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Abstract. The ^-difference system satisfied by Jackson integrals with a configura-
tion of ^4-type root system is studied. We explicitly construct some linear combina-
tion of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov
equation for the 2-point correlation function of g-vertex operators, introduced by
Frenkel and Reshetikhin, for the quantum affine algebra Uq($ΐ2)- The expression of
integrands for the n-point case is conjectured, and a set of linear relations for the
corresponding Jackson integrals is proved.

1. Introduction

1.1. In a recent work [FR], Frenkel and Reshetikhin constructed a ^-analogue of
the vertex operators of Tsuchiya and Kanie [TK] and derived a g-difference
equation for the n-point correlation function, which is a ^-analogue of the
Knizhnik-Zamolodchikov equation (KZ) in the Wess-Zumino-Witten model and
is called the quantum Knizhnik-Zamolodchikov equation (qKZ). This equation is
written in terms of the trigonometric R-matrices arising from finite dimensional
representations of the quantum affine algebra L^(§) (cf. [Jl]) corresponding to
a simple Lie algebra cj, and plays an essential role to produce elliptic solutions of
the quantum Yang-Baxter equation (YBE) of IRF type. One needs to solve the
connection problem of qKZ to obtain an explicit form of the elliptic solutions of
YBE in this context.

Therefore to indicate solutions of qKZ explicitly is of great importance to
consider the following question: Do all the known elliptic solutions of YBE of IRF
type come from the connection matrix of qKZ? Actually in the simplest case for
Uq(^2\ Heine's basic hypergeometric functions with Jackson integral representa-
tions are used to represent solutions to qKZ for 2-pont function in [FR] and the
resulting connection matrix coincides with the ABF-solution of YBE (cf. [ABF,
JMO]).

In a previous paper [Ma2], we have constructed a Jackson integral solution to
qKZ for the π-point function of the g-vertex operators of Uq($l2) for certain kinds
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of representations provided the number of integration variables is one. The aim of
this paper is to generalize it to multiple cases. We conjecture an explicit expression
of a solution and prove it for the 2-point case. Our result is analogous to the case of
ordinary KZ (q = 1 case), while the proofs are much more technical.

In Subsects. 1.2-1.4 below, let us briefly describe our method comparing it with
that of the q = 1 case.

1.2. Let us review the result of [DJMM] on an integral representation of solutions
to KZ for sί2. The simple Lie algebra g = $Γ2 is generated by three elements X±,
H with the relation

[X+, X~] = H, [H, X^ = ± 2X± . (1.2.1)

Let 7ii\ g -» End(Kj), i = 0, . . . , n, oo be a set of irreducible representations with
the highest weight vectors vt of the weights λ{. We assume, for some positive integer
w, that

λ0 + - " + λn-λao = moc, (1.2.2)

where α stands for the simple root of g. We consider the tensor product
FO (x) (x) Fπ and define the quadratic Casimir operator i20-eEnd
(F0® (χ)F M )by

Ωu = (πt ® π,) ( X+ ® X' + X~ ® X+ + ^H (x) H J . (1.2.3)

Let /c = (fe0, . . . , kn) be a multi-index such that fc0 + 4- kn = m. Put
α = fc0 + . . . + fe.. For such a multi-index £, we associate a vector
v$ e KO ® (x) Fw and a rational function φ^(x, ί) = φk(xo, . . . , xn, ίi , . . . , ίm) as
follows:

/J^-Λfco CY~) f c M

»f = ι;o® ® - l ' - (L14)

(*t)= Σ Π (L15)

Here Sm denotes the symmetric group acting on m letters {1,. . . , m}. Let v be
a complex parameter, which is related to the level / of representations of the affine

Lie algebra § = $ί2 by v = ̂ 71— τ̂ We set

(f\(-y f\ — 1 Γ (-y -y \ 2 ( A f , A j ) VVP^Λ, I) J^ I \AI Λ,j)

x Π (x -O)-2^'^ Π (tt-tj)2^, (1.2.6)

and define

# = yffφ(;cίΓ-(x t)dt dt V (127)

Here the contour is appropriately chosen. Then we have
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Proposition 1.2. The vector 3F is a highest weight vector in F0 ® ® Vn and
satisfies the KZ:

(1.2.8)

The construction above is an interpretation of a result of Aomoto [Al].
A generalization to the slw case is given by the author [Mai]. Similar integral
solutions for an arbitrary simple Lie algebra g are constructed by Schechtman and
Varchenko [SVI, SV2]. Note that [ZF] and [CF] are pioneering works on this
direction and see also [K] and [ATY].

1.3. Let us consider a trigonometric analogue of the last construction. We keep the
notations in 1.2, except

fcfct)- Σ Π — — (1.3-1)

and
-(λi,α)v / f \ -2(λ f ,α)v

*<*,') = Π

/t \(α,α)v / f \ 2 ( α , α ) v

x π (-1 i-- Π ^"(Aι'α)v ΠA •"• \ /• / \ / • / X J . J
l £ i < j ^ m V i/ \ ^7 l ^ i ^ w l ^ J ^ m

(1.3.2)

Using them we define ̂  by.

= ifί *(*> oφtί^ o^ v
jf \ ίl ίm

(L3 3)

l m /

Now we formally put x0 = °o and define

ry(jc) - - ̂ '̂ ( ί2y - ^(A,, ̂ ) ) + (π, ® ^)(X+ ® X- - X- ® ^ί+) . (1.3.4)
Xi "~ XJ \ ^ /

They form a set of classical r-matrices normalized as:

(1.3.5)

For a weight λ, we define

π^μ)^-)^ = (A, λ, - /cα)(Z-)^ . (1.3.6)

Then we have

Proposition 1.3. The vector ϊF is a highest weight vector in VQ ® ® Vn and
satisfies the trigonometric KZ:

, i = 1, . . . , n . (1.3.7)

This construction is due to Cherednik [Ch], where integral solutions to the
trigonometric KZ for an arbitrary simple Lie algebra g are given with a beautiful
derivation of an explicit form
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1.4. Let us explain an approach to obtain a g-analogue of the constructions above.
Let U q ( $ ΐ 2 ) be the quantum affine algebra of type A^ (see 2.1). Let π f: cj -»End(Fi),
i = 0,. . . , n, oo be a set of irreducible representations of the subalgebra Uq(&\2)
with the highest weight vector i^ of the weight A,-. Let RViV.(x) be the trigonometric
quantum R-matrix of Uq($ί2) acting on Vι® VJ9 whose classical limit coincides
with (1.3.4). We put p~ v = q. Then qKZ, in a certain convention, is the following
system of ^-difference equations for a F0 ® - - - ® Vn-valued function 3F\

\χi-ι/

i = 1 , . . . , * , (1.4.1)

where 7] denotes the shift operator: TiF(xί9. . . , xn) = F(xl9. . . , pxt,. . . , xn).
Here we have also put x0 = oo .

On the other hand, a ^-difference deformation of the function Φ(x, ί) is known
as follows, provided we shall here use p instead of q. Let (a p)^ denote

ΠΓ=o(l ~~ aPn)- Then a ^-analogue of (1 — u)2β is given by °°, where

y — γf = β.By the g-binomial theorem, we see that letting p -> 1 it tends to (1 — x)2β

in a certain sense. Therefore starting from the trigonometric counterpart (1.3.2), it is
natural to define

,,α ζp i,a v^./χ.; p)^

λί, «)v f /γ .τj/xi>

(α,α)v/ -(

~ -(λi,α)v

(1.4.2)

Instead of the integration, we use its ^-analogue called the Jackson integral defined by

for a value 5 e C.
In the present paper, we make a special selection of a set of φ^ which is a q-

deformation of (1.3.1), and define a F0 ® ® Fn-valued function J^ in a similar
way to (1.3.3), such that some analogy of the construction of Subsect. 1.2 or 1.3
would be established. The key idea is utilization of a natural g-deformation of the
permutation used in the definition (1.2.5) or (1.3.1). To be more precise, we adopt
the following action of the simple transposition σ/ on a rational function:

- - - , f«) =/(ίι, - - , * ί+ι, f«, - , fm) V^!' + 1 (1-4.4)

(1.4.5)

For an appropriate choice of rational functions φ% and vectors VK e V0

(see ((4.3.3) and (5.1.1) respectively), we define as follows:
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and

, 0 ̂ 1 ^ * (1-4.6)= Σ( ί
£ \

Then our main result is the following (Proposition 5.1.1 and Theorem 5.2.1):

Theorem 1.4. The vector 2F is a highest weight vector in V0 (x) (x) Vn. Ifm = 1
and n is arbitrary, or n = 2 and m is arbitrary, it satisfies qKZ.

1.5. The paper is organized as follows. In Sect. 2 we review the notion of a quan-
tum affine algebra Uq($ΐ2) and the trigonometic R-matrix. We also review the
definition of qKZ. Section 3 is devoted to explain the action of the symmetric group
and to prepare some technical lemmas. In Sect. 4 we choose rational functions
φn and derive a set of linear relations among the corresponding Jackson integrals.
In Sect. 5 we interpret the linear relations in the context of Uq(sl2)9 and conjecture
an explicit form of a Jackson integral solution to qKZ, which is proved to be true
when n = 2 and m is arbitrary.

1.6. After completing this work the author learned that K. Mimachi [Mi2]
independently studied the ^-difference equation for the same kind of Jackson
integrals (for n = 2 in the present notation). He also learned that N. Reshetikhin
[R] constructed a Jackson integral solution to the quantum Knizhnik-Zamolod-
chikov equation at least for Uq(st2) using a method in Bethe Ansatz.

2. Quantum Knizhnik-Zamolodchikov Equation for Uq($t2)

2.1. The quantum affine algebra Uq = Uq($ΐ2) is defined as an algebra over C with
the generators:

X$9Xf9K^9Kίl (2.1.1)

and the relations:

+ γ-~\ _ X
i •> Λ j J — Oij

? ( i φ / ) ,

v _ }ζ~^
i *
^ _ 1 ,

+ (q2 + 1 + q-2)X?Xf(X?)2 - X f ( X f Ϋ = 0 (i Φ;) . (2.1.2)

Here q denotes a general complex parameter. In this paper, the comultiplication
A:Uq->Uq®Uqis defined by

= Ki®Ki. (2.1.3)

Let A(n} denote the nth composition of the comultiplication. We put A' = σ° A,
where σ(a ® b) = b (x) a in Uq® Uq.
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We consider the subalgebra Uq = Uq(sl2) generated by X* = X f , K± = K f .
For each xeCx, we define an algebra homomorphism, φx: Uq -> Uq by

φx(K0) = K~\ φx(K,) = K. (2.1.4)

Let (Vi9 πt ) be a highest weight ^representations of Uq. Then (Vt(x\ At) =
(Vi9 πi°φx) gives a representation of Uq for each xεC.

Proposition 2.1.1. There exists an operator

RVιVj(x) : Vt(x) ® Vj(l) -* Vt(x) ® F/l) (2.1.5)

whose matrix elements are rational functions in x such that it satisfies the intertwining
property

Δ'(ά)RViV.(x} = RVtVj(x)A(a)9 aeϋq, (2.1.6)

and the quantum Yang-Baxter equation:

RViVj(x)RViVk(xy)RVjVk(y} = RVjVk(y}RViVk(xy)RViV.(x) (2.1.7)

on Vi®Vj® Vk.

This proposition follows, for example, from the existence of the universal
R-matrix in a certain sense ([D, T]). We can easily see that it can act on
Vi(x) ® Vj(l) as a formal power series in x, since V{ is the highest weight β^-module.
Moreover normalizing by a scalar factor we obtain such an Rv.v.(x) whose matrix
elements are rational functions in x. We also refer to [FR].

2.2. We will derive in this subsection some recurrence relations for matrix elements
of the R-matrix RViV.(x).

Let Vi be the highest weight vector in Kf with the highest weight λi9 and put

M; = (^,a). (2.2.1)

We define

^W^' (12 2)

where the following notations are used:

qa - q~a

M = - — r for a complex number a ,
q-q

[/c]! = [/c] [fc - 1] - - [1] for an integer k . (2.2.3)

Then we have
KΌ(? = qMi ~ 2kυf\ X + t?J*> = [M, - k + 1] vf ~ 1} ,

jr-ϋ<*> = [fc +l]ι>ί* + 1). (2.2.4)

Consider the tensor product Vi(x) ® Vj(l\ which equals to K/ ® Vj as Uq-
module. For simplicity, put ί = 1J = 2 and denote v1(x) ® ι?2(l)eby vf} ® vf. Let
RVlv2(x) be an operator satisfying (2.1.6). For each set of integers fc, /, m such that
0 ^ k ̂  m and 0 ̂  / ̂  m, we define Rfj = R™i(x) by the following rule:

m

RViV.(x)v(k} ®v(m~k)= Σ #£>(/) ® v(m~l) . (2.2.5)
1 = 0

Otherwise we put Kftl = 0.
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Lemma 2.2.1. R™t satisfy the following recurrence relation for each k = 0, . . . , m
and I = 0, . . . , m + 1:

= qM2q21 [m-l + !]££, + xqMί +M2 [/] R£t- x . and (2.2.6)

]#M-ι . (2.2.7)

Proo/ Applying Δ'(X$) to (2.2.5) and using A(X£ )RVίv2(x} = RVίv2(x)A'(X$)9 we
obtain

ϋ(m"k) + [m - fc

m

= Σ (4~Ml + 2'[> - /

L^ί \* L J K, ί L J K, I is v_x \ " " /

On the other hand, by definition,

RVlV2(x)v(k+1) (x) ι;(m~fc) = Σ K?ii>(1) (x) ϋ^"0 . (2.2.9)

Substitute (2.2.9) in (2.2.8) and compare the coefficients to v(l) ® v

(m~l + 1\ Then we
obtain (2.2.6). Similarly applying Af(Xϊ) to (2.2.5), we arrive at (2.2.7). Q.E.D.

Therefore #£! are uniquely determined by the scalar #00 for general q, λ1 and
λ2. We fix the normalization by #00 = l Then, as a result, all RU(X) are expressed
by some rational functions, which can be continued with respect to the parameters.
Thus, for arbitrary q, λt and λj9 we have uniquely specified the operator RVιV.(x)
satisfying (2.1.6) and (2.1.7), whose matrix elements are rational functions in x.

2.3. Let λ0, . . . , Aπ, AOO be a set of weights such that

ΊO + + λn - AOO - mα , (2.3.1)

where m is a non-negative integer. Let Ff be the irreducible representation of Uq

with the highest weight λt and the highest weight vector vt. Let
^λoo(^o ® ' * * ® Ki) denote the set of the highest weight vectors with the weight

= [ve FO ® ® Fπ; /|W(A"+)i? = 0, Δ(n\K)υ = q^'«h} . (2.3.2)

Let us normalize the R-matrices by

= V i ® V j , (2.3.3)
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as in the last subsection. If RViVj(x) = ^dR
(^(X) (8> R(f(x), then we let it act on

VQ (x) (x) Vn by 1 ® - - (x) RΦ(X) (x) (x) R(f(x) (x) ® 1, which is nontrivial
only on ίth and /h components of the tensor product. Then we have

RViVj(X)RVjVi(X-
l) = id. (2.3.4)

We next consider, for a weight A, the operator defined by:

q l ΌI — q ' l ΌI . (2.3.5)

Let qπi(λ} act on the ith component of F0 ® ® Vn.
Let p be a complex parameter and suppose p~v = q. Let Γfc denote the p-shift

operator:
(2.3.6)

The quantum Knizhnik-Zamolodchikov equation (qKZ) is, in some conven-
tion, the following system of equations for a function J^ = J^(xι , . . . , xn) valued in

pXi

— ~
X0

"1

i = 1, . . . , n . (2.3.7)

Let us express 3F as

^=£» c o ) ®^'*. (2-3.8)
fc = 0

where J^ is a function valued in the weight space of V1 (x) ® Vn with the weight
^oo — Λ) — ka. The qKZ for J "̂0 is the following:

pXi

VtVi_l - - . . . VιVl

(2.3.9)

If ̂  is a solution to (2.3.7) then J^o is a solution to (2.3.9). If the parameters are
general then J^ is recovered from J 0̂ since A(n)(X+)^ = 0, and two equations are
equivalent.

Remark. If v = ——— for some positive integer / and Vt are finite dimensional

representations, then the qKZ (2.3.9) is satisfied, up to nomalization by a certain
scalar factor, by the rc-point function of g-vertex operators. Roughly speaking, it is
given by

# 0 = <«o,!Pι ^«,>, (2-3.10)

where Ψt is an operator of the following kind:

Ψt V(μi-,)^V(μi)®Vi(xί). (2.3.11)
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Here F(μ7 ) denotes an integrable highest weight representation of Uq of fixed level
/ with the classical highest weight μ^ . The weight μ 3 should be appropriately chosen,
and vQ and t^ are the highest weight vectors of F(λ0) and V(λ^) respectively. See
[FR] for detail.

3. Action of Symmetric Group

3.1. Let us consider the mth symmetric group Sm which consists of all permutations
of letters {1, . . . , m}. It is generated by the simple transportations σh

i = 1, . . . , m — 1 with the following fundamental relations:

σ? = id, σiσi+ίσi = σi+ίσiσi + 1 and σiσj = σ^ f o r | i - 7 ' | > l . (3.1.1)

The following lemma is well-known:

Lemma 3.1.1. Let S be a subgroup ofSm generated by some ofσh ί = 1 . . . , m — 1.
Then there exists a subset X (resp. Ϋ) ofSm such that any element ofSm is uniquely
expressed as sx by xeX and seS (resp. ys by y e Y and s e S).

For example, let S be Sm_ι as a permutation group acting on {1, ... , m — 1}.
Then we may take

X = { σ w . 1 . . - σ J . ; l g 7 ^ m } . (3.1.2)

3.2. Now fix a general constant q e C and set

^tj-qhj
DlJ " q\ - tj ' ( J

Let C(ί l5 . . . , tm) be the set of all rational functions with indeterminates ί l 5 . . . , tm.
For an/(ί1? . . . , ίm)eC(ί l 5 . . . , ίm), we define

ti, - - - , ίm) =f(tι, . . . , ίi + 1, ί,, . . . , tm)Dii + 1 . (3.2.2)

For instance, let i be an integer such that 1 ̂  i ̂  m. Then we have

ι> - - > ί») =/(ίι, - - - > ί<-ι, tn, ti9 . . . , ίm-ι) fΊ β^» (3 2 3)
i ^ j ^ m + l

((σr σ1)(σ ί + 1 σ2) -(^-i- - σm-i)/)(ίι, - - - , tm)

Lemma 3.2.1. TTzβ action of σt defined above extends to a representation of the
symmetric group Sm on the space C(ίl5 . . . , ίm).

Proof. It suffices to show the fundamental relation (3.1.1), which is easily
verified. Q.E.D.

For any subgroup S of Sm and a rational function f(tί9 . . . , ίm), we denote

» > *m) = Σ W)(ίι, . ' ίm) - (3.2.5)
S

The following lemma will be used in Sect. 5.
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Lemma 3.2.2. Letf(tl9. . . , tm) be a rational function such that wf = f holds for any
weSm. Suppose that g(tl9 . . . , ίj = Πi^K^m^ " */)/(*!» > *m) & a poly-
nomial Then it is divisible by Oι<ί<j<m(^ ~~ 0)

Proof. Let k and / be integers such that 1 ̂  fe < / 5Ξ m. Let w e Sm be the transposi-
tion of letters fc and /. It is written as w = σk - - - σt _ 2 σ z _ i σt-2 - - σk. Then we have

0(fw(i), > ίw(*)) = - Du Π β«β« Π (Λ - t j ) f ( t w ( ι } 9 . . . , ί(M))
k<ί<l l£i<j£m

= - Π (<Z2ίί-ί;)(w/)(ίι> >ίm)
l g i < j g m

= - Π (ί^ί-^/ίίi. Ό
1 ̂  i < j ̂  m

= -0(ίι,. . . ,ίm) .

Therefore the polynomial gf is divisible by (ίk — ί/) for each pair (fe, /). Q.E.D.

For example, we have

Π (Λ-ί,)Σi= Π (tt - tj> Σ ί2ί(w)

= Π fe-o)Π(1 + <?2 + + 4 2 d ~ 2 )> (3 2 6)

where /(w) denote the length of weSm.

4. Jackson Integrals of A-type Root System

4.1. Let p be a fixed complex number such as 0 < \p\ < 1. Let us denote

(0^)00= Π(l-αp") . (4.1.1)

Let w be a single variable. The ^-difference operator -— is defined by
dpu

(4.1.2)

For a value seC — {0} and for a function φ(u\ we define
500 d u °°
f φ(u) -i- = (l-p) Σ ^(sp-) (4.1.3)

whenever it is convergent. This is called the Jackson integral along a ^-interval
[0, 500], which is a ^-difference analogue of the ordinary integration.

Let t = (ίi, . . . , ίm) be a multi-variable. The multiple Jackson integral, written
as

, . . . , t l l l ) i . . . , (4.1.4)
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is similarly defined where a certain notion of ^-cycles takes place instead of
g-intervals (cf. [A2]). However we only need the following property:

f ίfc τ-Φ(t) — = 0 for any 1 ̂  fc ̂  m . (4.1.5)
dptk t

This is a g-analogue of the Green-Stokes theorem. We do not discuss a choice of
a g-cycle in this paper.

Let ~ be the equivalence relation of functions defined as follows:
Φι(tι, 9 ίm) ~ <M*i, > fm) if and only if there exists a function ^(f 1 ?. . . , ίm)
such that

_d_

for some i = 1,. . . , m. Then if φ1(t) ~ φ2(t) we have, by (4.1.5),

$ φι(t)-^—= § φ2(t)-^—. (4.1.7)

4.2. Now, under the notations of 2.3, we put

Mt = (λi9 α) and M = (λ0 + λ^ + α, α) . (4.2.1)

Then, by the assumption (2.3.1), we have

M = 2M0 + M! + + Mπ - 2(m - 1). (4.2.2)

We define
/

Φp(Xyt}~ \7j

(p2Vo;p)oo ijl,
Since /?~v = ,̂ the definition (4.2.3) is rewritten as

fχι\ ~ MίV (q'^tj/Xjlp)*
q^tj/xt p)^

(~-2+ 1+ . ~\ 11 * 11

Now recall the action of the symmetric group (3.2.2). We have the following
important lemma, which asserts that our action of Sm is compatible with the
Green-Stokes theorem twisted by Φp(x, t).

Lemma 4.2.1. // rational functions φι(t) and φ2(t) satisfy Φp(x, t)φί(t) ~
ΦP(X, t)φ2(t)9 then Φp(x, ήwφ^t) - Φp(x, t)wφ2(t) holds for any weSm.

Proof. It suffices to show the following assertion. Let φ(t) = φ(ί ί ?. . . , ίm) be
a rational function. Then, for any w e Sm and any 1 ̂  i ̂  m, we have:

77^ '̂ t)φ(t)}/Φp(x91)} = ίw-ι(i) — {Φp(x, ί)(wφ)(x, t)}/Φp(x, t) .
dpti ) «pίw-i(i)

(4.2.5)
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It is easily checked by direct calculations for each w = σl9. . . , σn-1 using the
following:

A Γ//-.\2v f^2f /+ . n\ ~] π 1 /f \2v (^2f /f . n\

(4.2.6)
p - i

(<rV,;p)» J
J. We formally put x0 = °° For any 0 ̂  i ̂  w and 1 ̂  7 ̂  m, we set

Let ϊc = (fe0, . . . , /cπ)e(Z^0)
n+1 be a multi-index such that fc0 + + kn = mand

define
Γ / Γ = Σ /c;/c7.. (4.3.2)

0^i<j^n

Putting Λf = fc0 + + ki9 we set

w(^ί) = Σ^(^0. (4-3.3)
5m

We are interested in linear relations and ^-difference equations among the Jackson
integrals

ί ) . (4-3.4)

Remark. The definition of A{j originates in the following observation:

Note that Btj is related to Atj by the following equality:

Atj = (q~Mί - qMi)Bij + qMi .

4.4. In this subsection, we will prove linear relations among F£.
Let εI e(Z^0)

w + 1 be the multi-index with only non-zero entry at ιth component.

Proposition 4.4.1. Let k = (fco,. . . , k'n) be a multi-index such that k'Q + + k'n
= m — 1. Then we have:

n

Σ (aMi - k'i _ Q - M, + k'Λa - (M,+1 + + MJ + 2(fcί+1 + + k'n)pτ/ ^ — Π
\" 1 / "4 k + EI

Note. This relation is a g-deformation of Aomoto's relation (0.6) in [Al].
To prove this proposition, we prepare the following lemma:
Lemma 4.4.2. Let Sk+1 act on C(ί l 9. . . , ίfc + 1) as in 3.2. Then

( \
Σ l n2k A nMi FT D I ΓΊ Rl < ? Aik+\ — q 11 "jk+ί I 11 ΰίj
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Proof. Because of (4.3.5), the left-hand side of (4.4.1) equals to

q2k(q~M< - qM<) Σ Π^^ + β^Σ («" ~ ι IΊ ^+1) ̂ Π ^y (4-4-2)

The second sum becomes

[ Djk + ί] Π *</
Sk+ i

-Σ(- :
Sk+ i \

+ 1 - ίi) Π *y + «Mί Σ (ί2* - 1) Π
XiSk+ί l ^ j ^ f c + l S/c+i

Here we have used (3.2.3) in the last equality. Now we have

q2ktk + ι-t,= Σq2j-2(q2tj+ί-tj).
;=i

Since each summand is anti-symmetric by the action of σJ9 its summation with
respect to Sk+1 is zero. Therefore (4.4.2) is written as

{q2k(q-Mi - qM>) + qM'(q2k ~ 1)} Σ Π

which is equal to the right-hand side of (4.4.1). Q.E.D.

Proof of Proposition. We start with the identity

where φκ>(x9 1) = XSm_ 1 φι<'(x9 ίi , . , £OT- 1) is defined similarly as φk(x, t) provided
the summation is over Sm_ι acting on C(ί1? . . . , ίm_ι). We set a't = kf

0 + + fcj.
By the definition of Φp(x, t), the integrand is calculated as

(P ~ l ) ί m - ΦP(X, ί) W(X, ί)

/ . q

π Λ. π
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which is ~ 0. Put bt = 2(/c'0 + + fc'j-i) - (M0 + + M, ) for simplicity. Sim-
ilar calculation holds for

*)(*»- 1 σ^')(*> O Π £>4^Γ = °
iίjίk-1 J Γ

Summing them up, we can write the coefficient to Φp(x, t) as

Π Λm Π ^»
S m ϊ - 0 \ α'j-! + 1 g ^αί / O ^ Λ g i - 1 αj + 1 g; g m - 1

= Σ Σ «Vl σαί +

x Π Λα + i
0 ^ /ί ^ z - 1

Using Lemma 3.1.1 and Lemma 4.4.2, we rewrite it as:

Σ Σ «Vι wt) (*> 0 ί*; (« " Mi + *; - β"1 - *0*i« + 1 Π

= Σ ̂  + ̂ te " Mι + fc; - ^Mί ~ κ)<f'*<ι " ( '̂ + ̂  (ί> + lι)Φ^ + βf (*> 0
i = 0

= g - (Λo + ••• + k'n) ^ ^2(^ + ... + /cO - (Mo + ••• + M,)(g - M, + fej _ ̂  - kβφ fa ή ^

ί = 0

Therefore we obtain

Σ (qMt -kl_q-Mi + k^q(Mi + ί + ... + MB) - 2(/c; + 1 + ... + k'n)φpfa t)φ^ + ̂ fa f) ~ 0 .

i = 0

Q.E.D.

5. Solutions of Quantum Knizhnik-Zamolodchikov Equation

5.7. Let us interpret Proposition 4.4.1 in the language of Uq. We keep the notations
in Sect. 2.

For a multi-index fc = (fc0, . . . , fcw), we set

^ = i;̂  (8) - - ® t??w) , (5.1.1)

where i f0 is defined by (2.2.2). We define a F0 ® ® Fπ-valued function J^ by

*= Σ PlWvt* (5.1-2)
\k\ = m

where F^(x) is defined by (4.3.4) and the summation is over all multi-indices k such
that /c0 + - - - + kn = m. The weight of 2F is λ^ because of (2.3.1).

Then, as a corollary to Proposition 4.4.1, we obtain

Proposition 5.1.1. The vector 2F satisfies A(n)(X+)^ = 0. Namely, 2F is a function
valued in Jt?λ (V0 ® ® Vn).
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Conjecture 5.1.2. The function ^is a solution of the qKZ:

= RviVτ -11 ) RviVo I —
V^i-l/ V ^ O

xi

If m = 1 and n is arbitrary, the conjecture is true [Ma2]. It is also true when n = 2
and m is arbitrary as we shall show in the next subsection.

5.2. We consider the case n = 2. Let us denote

φk(x,t) = <p(o,ktm-k)(x,t)

Recall that /Wι(PW*ι)Kκικ2(xι/P*2) = id.

Theorem 5.2.1. The function ^0 satisfies the qKZ:

x

Fk(x) = F(o,*,m-*)M (5-2.2)

Then ^0 is given by

(5.2.3)

(5.2.4)

, ( — ) «πa(A° + λ- + α) ~ (Λ) + *"••**)&<> . (5.2.5)
\ χ ι

Proof. Since we have

T2T1Φp(x9t)φl(x,t)

- T2T1Φ(x,pt1,. . . ,ptm)φk(x,ptί9. . . ,ptm)

= qMl + M2~mMΦp(x9 t)φk(x, t)

= qfa + π2)(A0 + ̂  + α) - (̂  + A,,^ + A2) φ^(

it holds that

Therefore (5.2.5) follows from (5.2.4). To show (5.2.4) it suffices to verify that the
functions R™,i(xi/X2\ which are the matrix elements of Rvιv2(

χί/χ2\ satisfy the
following:

m

7\Φp(x, t)φ,(x, ί) ~ £ 4M -'M Λ?.( (x1/x2)Φ,(x, ί)%(x, ί) . (5.2.6)
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Now we have

ι,. . . ,ίm)

Therefore by Lemma 4.2.1 it is sufficient to prove

= Σ Rlι(^/^)qk(m-k}Σ Π BU Π AιjB2J. (5.2.7)
fc=0 Sw

By (3.2.4), the left-hand side of (5.2.7) is written as

β10"-"! Π 5ι^27 Π B2J.

Then having multiplied by some of common denominators, the proof of (5.2.7)
reduces to the following lemma:

Lemma 5.2.2. The functions S™ti = R™ι(xι/X2) satisfy the identity

ql(m~l)Σ Π Xι(q~M2X2-tj) Π *2(xι-q-Mίtj)

= Σ sr.««*("~k)Σ Π *ι(χ2 - <rM2i;) Π ^2(«"M ιχι-o)
k=0 Sml^j^k k+l^j^m

(5.2.8)

Proof. To simplify expressions below, we put

Kΐ = Σ Π Xι(x2-q-M2tj) Π x 2 («" M l Xi-0)>
S m l ^ j ^ f c f c + l ^ J ^ m

r̂ = Σ Π *2(*ι-«-Mιt7) Π *ι(<rM2*2 - tj) .
Sm l ^ j ^ m - I

Then (5.2.8) becomes

m

ql(m-l)Lm= ^ jw^fe

fc = 0

We shall prove by induction on m that S?f/ - Λ" 1(^1/^2) satisfy (5.2.9). For m = 0,
it trivially holds by the normalization (2.3.4). We assume that (5.2.9) holds for
m — 1. First notice the following observation. Multiply both sides of (5.2.8) by
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Then it follows from Lemma 3.2.2 that the results are polynomials whose degree is
one with respect to each th ί = 1, . . . , m. Therefore it suffices to verify the equality
at two different values of each ί(. We will consider the limits ίm -> 0 and ίw -> oo .
Now let Sm-1 acts on C(tl9 . . . , ίm-ι). For any function /(ίl5 . . . , ίm), we have

m

Σ/ί'i' ••>*») = Σ Σ (σ«-ι *i/)(ίι, ••>*!»)
Sm Sm-i ί=l

m

= Σ Σ /(*!>• > f i - l » W i , - , ίm- l ) Π A/m
i = l Sm-i l^ j^m-l

by (3.1.2). Therefore, letting tm -> 0 and tm -> oo , it becomes

m

Σ Σ /(*!>• • >*ί-ιΛί ί > >ίm-ι)β-2 ( m-' ) and
i=l Sm-i

Σ Σ /(*!>• --^-i . oo^ .ίm-i)*2011'0

i = l Sm-i

respectively. Applying this consideration to K™9 we obtain

k

lim -X?= -q'^x Σ ^2(w~I')

i = l

Similarly applying to L™9 we get

lim LT =

lim -Lf= -x2g-M l(?2^w- /-1[m-/]LΓ~1

ίw -* oo ^m

Thus we see that SJζ / satisfy (5.2.9) if and only if they satisfy both of the following
two:

(5.2.10)

i.J (5.2.11)
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Now by the induction hypothesis, we have

Substitute them in (5.2.10) and (5.2.11) and equate the coefficients to K%~1. Then
we see that the following equalities for all k = 0, . . . , m — 1 are sufficient to the
conditions (5.2.10) and (5.2.11):

qM2q2k[m - fc]S?fl + qMί+M2ίk + l]S?+lfί

-ι + qMί+M2[_m - l

l+M2[/]#r,Γ-ι + x2q
M2q2l[m -

Comparing them with the intertwining property (2.2.6) and (2.2.7), we see that
S?,z = Rΐ,ι(xι/X2) satisfy (5.2.9). Thus the induction is completed. Q.E.D.

Note. For general values of q, λ^ and λ29 the equality (5.2.8) characterizes the
intertwiner RVίV2(x) with the normalization (2.3.3).

5.3. Remark. Put x0 = 0 and p = p~ 1. We define the function J^ similarly as J "̂, by
substituting

/γ.\~M ί V (fiMίVt./τc. fi\
- — _ tj/Xl'p)co

and

instead oϊ^Φp(x, t\ Aij9 B^ and Ajjn the definition of 3F. Then we have
A(n)ΦX+)2F = 0. We conjecture that 3F is a solution of the following ^-difference
equation:

= R•ViVi-ι\
\ P*>i / \^Λf/

-1

jr, (5.3.3)

where Tt denote the shift of xt by p. This conjecture is true for m = 1 or n = 2. The
proofs are similar to the case of 3F. Therefore, by transforming the variables as

Xi ι-> —, we obtain another expression of solutions to qKZ.
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