to be

Tr/=jRes/. (2.33)
z

This definition is obviously independent on the section.
Now we can prove that the symplectic trace defined above has the usual trace

property.

Theorem 2.34. IffeGrpR
D and geGτqR

D, then Tr{/, g} = Ofor all p and q.

Proof.

ti{f,g}eGr-DRD. By Lemma 2.31

Tr{/,0} = J d(gi(Hf)μ) - (p + q - 1 + B)gdf * ωD^=0.
z

The first term is zero because by assumption j annihilates exact forms. The
second term also vanish by noticing that {/ g}eGrp+q-1R

D.

Generalized Adler Map. Now we have all the required ingredients to define
Poisson brackets on M^ Remember that one of the crucial properties in the
standard one-dimensional classical case was that there were two closed subspaces
on R1 under Poisson brackets [14]. We will show that this is also true in arbitrary
dimensions if we modify the old definitions slightly.

Define R^p] = (+)/=<? GrjRD- It should be clear from our previous discussion
that RD

+ = £[1,00) and RD_ = Rf-^o] are closed under Poisson brackets. Notice
that in one dimension this splitting differs from the standard one. It also will be
convenient to define R® = R[-D, «> and RQ = #f_ «,, _ D _ i]. For any ΨDO symbol
A, the symbols A + , A _ , A® and AΘ will denote the projections of A on RD

+ , RD_ ,
R@ and RQ respectively.

These 0 and θ splittings will appear naturally because, in contrast with the
usual one, ours is not compatible with the symplectic trace, i.e. ΎrA-B- is in
general different from zero. In particular RQ is the dual of RD

+ with respect the
symplectic trace, and £@ is the dual of RD_ .

Now we can define our 1 -forms as parametrized by the dual space of
Rm-ί under the symplectic trace (recall that these symbols parametrized the vector
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fields on Mg). Therefore, 1-forms are parametrized by elements in βf-£-m+ι,oo) If
n-i and XeR^-D-m + ί t 0 0 ) 9 the action of the 1-form X on dA is given by

(2.35)

This let us define the gradient of a function by

dF(dA) = dAF . (2.36)

In analogy with the finite dimensional case, we should provide a map from one
forms to vector fields in order to define the Poisson brackets. The required map is
given by a suitable generalization of the standard Adler map [2], which reads in
"components"

J(X) = μ, X}® A - μ, (ΛX)+ } . (2.37)

First notice that J(X) e R^- 1 , so it parametrizes a vector field in T^M g. This is
easily shown if we write (2.37) as

J(X) = - μ, X}θ Λ + μ, (AX). } . (2.38)

Also notice that because of the different splitting there is not a natural reduction
to A- = 0, in contrast to the standard case.3

Let Ω denote the map X\- »<3J(X) from 1 -forms to vectors fields induced by
(2.37). In analogy with the finite dimensional case, it is convenient to introduce the
symplectic form ω defined, on Im Ω, by

ω(Ω(X\ Ω(Y)) = Tr J(X) Y . (2.39)

Notice that, in contrast with the usual case in classical mechanics, this 2-form is
not defined for all vector fields since, in general, the map J will not be an
isomorphism. It follows from the definition of ω that the Poisson brackets will be
given by

(F, G}GD = ω(Ω(dF)9 Ω(dG)) = Tr J(dF)dG , (2.40)

where we have introduced the suffix GD (for GePfand and Dickey) in order to avoid
confusion with the canonical Poisson brackets in a finite-dimensional phase space
used for the definition of the generalized Adler map.

It is now simple to check that this bracket is indeed antisymmetric. Explicitly,

= Tr(μ, (dF}@AdG - μ, (ΛdF)+ }dG)

= Tr( - (A9(AdG)-} dF + {A9 dG}θdF)

= - ΊrJ(dG)dF = - (G, F}GD , (2.41)

3 Of course, this does not necessarily imply that there is no possible reduction where only a finite
subset of the w/s are different from zero. It only means that if such reduction exists it will be more
involved than in the usual case
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where we have used ΎτA + B® = ΎτA-BΘ = 0 for all A and B.
By analogy with the finite-dimensional case, we define dω by

)9 dJ(Z)) = dJmω(dJ(Ύ^ dj(z))

j(z}) + c.p. (2.42)

where c.p. is shorthand for cyclic permutations. But notice that the last term in
(2.42) is not well defined unless Im Ω forms a subalgebra of the vector fields. In fact,
the proof of the following lemma is routine.

Lemma 2.43. For any X and

where

modulo the kernel of J.

It is easy to show [3] that closedness of ω, i.e. dω = 0, is equivalent to Jacobi
identities for the bracket defined by (2.40). Now we can state the main result of this
paper.

Theorem 2.44. For any three vector fields δj(x), 3J(Y), and 3J(Z), in ImΩ

dω(dj(X)9 dj(Y), 3J(Z)) = 0 ,

i.e. ω is a closed 2-form.

The proof of this theorem is given by a long, straightforward and explicit
computation of dω which we omit.

Bihamiltonian Structure. We can obtain another Poisson structure by deforming
the previous one by A -> A + A, for λ some constant parameter. Then

= J 2 ( X ) + λJl(X] , (2.45)

where J2 is given by (2.37) and J1 is given by

Jl(X)= - {A,X}Θ + {Λ,X.} . (2.46)

As usual the two kinds of Poisson brackets so obtained are coordinated. For
"perverse" historical reasons the structure obtained by the deformation is called the
first hamiltonian structure while the one given by (2.37) is called the second.

We will finish this section by giving a convenient prescription for computing the
fundamental Poisson brackets among the Uj(x9 θ). Although the "coordinates" uj

are not functions according to the definition we are using, we can still make sense of
their Poisson bracket.

First notice that both structures are linear in X. This implies that J(X) is
necessarily of the form

J1'2(X)= X W XjW-', (2.47)
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where X = Σ./^ i Xj(x, θ)\ξ\j~m~D

9 and the Jf/s are certain differential operators
acting on the Xfs.

We now choose two linear functionals of the form

1A = Tr AΛ and 1B = ΎrBΛ, (2.48)

with A = a(x, θ)|ξΓ'~w"D and B = b(x, θ)\ξ\j~m~D. Their gradients are given by

dlA = a\ξ\i~m-D and dlB = b\ξ\j-m~D , (2.49)

which implies

{/A,MSb2 = ί(^2 β)ft (2.50)

It is obvious that we would have obtained the same result if we had declared
our fundamental Poisson brackets among the w's to be

{ufa θ\ uj(x', θ')}1'2 = - J l j 2 δD(x - x')δ(θ - θ'} , (2.51)

where δ(θ — θ') is the "delta-function" associated with the standard measure

3. D = 1 Revisited

In this section we will obtain the Poisson algebras induced by (2.37) in one
dimension and associated with the Lax operator

Λ = ξ+ Σ "jΓ j- (3.1)
7 ^ 0

Notice that they will differ from the standard wκp [8] because of the different
splitting. But, interestingly enough, the new algebra, denoted by wκz, is nothing but
the limit when n -» oo of the standard ww after making the reduction of setting
w0 = 0.

A straightforward computation yields

J0j = duj-ί . (3.2)

And if ίj ^ 0, then

7-2

+ Σ (('' - fc - l)ui+J-k-2duk + (j-k- l)ukdui+j-k-2) . (3.3)
fc = 0

Imposing now the constraint w0 = 0, the associated Dirac brackets give

J\f} = ίUi+j-^d +jdui+j-l -jUi-idUj-ί

j-2
+ Σ ((i - fc - l)ui+j-k-2duk + (j-k- l)ukduί+j-k-2) . (3.4)

k=l
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The explicit form of the classical GePfand-Dickey algebras with the standard
splitting is given in [14]. It reads

Jn-ιj= -(/' + l)8uj+1 ,

Jtj = (n -j ~ l)duί+2+j-n + (n-ί- l)ui+2+j-nd

n-l

+ Σ [(* ~ * - l

-(i+l)ιι i + ιδtt ι / + 1 , (3.5)

where 1,7 = 0, 1, . . . , n — 2 and with the proviso that w ί < 0 = 0 in the above
formulas.

If we now do the following field redefinition un-j-l\-^uj. We obtain

Joj = (j-n)duj-l. (3.6)

And if i, 7 ̂  0, then

7-2

+ Σ ((* ~ k - l)u ί+J- fc-23Mk + ϋ - fe - lK^+;_k_2) . (3.7)
fc = 0

If we again impose the constraint u0 = 0, we have

jy^ + ϋ-'H'-V^-i. (3-8)

And now we can take the limit n -» oo in the expression above and recover
(3.4). Therefore

W K Z ^ V V ^ O O . (3.9)

Let us now focus our attention on the first structure. After the natural reduction
of setting u0 = u1 = 0, the Adler map simply becomes

J ( X ) = -{Λ9X+}Θ. (3.10)

From this we obtain

Jtj = (ί - ί)ui+J-2d + (j- ί)dui+j-2 , (3.11)

and this is nothing but the w^ algebra, as the reader can check in [15].
All of this seems to indicate that the new splitting is quite "natural" in one

dimension.
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4. D = 2

Now we are going to use the tools developed in Sect. 2 in order to compute an
explicit example of the new higher dimensional classical FF-algebras. We will limit
ourselves to the two-dimensional case because, as our reader will see in what
follows, explicit expressions soon become very cumbersome.

Let us first compute the Poisson brackets associated with the second hamil-
tonian structure in Mg. The fundamental Poisson brackets between the w's, after
imposing the constraint u^x, θ) = u2(x, θ) = 0, are given by

{u\(z, z-), u'V, z-')} = - JV δ(z - z')δ(z - £') , (4.1)

where we have introduced complex coordinates z = i(x2 + ί x 1 ) and its complex
conjugate z, and where

uj(x9θ)= Σ uV,
peZ

with

J% = (j + p- 2)fl ίwJίfΓ3

1 + (i + ί - 2Kί a1 d~z

+ (j - p - 2)dzu\+

+?^ + (i-t

- Σ Σ (('' + ' - * - s - 2)^:^-3 3M
seZ k^j

+ X X ((2m + fc + s _ ί _ p _ / _ _ / _ 4)njί ̂ Γj1 ̂
s e Z ; - 2 ^ / c < ;

+ (2m + fc - s + t + p - i -j - 4)un^ί-3 Szu
s

k

+ (k + s-p-j + 2)Mj(δίttίίyrΓ31)

+ (/c - s + p - j + 2)ui(d,uti3I&)) , (4.2)

and the proviso that u$<3 = 0 for all ίeZ. We have chosen to complexify the
algebra, i.e. consider complex M'S, because expressions become more transparent.
Of course a real section can be taken if desired.

Now it is simple to check that there is a finite-dimensional subalgebra gener-
ated by u\ and uΐ l . If we use the suggestive notation u\ = 2P^ and M J 1 = 2PZ, we
obtain

(Pf(z, z), Pf(z', z-')} = - &?&, z-) + P,(z, z)di) δ(z - z')δ(z - z') ,

{Pz(z, z), Pz(z', z')}= - (3zPz(z, z) + P,(z, z)d,)-δ(z - z')δ(z - z') ,

{Pz(z, z), P,(z', z')} = - (d, P&, z) + P,(z, WJ δ(z - z')δ(z - 7) .
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This is nothing but the algebra of loal diffeomorphisms of a two dimensional
manifold in complex coordinates.

By inspecting expression (4.2), the reader can check that the u] fall in two
different representations of the diίfeomorphism algebra. The sets composed by
wj~ 2 , wj~ 4 , . . , Mj~J'+2 form finite dimensional-representation, which correspond
to (/ — 2)-symmetric covariant tensor 1-densities. The others fall in two infinite-
dimensional representations, corresponding to an odd or even upper index. It
would be very interesting to find a reduction which will leave us only with the
finite-dimensional representations, but for the time being we have not been able to
find it.

In what concerns the first structure, we will only say that after the natural
reduction of setting all the HJ(X, θ) with; ̂  m + 2 to zero, the algebra obtained is
isomorphic to the linear part of (4.2). In this case, it is worth noticing that there is
a subalgebra spanned by the finite-dimensional representations of the diffeomor-
phism algebra.4

5. Associated Integrable Hierarchies

In this section we will show that these new Poisson structures give a bi-hamiltonian
formulation of higher-dimensional KZ-hierarchies.

Let us first recall the standard one-dimensional formulation of these hierar-
chies. The KP-hierarchy [16] can be defined as the Lax-type evolution equations
given by

^ = IΛ"+9Λ1 = IΛ9Λ*-19 (5.1)
dtn

where A = ξ +Σi^QUiξ~ί, and the + and — stand for the standard projections
over the differential and "integral" parts. The KZ-hierarchy [9, 10] is nothing but
the classical limit of (5.1), so it reads

8^ = {Λ\,Λ} = {Λ,Λ"-}. (5.2)

From the point of view of the differential equations, the classical limit is such
that higher derivative terms are disregarded or, equivalently, fields are taken to be
slowly varying in their spatial coordinate.

It is now a simple exercise to show that all these flows for different n commute.

Proposition 5.3. For all i, j e N,

d2Λ d2A
(5.4)

4 This subalgebra is closely related to the symmetric Schouten bracket. We hope to come back to
this issue in a future publication
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Proof.

This is an important result because if these flows are hamiltonian, Proposition
5.3 implies that there are an infinite number of commuting conserved charges, thus
proving formal Liouville integrability of the system. In the case of the KZ-hier-
archy, these flows are bihamiltonian with respect to wκp and w1 + 00 [8].

As the reader has probably already noticed, the key property in the proof of
Proposition 5.3 was that there is an invariant splitting with respect to Poisson
brackets. But in Sect. 2 it has already been shown that such splitting exist in
arbitrary dimension if the definitions are slightly modified. This implies that (5.2)
defines a Liouville integrable hierarchy in higher dimensions whenever A belongs
to Mj) and the -I- part stands for the projection over Λft , «>)• Then the proof of
Proposition 5.3 goes step-by-step to the higher-dimensional case.

It is now trivial to show that

, (5.5)
k

where Hk = - Tr Λk, and its gradient is given by

dHk = A*-1moARD-D. (5.6)

The Hk are clearly conserved charges for any of the KZ-flows, that is

?j£ = τr{Λ>+,Hk} = Q (5.7)

because the symplectic trace annihilates Poisson brackets. The proofs of non-
triviality and independence of these conserved charges are identical to the usual
ones, so we will not repeat them here.

Standard procedures also yield

{Hk, HJ}GD = {Hk, Hj}GD = 0 , (5.8)

for all fe,7'eN.
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6. Conclusions

We have shown how to construct classical PF-algebras in higher dimensions. The
standard one dimensional formalism has been shown to extend to higher dimensions
with minor modifications and the use of some new tools such as the symplectic trace.

Of course much remains to be done. We have not proved that the connection
between these new classical W-algebras and the algebra of generators of local
diffeomorphisms goes beyond dimension two, although we firmly believe that it is
so. Neither have we studied potentially interesting reductions of these algebras, in
particular if we can restrict ourselves to fields falling in finite dimensional repre-
sentations of the diίfeomorphism algebra. It would also be an interesting problem
to see the connection between wκz and the c = 1 matrix model formulation of
matrix models. The fact that wκz ~ w,,-̂  seems to strongly indicate that such
a connection indeed exists. It would also be interesting to construct Lagrangian
field theories with these new algebras as their algebra of symmetries, and last but
not least, to "quantize" them.

We would not like to finish this paper without a word about why we have
restricted ourselves to the classical case.

A Comment on Deformations. It would look very natural to try to extend the present
formalism to the ring of ΨDO's in arbitrary dimension without restricting ourselves
to the classical limit. There is a noncommutative generalization of the symplectic
trace due to Wodzicki [12], so we could simply try to substitute our Poisson
brackets in the underlying 2D-dimensional symplectic space for commutators. Un-
fortunately, without such a restriction we rapidly get into trouble, the main problem
being that there is no invariant splitting for D > 1 with respect to the commutator of
ΨDO's, i.e. it is not possible to define a + and — subalgebras closed under
commutation and such that RD = R + 0 R?.. The interested reader can check that
this is a required ingredient in the proofs of Lemma 2.43 and Theorem 2.44.

Nevertheless, it is interesting to point out that the hierarchy defined by (5.1) for
a ΨDO A E MD still possesses an infinite number of conserved charges, which are
given by the Wodciki-Trace [12] of the integer powers of A But in this case it is
simple to prove that the flows do not commute, as this would necessitate the
existence of an invariant splitting. The reader is invited to verify this in the proof of
Proposition 5.3. This implies that the hierarchy so defined would not be integrable,
at least in the sense of Liouville.

The above discussion suggests that deformations of these structures is
a "tricky" business in D > 1.

Acknowledgments. We would like to thank J. Figueroa-O'Farrill and J. Mas for many useful
conversations. We are also thankful to Anne Petrov for a careful reading of the manuscript. E.R.
would also like to thank the hospitality of the Dept. of Particulas Elementales of Santiago, where
part of this work was completed.

References

1. GePfand, I.M., Dickey, L.A.: A family of Hamiltonian structures connected with integrable
nonlinear differential equations. Preprint 136, IPM AN SSSR, Moscow (1978)

2. Adler, M.: Invent. Math. 50, 403 (1981)
3. Dickey, L.A.: Integrable equations and Hamiltonian systems. Singapore: World Scientific



Higher Dimensional Classical W-Algebras 589

4. Zamolodchikov, A.B.: Theor. Math. Phys. 65, 1205 (1986)
5. Fateev, V.A., Lykyanov, S.L.: Int. J. Mod. Phys. A3, 507 (1988)
6. Drinfel'd, V.G.: Sokolov, V.V.: J. Soviet Math. 30, 1975 (1984)
7. Douglas, M.R.: Phys. Lett 238B, 176 (1990)
8. Figueroa-O'Farrill, J.M., Ramos, E.: Classical PF-algebras from dispersionless Lax hierar-

chies. Preprint-KUL-TF-92/6, June 1992
9. Takasaki, K., Takebe, T.: SDIFF(2) KP Hierarchy. Preprint RIMS-814, December 1991

10. Kodama, Y.: Phys. Lett. 129A, 233 (1988); Phys. Lett. 147A, 477 (1990); Kodama, Y., Gibbons,
J.: Phys. Lett. 135A, 167 (1989)

11. Guillemin, V.W.: Adv. Math. 10, 131 (1985)
12. Wodzicki, M.: Noncommutative Residue. In K-Theory, Arithmetic and Geometry. Ed.

Manin, Yu.I. Lectures Notes in Mathematics 1289. Berlin, Heidelberg, New York: Springer
13. Shubin, M.A.: Pseudodiίferential operators and spectral theory. Berlin, Heidelberg, New

York: Springer
14. Figueroa-O'Farrill, J.M., Ramos, E.: The Classical Limit of W-Algebras. Preprint-KUL-

TF-92/5 and BONN-HE-92-03, February 1992
15. Pope, C.N., Romans, L.J., Shen, X.: Phys. Lett. 236B, 173 (1990); Phy. Lett. 242B, 401 (1990);

Nucl. Phys. B339, 191 (1990); Bakas, I.: Commun. Math. Phys. 134, 487 (1990)
16. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Proc. Jpn. Acad. Sci. 57A, 387 (1981); J. Phys.

Soc. Jpn. 50, 3866 (1981)

Communicated by N.Yu. Reshetikhin






