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Abstract. We show that an irreducible representation of a quantized enveloping
algebra Uε at a £th root of 1 has maximal dimension (= ίN) if the corresponding
symplectic leaf has maximal dimension (= 27V). The method of the proof consists
of a construction of a sequence of degenerations of Uε, the last one being a q-
commutative algebra U^2N\ This allows us to reduce many problems concerning Uε

to that concerning f^\

Introduction

In the papers [DC-K, DC-K-P] the quantized enveloping algebras introduced by
Drinfeld and Jimbo have been studied in the case q = ε, a primitive /th root of
1 with I odd (cf. Sect. 4 for the basic definitions and relevant theorems). Let us
recall for the moment only that such algebras are canonically constructed starting
from a symmetrizable Cartan matrix of finite type and in particular we can talk of the
associated classical objects (the root system, the simply connected algebraic group
G, etc.). For such an algebra the irreducible representations have dimension bounded
by d := lN, where N is the number of positive roots, and the set of irreducible
representations has a canonical map, called the restricted central character, to the big
cell of the group G. In the same papers it has been shown in a precise sense that
the representations look alike over points lying in the same conjugacy classes, and
thus it is natural to analyze the structure of the representations associated to a given
conjugacy class. This seems to be a rather difficult task. It is clear, however, that the
structure of an irreducible representation V is closely related to the geometry of the
corresponding conjugacy class &y. In particular, we conjectured in [DC-K-P] that

dim V is always divisible by ^ d i m d V ( c f [ W . K ] )
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In this paper we succeed in treating the case of regular classes, i.e. conjugacy
classes of maximal dimension. For these classes we prove our main theorem which
we reformulate here as follows:

Theorem 5.1. The irreducible representations having as restricted central character
a regular element have maximal dimension d.

The method used to prove this theorem may have an independent interest and
consists of a degeneration argument (Lemma 1.5). In practice we degenerate our non-
commutative algebra to a much simpler algebra (a twisted polynomial algebra) for
which the representation theory is very simple. We prove that the representations we
are analyzing degenerate in a suitable sense to representations of maximal dimension
d, then an obvious semicontinuity of the dimension finishes the proof.

There are some interesting features in this degeneration argument which are
connected to the combinatorics of the root system and the structure of the central
characters of the fundamental representations of the algebraic group G, considered as
functions on the big cell. These topics are explained in Sects. 3 and 4.

The structure of the paper is the following. In Sects. 1 and 2 we develop the
necessary noncommutative algebra, i.e. a general theory of filtered algebras, their
associated Rees and graded algebras and representations of twisted polynomial rings.
Some of these results are well known but not easily traceable in the literature. In Sect.
3 we discuss the combinatorial aspects of root systems which are necessary for the
study of the twisted polynomial algebra to which the quantum group degenerates. In
Sect. 4 we recall the theory of quantum groups necessary for this paper, and finally
in Sect. 5 we formulate the main theorems and give their proofs.

The variety of representations of the quantum group Uε provides a large set of
solutions to the Yang-Baxter equation. These solutions have been already used in the
study of the generalized chiral Potts models. We feel that our degeneration argument
may help in obtaining explicit construction of representations of Uε and thereby
finding new solutions to the Yang-Baxter equations on the one hand, and may clarify
the structure of relevant statistical models on the other hand. We are grateful to the
referee for suggesting to add comments about relevance to problems in physics.

1. Finite Dimensional Representations of Algebras and Filtrations

1.1. In this section we will collect some well known definitions and properties of
finite dimensional representations of algebras. Let A be an associative algebra with a
unit element 1 over a field F and let us denote by F the algebraic closure of F. For an
algebra A we denote by Spec A the set of all equivalence classes of finite dimensional
irreducible representations over F so that, if A is a finitely generated commutative
algebra over F we are in fact thinking of the maximal spectrum. If Z is the center of
A, then (by Schur's lemma) we have a canonical map (the central character map)

S p e c A i SpecZ. (1.1.1)

A good theory of finite dimensional representations can be developed when the
algebra A is finitely generated over F, is a finite module over its center Z (this
already implies that every irreducible module is finite dimensional) and has a suitable
trace map (cf. [A] and [Pl-2-3-4]). Let us first consider A to be an order in a finite
dimensional central simple algebra D. This means that the center Z is a domain,
A is torsion free over Z and, we have D = A ® z Q(Z), where Q(Z) is the field
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of fractions of Z. A embeds naturally in D which is its ring of fractions. If Q(Z)
denotes the algebraic closure of Q(Z) we have that A ®z Q(Z) is the full ring
Md(Q(Z)) of d x d matrices over Q(Z). Hence we have on D (and on A) the usual
trace map tr : D —> Q(Z). It is well-known that tr(A) C Z if A is a maximal order
[PI].

Definition 1.1. (a) The number d is called the degree of A.
(b) A d-dimensional representation of A is a homomorphism ρ : A —> Md(F)
compatible with the trace map.

Given a finitely generated algebra A = F[α1? α2, . . . , αn] and an integer d, a d-
dimensional representation with coefficients in F is a homomoφhism of A to Md(¥)
and hence it is given by an n-tuple of d x d matrices satisfying some algebraic
equations. Hence the set of such representations is an affine algebraic subvariety
of the space of n-tuples of matrices, closed under the action by conjugation by
the general linear group. It is known cf. ([A]) that the closed orbits of this action
are the semisimple representations, and that given any representation the associated
semisimple representation lies in the closure of its orbit. Thus one can apply invariant
theory to this setting. In particular if we are in characteristic 0 we have that all
invariants of n-tuples of matrices are generated by traces of monomials. This suggests
([P4]) to introduce a category of algebras with trace, of which maximal orders are a
special case. The idea is that once we have a trace map in an algebra in characteristic
0 we can define formally the elementary symmetric functions in the eigenvalues of
any element a by declaring that tr(αfc) should be the sum of the kth powers and
using the formal identities between elementary symmetric functions and power sums.
Then we can formally define for every integer d a characteristic polynomial χda[i\
for any element a in A. This formal polynomial is useful in representation theory if
we have the formal Cayley-Hamilton theorem, that is if χd a[a] = 0 for every α. In
this case we have a canonical commutative algebra B with an action of the group
PGL(d, F) and an isomoφhism of A with the subring of Md(B) = Md(¥) (g> B of
invariants under the diagonal action of PGL(d, F). The ring of invariants of B under
the action of PGL(d, F) equals the image C in A of the trace map, its spectrum
can be identified with the equivalence classes of semisimple representations of A of
dimension d and compatible with the trace map.

Some consequences of this picture are the following. Suppose A is as before. Fixing
any positive integer k we can define a new trace trfc(o) := fctr(α), and it is easy to see
that, if A satisfies the dth characteristic polynomial under the original trace, it does
satisfy the kdth characteristic polynomial under the new trace. Then the same algebra
C parametrizes equivalence classes of fcd-dimensional semisimple representations
and it is easy to see that these are just obtained from the previous d-dimensional
representations by considering each such representation with multiplicity k.

A second consequence is following. Suppose that Z C C is a subring and that C
is a finite extension of Z of degree h. Consider the reduced trace trC/z > C -^ Z and
the composition tτΛ,z(a) := txCJZ(tr(a)). Then under the same hypotheses as before
the algebra A equipped with this new trace satisfies the hdth characteristic polynomial
and Spec Z parametrizes equivalence classes of /id-dimensional representations. The
picture is the following. Call π : Spec C —> Spec Z the finite map of spectra. Given
a point P e SpecZ one defines π~ι(P) = Σ ^ Λ a s a positive 0 cycle. Each
Pί corresponds to a semisimple representation pi of A of dimension d and thus P
corresponds to Σ
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We shall assume that A is a finitely generated algebra over a field F and that it is
an order closed under trace and let Z be its center. Then using the above arguments
one obtains [A, PI]:

Theorem 1.1. (a) Z is finitely generated and A is a finite module over Z.
(b) The points of 'Spec Z parametrize equivalence classes of d-dimensional semisimple
representations.

(c) The canonical map Spec A —> Spec Z is surjective and each fiber consists of
all those irreducible representations of A which are irreducible components of the
corresponding semisimple representation. In particular each irreducible representation
of A has dimension at most d.
(d) The set

QA = {a £ Spec Z\ the corresponding semisimple representation is irreducible}

is a non-empty Zariski open set. D

If Z is finitely generated module over a subalgebra Zo, we can consider the finite
surjective morphism

Spec Z ^ Spec Zo .

Then by the properness of τ we get that the set Ω\ := {a G Spec Z0\r~1(a) C ΩA}
is a Zariski dense open subset of Spec Zo.

For a given algebra A the problem of the study of its spectrum can be thus naturally
divided in two steps. First one has to develop a geometric description of Spec Z, then
for each point of SpecZ we need a description of the corresponding semisimple
representations, i.e. of its irreducible components and multiplicities. In Sect. 5 we
will discuss this problem in the case of quantum groups using a degeneration method
based on suitable filtrations. In the rest of Sect. 1 we shall develop the necessary
formalism.

1.2. An algebra A is called (Z+-) filtered if A = \J A, is a union of F-submodules

A- such that the following two properties hold:

leA0cAιcA2C..., (1.2.1)

AiAjCAi+j. (1.2.2)

Let ^ 4 = 0 {A /Aj_λ) be the associated graded algebra. Given a G A, we let degα

be the minimal j for which a G A , and let a be the image of a in Aj/Aj_ι. For a
subset S of A we let 3 = {a G A where a G S}. For an ideal / we will, by abuse of
notations, indicate by / not just the previously defined set of homogeneous elements
but also their (direct) sum.

Lemma 1.2. Let A be a filtered algebra^
(a) If α, b G A and άb ^ 0, then ab = άb; in particular if A has no zero divisors then
A has no zero divisors.
(b) Let B be a subalgebra of A with induced filtration. Let ax, α 2 , . . . be homogeneous
generators of the left B-module A. Let α1 ? α 2 , . . . G A be such that άλ = α1 ? α2 =
α2 .... Then any element a of A can be written in the form

a = ^^ ^iai' where deg ai + deg bi < deg a.
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Proof, (a) is standard. In order to prove (b) note that we may write a = X ^ α ^

where 6̂  are some homogeneous elements of B such that degα^ + deg6^ = degα.
Taking bi £ B such that bx = bτ, we obtain a = ^biai + a', where degα7 < degα,

i

and we apply the inductive assumption to o! (in degree 0 it is clear). D

1.3. Let A be a filtered algebra and let A[t] (resp. A[t, t~1]) denote the ring of
polynomials (resp. Laurent polynomials) over A. The Rees algebra M(A) of A is the
following subalgebra of A\t\\

The following properties of the algebra J8(A) are obvious:

Lemma 1.3. (a) If A has no zero divisors, then the same is true for JB(A).
(b) If A is generated by homogeneous elements α 1 ? α 2 , .. of degree r 1 ? r 2 , . . . , then
M(A) is generated by the elements t, tTιaι, tT2a2i..., where the ai lift the a%.
(c) A[t, t~ι] = J8(A)[t~1].
(d) ^(A)/(ί) - A.
(e) B c A is a subalgebra with induced filtration, then J8(B) C J8(A). D

Remark 1.3. It follows from Lemma 1.3c that

degree A < degree JB(A). (1.3.1)

From part (d) of the same lemma we deduce

degree A < degree A. (1.3.2)

The following proposition follows from Lemma 1.2b.

Proposition 1.3. Let A be a filtered algebra, and let B be a subalgebra of A.
Let α1 ? α 2 , . . . be elements of A of degrees r 1 ? r 2 , . . . such that A is a left B-
module on generators α1 ? α 2 , . . . . Then JB(A) is a left J%(B)-module on generators
triau t r 2 α 2 , . . . . D

1 A. Lemma 1.4. Let A be a filtered algebra and I its ideal, then I is an ideal in A,
and if H is the ideal of A[t, t~ι] generated by I, then in A we have:

(H Π MA) + tJB(A))/tJB(A) = I.

Proof Clear. D
In general it is difficult to determine generators for /, therefore the next proposition

is particularly useful when it can be applied.

Proposition 1.4. Let Abe a commutative filtered algebra and let α 1 ? . . . , an G A be
such that α l 5 . . . , an is a regular sequence of A. Let I — ( α l 5 . . . , an) be the ideal of
A generated by α 1 ? . . . , an. Then
(a) α 1 ? . . . , an is a regular sequence in A.
(b) The ideal I of A is generated by the elements α l 5 . . . , άn.

Proof (a) Suppose that α l 5 . . . , an is not a regular sequence of A. Then there exist
a k < n and bλ,... , bk G A such that

k

^2^jbj=0 and bk g (α 1 ? . . . , ak_λ). (1.4.1)



410 C. De Concini, V.G. Kac, and C. Procesi

We may assume that d := max^ άtgaΊb2 is minimal possible for all such relations
and (reordering if necessary) that for some m > 1:

d = degα^j = . . . = degα m 6 m andd > άoga-b- for j > m. (1.4.2)

Then
771

^ Λ = 0 . (1.4.3)
i=\

This reorders the aτ, but since A is graded and the elements α 1 ? . . . , άn are homo-
geneous we have that α 1 ? . . . , α m is a regular sequence in A and the corresponding
first Koszul homology group H^{A\ aγ\... , α m ) vanishes [B]. Hence (1.4.3) implies
that there exists a skew-symmetric m x m matrix B with homogeneous entries over
A such that

Let £? be a skew-symmetric matrix over 4̂ whose image in A is B. Let

(ft7!,..., 6^) = ( ^ , . . . , 0 ^ 5 . (1.4.4)

Then b = 5 • and

α ^ = 0 (since B is antisymmetric). (1.4.5)

k

Let 6? = bι-b/

i with 6< = 0 for i > m. We have: ]Γ α ^ = 0 by (1.4.1) and (1.4.5),

and max; άegafll < d. Since b[ G ( α 1 ? . . . , α^_p α i + 1 , . . . ) by (1.4.4) (recall that
the diagonal entries of B are zero) we obtain a contradiction with (1.4.1).

n

The proof of (b) is similar. Let x G /, if we can find an expression x — Y^dγbγ

such that, setting d = max^ d e g α ^ , we have d — degx, we are clearly done. Suppose
this is not the case and choose an expression for which d > deg x is minimal. As in
(1.4.2) assume άegatbτ — d for i — 1,... , m while d e g α ^ < d for i > m. Thus

771 _ 771

we have ^2aibi = 0 and as before we can find b[,... , b^ such that Y^djb^ = 0

and άtgai(bi — ty) < d for i = 1,... , m, reaching a contradiction. D

1.5. Let A be an order closed under trace in a central simple algebra D, let Z be the
center of A and Q(Z) that of D as in Sect. 1.1.

Definition 1.5. A trace filtration for A is a filtration Ai such that:
(a) tr(4) c ^ .
(b) A is finitely generated.

Proposition 1.5. Let A be an order in D closed under trace and with a trace filtration,
then JB(A) is a finitely generated order in D(t) closed under trace.

Proof. By Lemma 1.3c it follows immediately that J8(A) is an order in D(t), but
by Lemma 1.3b both A and JB(A) are finitely generated. The assumptions on the
filtration imply that JB(A) is closed under trace. D

The following simple lemma is of crucial importance for this paper.
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Lemma 1.5. Let A be a filtered algebra such that A is a finitely generated order of
the same degree as A, and let Zo be a central subalgebra of A such that Zo is finitely
generated and A is a finitely generated module over Zo. Let I be an ideal of Zo and
I the associated graded ideal of Zo. Let Θ (resp. (9'χ) be tne s e t of zeros <9//(resp. /)
in Spec Zo (resp. Spec Zo). Suppose that (9γfλΩ\φ 0. Then &ΠΩ°Aφ0.

Proof Consider the Rees algebra JB(A) of A. Its subalgebra J8(Z0) is central and by
Proposition 1.3, M(A) is a finitely generated ^(Z0)-module. We have seen that

degree J8(A) = degree A (1.5.1)

and by the hypothesis:
degree (A) = degree A, (1.5.2)

hence
Ω%(A) Π SpecZ0 = Ω°A . (1.5.3)

Clearly

and by Proposition 1.4 we have:

Hence Ω°^(A) Π (0' x F x ) D Ω°Λ Π (@ x F x ) φ 0 (where ^ x F x stands for Zariski

closure of &' x F x ) since $[ Π Ω^ φ Q by the hypothesis. It follows that β^g(A)

intersects with <f x F x in a non-empty open subset. But, obviously, this intersection

is (0 Π Ω°A) x F x . It follows that ^nΩ°Aφ9. D

2. Representation Theory of Twisted Polynomial Algebras

2.1. Let A be an algebra and let σ be an automorphism of A. The twisted polynomial
algebra Aσ[x] in the indeterminate x is the F-module A ®F F[x] with multiplication

(α (8) xm)(6 (8) x n ) = ασm(6) (g) x m + n .

We may similarly consider the twisted Laurent polynomial algebra Aσ[x, x~1]. It is
clear that if A has no zero divisors, then the algebras Aσ[x] and Aσ[x, x~ι] also
have no zero divisors.

Lemma 2.1. If M is an irreducible module over Aσ[x], then there are two possibili-
ties:
(i) x = 0, hence M is actually an A-module,

(ii) x is invertible, hence M is actually an Aσ[x, x~ι]-module.

Proof It is clear that Im(x) and Ker (x) are submodules of M. D

22. Let F be a field and q e F x a given element. Given an n x n skew-
symmetric matrix H — (h-) over Z, we construct the twisted polynomial algebra
¥H[x{,... , xn]. This is the algebra on generators xx,..., xn and the following
defining relations:

xtXj = qh^xjxι (i, j = 1,... , n).

It can be viewed as an iterated twisted polynomial algebra with respect to any ordering
of the indeterminates xτ. Similarly, we can define the twisted Laurent polynomial
algebra ¥H[xx, x\~ι,..., xn, x~[]. Both algebras have no zero divisors.
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As a consequence of Lemma 2.1, we have

Lemma 2.2. In any irreducible ¥H[xx,... , xn]-module each element xi is either 0
or invertible. D

Given a = (au . . . , an) G Z n , we shall write xa = x\x . . . x£n. The torus F x n acts
by automorphisms of the algebra ¥H[xι,..., xn] and F # [a^, x~[ι,..., xn1 x~ι] in the
usual way, the monomial xa being a weight vector of weight α. Consider the group G
of inner automorphisms of the Laurent polynomials generated by conjugation by the
variables x{. Clearly G induces a group of automorphisms of the twisted polynomial
algebra which are in this torus of automorphisms. In fact one can formalize this as
follows: Let Γ := {αxα |α G F x } be the set of non-zero monomials. Then Γ is
a group, F x is a central subgroup and J Γ / F X is free abelian, the homomorphism
Γ —> ( F x ) n given by considering the associated inner automorphisms has as kernel
the monomials in the center.

Let ε be a primitive £th root of 1 in F and take now q — ε. We consider the matrix
H as a matrix of a homomorphism H : Z n —>• (Z/£Z)n, and we denote by K the
kernel of H and by h the cardinality of the image of H.

Proposition 2.2. (a) The elements xa with a G K ΓΊ Z™ (resp. a e K)form a basis of

the center of ¥H[xx,... , a;n](resp.FH[a;1, a f1,... , xn, x~1]).

(b) Let α ( 1 ) , . . . , a^h) be a set of representatives of IT1 mod K. Then the monomials

xa , . . . , xa form a basis of the algebra FH[Xι, x^1,... , xn , x" 1 ] over its center.

(c) degree¥H[xu . . . , xn] = degree¥H[xv x^\ . . . , xn, x~ι] = y/h.

Proof. Define a skewsymmetric bilinear form on Z n by letting for α = ( α 1 ? . . . , α n),

b = (bλ,... ,bn)eZn : (a\b) = Σ ^ α i ^ - Then we have

xaxb = ε{alb)xbxa. (2.2.1)

Since the center is invariant with respect to the action of F X n , it must have a basis
of elements of the form xa. This together with (2.2.1) implies (a),

(b) follows from (a) and the fact that

χaχb = £c(a, b)χa+b^ w h e r e c ^ b) = Y^ hijajbJ . (2.2.2)

(c) follows from (b). D

It is quite easy to see that the twisted polynomial algebras we are considering are
closed under trace [DC-K] and in fact from (2.2.1) one can easily deduce a formula
for the trace

tr(xα) = Oif xa is not in the center. (2.2.3)

2.3. Recall that an algebra A over a commutative ring Z is called an Azumaya algebra
of degree d if there exists a faithfully flat ring extension Z' of Z such that A <g> Z' is
isomorphic to the full algebra of d x d matrices over Z1.

Suppose now that F is an algebraically closed field and that A is a prime algebra
over F (i.e. aAb = 0, α, b G A implies a = 0 or b = 0), which is finitely generated
module over a finitely generated subalgebra Zo of the center Z. Then A is an Azumaya
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algebra over Z if and only if all irreducible representations of A have the same
dimension (= d) [A-Pl].

Proposition 2.3. Let F be an algebraically closed field. Then any Laurent quasipoly-
nomial algebra ¥H[xγ, Xj"1,... , xn, x~ι] is an Azumaya algebra over its center. In
particular, all irreducible representations of the algebra FH[xγ,... , xn] for which
all XiφO have dimension y/h.

Proof. Let ZQ = {xa\a G (£Z)n}. This is a finitely generated central subalgebra
over which the algebra A := FH[xι, x^1,... , xn, x~x] is finitely generated.
Recall that we have the surjective map χ 0 : Spec A —> Spec Zo and that the set
Ω°A = {a G SpecZglx^1^) consists of representations of maximal dimension} is a
dense open subset of SpecZ0 (see Sect. 1.2). But the group F X n of automorphisms
of A acts transitively on Spec Zo, hence Ω°A = Spec Zo, proving the proposition. D

2.4. Let A := ¥H[xu... , xn] be as in Sect. 2.2 (of degree y/h). Recall that
the torus T := F x n acts by automorphisms of A and hence of its center, so
that the representation picture looks like a non-commutative version of affine torus
embeddings. First of all remark that, by Lemma 2.2, the vanishing of the central
element x\ in an irreducible representation implies the vanishing of x{. Thus it is
natural to stratify the Spec A according to the set S of indices i for which x\ φ 0 and
remark that this stratification is just the stratification by orbits under T. Let As denote
the twisted Laurent polynomial algebra in the variables xi, i G S. From Sect. 2.3 we
have that As is an Azumaya algebra whose degree ds is computed as in Proposition
2.2 by restricting the homomorphism H to the subgroup of Z n formed by the vectors
with zero coordinates in the indices not in 5, i.e. by analyzing the skew submatrix
Hs of H which defines As. The spectrum of its center is isomorphic to a quotient
Ts of the torus T.

On the other hand we can pass from A to As as follows. First we can invert in A the
elements xt, i G S, to get an algebra which we may call A's. In A's we have the ideal
Is generated by the variables xt, ί ^ S, and we clearly have that As = A's/Is. The
center of A's is the center of A localized at the elements x\ and its points parametrize
equivalence classes of semisimple representations of degree y/h, where the central
character is non-zero in the x\, i G S. The algebra As inherits from A's a trace map
tr with values in the quotient Z's of the center of A's by the ideal generated by the
elements xt, i G S. It is not hard to see that the picture is the following. In ^4^ we
have the center Zs and its subring Z's over which Zs is finite. The spectrum of Z's is
also isomorphic to a quotient T's of the torus T and T's is a quotient Ts/Γ by a finite
subgroup Γ. In particular each fiber of the map π : Spec Zs —> Spec Z's is reduced
and consists of a coset of the finite group Γ. We have several trace maps: the reduced
trace trAs/Zs

 t 0 t n e center, the trace of the finite map ^zs/z' a n c* m e composition
t rA s/z' F r o m (2.2.3) and the torus description it follows that there exists a positive
integer d such that tr = dtrAs/Z, . From this an Sect. 1.1 it follows that each point

of the spectrum of Z's corresponds to a semisimple representation which is obtained
counting with multiplicity d each irreducible representations of As appearing in the
fiber of the map π : Spec Zs —* Spec Z's. Of course we have: d\Γ\ds = y/h.

This program will be developed in Sect. 3 for a particular skew-symmetric matrix
arising from root systems which, as we shall see in Sects. 4,5 gives rise to the twisted
polynomial ring to which the quantum group degenerates.
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3. Some Properties of Finite Root Systems

3.1. Let (α^ ) be a n x n-matrix with integer entries such that (i, j = 1,... , n):

atι = 2, ai3 < O i f i ^ j , (3.1.1)

and there exists a vector (c^,. . . , dn) with relatively prime positive integral entries
d{ such that

(c^α^ ) is a symmetric positive definite matrix. (3.1.2)

Of course (α^ ) is a Cartan matrix, to which there is associated finite reduced root
system R, its weight and root lattices P and Q, the Weyl group W, a set of positive
roots R+, the set of simple roots Π, the fundamental weights ωx,... , ωn, etc. Let us
recall for convenience the basic definitions.

Let P be a lattice over Z with basis ω{,... , ωn and let Qv = Hom z(P,Z) be the
n

dual lattice with dual basis a(,... , ά^, i.e. (ωt,aj) — δiy Let P + = Σ Z+c^. Let

n n

and let Q = Σ ^aj ^ °̂» a n (^ Q+ — Σ ^+<^j Define the usual partial ordering on
j=i j=i

P by λ > μ if λ - μ G Q+. For ^ = Σ kiai € Q l e t htP = Σ ^
i i

Define automorphisms si of P by s^ω^) = ω^ — S^a^i, j = 1,... , n). Then
s^α^ ) = (Xj — CLijQί^ Let W be the subgroup of GL(P) generated by s 1 ? . . . , s n . Let

i t — i t I I Ĉ /i , i t :

The map ai \—> a( extends uniquely to a bijective Pi^-equivariant map a \—> av

between R and Rv. The reflection sa defined by sa(X) = λ — (Λ, av)a lies in W
for each a G R, so that sa. = s^

Define a bilinear pairing P x Q —» Z by (u Jα^) = ^ ^ Then (αjα^) = d^α^ ,
giving a symmetric Z-valued VF-invariant bilinear form on Q such that (a\a) G 2Z.
We may identify Qv with a sublattice of the Q-span of P (containing Q) using this
form. Then:

aϊ = ^ϊ an °^ ~ 2a/(a\a). (3.1.3)

3.2. Let now ω0 be the longest element of W so that ωo(R+) — —R+, CJO(Π) = —Π
and ωo(P+) = — P + . For α G i?+ (resp. λ G P + ) we let ιa = —α;0(α) G J?+

(resp. *λ = —α;0(λ)). For a fundamental weight ω, the weight tω is also fundamental.
Fix a reduced expression

\ 2 N | β + | . (3.2.1)

and consider the corresponding convex ordering of R+:

β\ = «»!> βi = \(ai2)... , ^ = s^ ... 5 t j v_ 1(α i j v).

(The name "convex" refers to the property that if i < j and βi + β- G R+, then

βi -f ^. = /Jfc for some k between i and j.)
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Given a simple root a G Π, let

Ia = {teZ\l<t<N,sH= sa} , (3.2.2)

so that the set {1, 2, . . . , TV} is a disjoint union of the sets Ia.

Lemma 3.2. Fix a simple root a and let ω be the corresponding fundamental weight.
Let k} < . . . < kr be all elements of the set Ia. For t e Z, 0 < t < r, let

\ = sβkt - x M, μt = - χ _ t + 1

 sβkr ^ -

Then:
(a) λ t = si{ sti.., sik (ω); in particular \r = -ιω.

(b) Ifkt < j < kt+1, *then (Xt,βJ) = 0.
(c) (λ t,/?v+ i) = l.

(d) \t=ω-Σ,βkχ.
ί=l

Similarly:
(a7) μt — λr_t\ in particular, μr — ω.
(b') IfkΓ_t < j < kr_t+ι, then (μt,βj) = 0.

(c') (μt,βU = -l.

(d') -sβkι ... sβkτ (ιω) = -*ω + g βkt = ω.

Proof. If kt < j < kt+ι, then

where w) doesn't contain sα . This proves (a).
Hence

a

= ( α ; , α J

v > = 0 ,

proving (b).

By (a) we have:

( λ o < + I ) = K •• % ( ω ) , sH •••slkM_y) = (s f c t + I _i. . .s f c t + ,(ω), α v )

= <ω, α V ) = 1,

proving (c). (d) follows from (c).
Furthermore,we have:

As in the proof of (a), replacing in this equality each Sβ by the corresponding

conjugate of st , we obtain μt •= s ... si w(w)9 where w does not contain sa.

Hence μt = s s (ω) = λr_t by (a).
1 hyr •/
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Now (b') follows from (b) and (d') from (d). Finally, (μt, /?^_t) = (λ r _ t , /?^_;)

= (sβktK-t-i, PU = -(K-t-i, βkrj = -1 by (b), proving (c') • ' "
kr_t

Corollary 3.2. (a) < # » = £ (/?/, βki) if* ϊ 4

(b) (βl, ω) = l + £(/?£, βk$tfkt e Ia.
%<t

Proof. By Lemma 3.2a,d we have:

Ψh u - 2J Pk ) = {%" 'Sii-S<*ii>> V • SH-λω>) = \α*,> ω) = v> P r o v i ng W

Similarly, (/?v , ω - ]Γ /?fe.) - ( α v , ω) = 1. D

3.3. Consider the free Z[^]-modules V+ with basis ipβ ,... , y?^, F_ with basis

y?_^ , . . . , φ_β and VQ with basis ωι,... , α;n. On the Zf^J-module V = V+ Θ

^_ θ V̂Q define a skew symmetric bilinear form (.|.) by the following formulas:

(V_\V+)=0,(V0\V0) = 0,

(fβilψβj) = -(ψ-βjψ-βj) = <βi\βj)tii < J , (3.3.1)

H j HJ J

Introduce the matrices:

A = ( ( ^ J ^ })\<i,j<N ' ^ = ((^l^))l<z<n,l<j<AΓ

Then the matrix S of the skew symmetric form (.|.) in the above basis has the form:

Ά 0 -έJ5\
S= ( 0 -A ιB I . (3.3.2)

( - S 0/

Proposition 3.3. Λ// non-zero elementary divisors of the matrix S over the ring Z [ | ]

αr^ ^(β^βj^ i = 1^... , N, each repeated twice.

Proof. Consider the matrix

ί IN IN Q\

c= --i -i c

\ 0 0 INJ

httSf = CStC. We have:

/ 0 -A 0

S' - I -A 0 *β

\ 0 - 5 0

/ 0 0 0

Since S' = Sι - tSι, where Ŝ  = -yl 0 *β ), we see that SX(V) C

\ 0 0 0
VL, if (V") c 7 + θ F 0 . Hence it suffices to show that all non-zero elementary divisors
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of the matrix S{ over Z[\] are \(βi\β%), i = 1,.. , N. Note that

Hence we have:

Since (βz\βj) is divisible by | (/^ |/^), this completes the proof. D

Lemma 3.3. (a) The vectors vω = ]P (ψβt + Ψ-βt) + ^ ~ tω form a basis of the

kernel of the form (.|.) as ω runs over all fundamental weights.
(b) Suppose that £ is a positive odd integer relatively prime to all the di.
Then the kernel of the map S : Z2N+n -> {Z/£Z)2N+n is spanned by vectors
vωβ = l , . . . , n) and £Z2N+n. Its image is isomorphic to (Z/£Z)2N.

(c) Select in each set Ia. a root βt. and consider the submodule V ofV of the vectors

which have coordinate Ofor the corresponding vectors ψβt or φ_βt , and call Sf the

restriction of S to V. Then the kernel of S1 coincides with £Vf and's'W) = S(V).

Proof Due to Proposition 3.3, to prove (a), it suffices to show that the elements vω

lie in the kernel. We have (using Lemma 3.2d'):

) = - > ( β \ β l r ) + 7 ( β \βh ) + 2(/3 ώ) ~ > ( β \ β u )
kt<3

otherwise

= Oby Corollary 3.2 and (3.1.3).

Similarly, (φ_β \vω) = 0 and trivially (^1^) = 0 for v G Vo. This proves part

(a) of the proposition, (b) and (c) follow easily. D

Remark 3.3. Suppose that (atJ) is an indecomposable Cartan matrix. Then all the dτ

are equal 1 or 2 except for the case (αέ •) is of type G2. In the latter case dx = 3,
d2 — 1 and if £ is divisible by 3, the kernel of the map S is spanned by vectors
vωi (i = 1, 2), \£ψβ (β long root in R), and £ZU.

4. Some Properties of the Central Subalgebra Z o of Uε.

4.1. Let (a-) be an n x n Cartan matrix (as in Sect. 3), P its weight lattice and q
an indeterminate. One defines (cf. [DC-K-P] to which we refer for all the necessary
notations) the simply connected quantum group U associated to the matrix (aτj) as
a Hopf algebra over ^β := C[g, q~ι, (qdz — q~dτ)~x] on generators E% , F^i =
1,... , n), Ka(a G P) subject to a certain set of g-analogues of Chevalley-Serre
relations (this is a simple variation of the construction of Drinfeld and Jimbo).
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Recall that the braid group J9W, associated to the given Cartan matrix, whose
canonical generators one denotes by Ti acts as a group of automorphisms of the
algebra U ([L]).

Introduce a conjugate-linear anti-automorphism K of U, viewed as an algebra over
C, by

nEi = F , Â F = Eτ, KK{ = K~\ nq = q~ι . (4.1.1)

One knows that K commutes with the action of the braid group.

42. Fix a reduced expression ω0 = s^ ... siN of the longest element of W, and let

be the corresponding convex ordering of R+. Introduce the corresponding root vectors
( m = l , . . . , ΛΓ)([L]):

ββm = TM ' T*m-Ami E_^ = T%χ .. .T^F^ = κEβ (4.2.1)

(they depend on the choice of the reduced expression).
For k = (fe1?... , kN) G ΊJl we let

ί;fc = Ek

β\ ... Ek

β

N

N, F f c = «E f e . (4.2.2)

Lemma 4.2. (a) [L] The elements FkKaE
r, where k, r E ΊJ^, a G P,form a basis

of U over Λ.
(b) [L-S] For i < j one has:

where ck G C[g, q~ι] and ck φ 0 only when k = (fc1?... , fcN) w such that ks — 0
/<9r s < i β/tJ s> j . D

Consider a monomial

Mk>rta:=FkKaE
r, (4.2.3)

where k = (k{,... , kN), r = (ru... , rN) € Z ^ and a e P. Define its total height
by

and its total degree by

a) - (kN, kN_u... , kv rv . . . , rN,

We shall view Z^ /v+1 as a totally ordered semigroup with the lexicographical order
< such that uλ < u2 < . . . < ^2iv+i» w n e r e u% — (^,i? ? ̂ z,2JV+i)

Following [DC-K], introduce a Z ^ N + 1 -filtration of the algebra U by letting Us

(s G Ί?_^+ι) be the span of the monomials Mfc r α such that d(Mkra) < s. Lemma
4.2 implies
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Proposition 4.2 [DC-K]. The associated graded algebra GYU of the Z™+ι-filtered
algebra U is an algebra over ^4 on generators Ea(a G R) and Kβ(β G P) subject
to the following relations:

KaKβ = Ka+β, K0=l; (4.2.4)

KaEβ = q{alβ)EβKa (4.2.5)

EaE_β = E_βEa ifa,β€R+; (4.2.6)

EaEβ = q-^β)EβEa, E_aE_β = q-^0)E_βE_a (4.2.7)

ifa,βe R+ and a > β in our convex ordering of R+. D

Remark 4.2. (a) Considering the degree by total height d0, we obtain a Z+-filtration
of [/; let £7(0) = Ό be the associated graded algebra. Letting dx(Mkra) = rN, we
obtain a Z+-filtration of U{0); let U{1) = U(0) be the associated graded algebra. Letting
d2(Mk ) = rN_lf we similarly obtain £/(2) = £7(1), etc. It is clear that at the last
step we get the algebra Gr U defined by (4.2.4-7):

Ui2N) ~ GrU. (4.2.8)

(b) The algebra Gr U is a twisted polynomial algebra over <j& on generators
Eβι,... , ^ , E_βN,... JB_/3i, ifωi,... , Kα ; n, corresponding to the skew-symmetric
matrix S defined by (3.3.1), with the elements K , . . . , Kωn inverted.

We now specialize the variable q to any non-zero complex number ε subject to
the further restriction εld% φ 1 and denote by Uε the corresponding specialized Hopf
algebra.

From Lemma 4.2a we have that the monomials Mk r a form a basis of Uε

over C. Proposition 4.2 also holds for Uε with ,A replaced by C and q replaced
by ε. As in Remark 4.2, we have a sequence of Z+-filtered algebras Όψ over C
0' = 0 , 1 , . . . , 2JV) such that Όψ = U{

£

J-{) and UfN) is the algebra described by
Remark 4.2b with ,A replaced by C.

4.3. Recall the following general construction (see, e.g. [DC-K-P]). Given ε e C x ,
let (̂  : U —> Uε — U/(q — ε) be the specialization at q = ε. Let Z£ be the center of
Uε and let D£ — φ~ι(Z£). Then for any element a G D ε we can define the associated
Poisson derivation Pa of Uε by the formula

a^l{U)-fiU)a -ε), (4.3.1)

where c is a normalization factor. It is clear that Pa is a well-defined derivation of
£7e (hence it maps Zε into itself), satisfying

PabM = Pa(M)φ(b) + φ(a)Pb(u), a, b e D£ . (4.3.2)

In particular, we obtain a Poisson bracket on Zε:

{α, 6} := P ^ - i ( α ) © = - i ^ - i ( 6 ) ( α ) . (4.3.3)

4.4. Let ί be an odd integer greater than 1 and relatively prime to all the di9 and let ε
be a primitive £th root of 1. Let as before Z£ denote the center of the algebra U£. One
knows [DC-K] that the elements Eι

a(a e R), and Ke

β(β e P) lie in Z£\ we denote
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by Zo the subalgebra of Zε generated by all these elements. The subalgebras Zε and
Zo are J5^-invariant [DC-K] and possess a natural Poisson structure (cf. Sect. 4.3):

{α, b} = mod (q - ε) , a,beZε.

Moreover Zo is a Hopf subalgebra and in fact it is the coordinate ring of a Poisson
algebraic group H described below [DC-K-P].

Let G be the simply connected algebraic group over C with Lie algebra Q associated
to our Cartan matrix. Let T be the maximal torus of G with Lie algebra fj := Σi ^^i
Let n_ (resp. n + ) be the subalgebra of g generated by the fi (resp. ê ) and let U_
and U+ be the unipotent subgroups of G whose Lie algebras are n_ and n + . Let
# _ := T£/_ and 5 + := Tί/+ be the corresponding Borel subgroups. Recall that the
braid group J8W acts on Q by letting [T]:

T{ = (expad/2)(expade )(expad/ ) .

For each a e R+ we define root vectors ea and e_a by formulas analogous to (4.2.1).

The group H is the subgroup of B_ x B+ formed by the elements (x, y) =

(tu_, t~ιu+). The restriction to H of the natural multiplication map B_ x B+ —> G

given by (x, y) —> x~ιy is an etale covering of degree 2 n :

π : H ^ °

where G° is a Zariski open subset of G, called the big cell. We need to recall the
explicit isomorphism between H and SpecZ0 [DC-K-P].

We let for a e R+\

and introduce the following elements of Zo:

zβ = Ke

β(β e P); x_a = caE
e_a, xa = -caEiz_a (a e R+).

Let ZQ = Σ Czn and let Z$ (resp. Z^) be the subalgebra of Zo generated by
βeP

the elements xa (resp. x_a), OL G R+. Then [DC-K] the algebra ZQ (resp. Z$) is a
polynomial algebra on indeterminants xa (resp. x_a) and multiplication defines an
algebra isomorphism

Since C[T] = P, we have a canonical isomorphism of T with Spec ZQ , and we shall
identify them.

Following [DC-K-P] we construct maps

τr~ : Spec Z^ —* U_, τr+ : Spec Zj~ —> f/+ ,

and then construct an isomorphism fr: Spec Zo — Spec Z$ xT x Spec ZQ~ —> ϋί by
letting

7f((2, t , 6) :== (t 7Γ (β), ί?Γ (6)) .

Here the map π~ is given by the following element of the group U_(ZQ) C G(ZO)

( e x P ^ - ^ e - β N ) ( e x P »-/?! e - A ) > ( 4 4 !)
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and the map π + by the following element of the group U+(ZQ) C G(ZO):

(exVT0(x_βN)T0(e_βN))... (expT0(x_/ 3 i)Γ0(e_/ 3 i)), (4.4.2)

where T{) = Ti .. .Ti . We identify SpecZo and H using the isomorphism π, hence

we have an etale covering π : Spec Z o —• G° C G of degree 2 n .

/temαr/: 4.4. Since also To = T i j V .. .Tiχ, we see that -T 0 /3 N = α i j v , -ToβN_x =

TiNaiN_i?... , -TQ/?! = TiN .. .Ti2aiχ, which is the convex ordering of # +

associated to the "reverse" reduced expression ω0 = si . . . si . As in (4.2.1) we

have the corresponding root vectors, but they may be different from those in (4.2.1).

4.5. It is clear that Uε is a finite module over Zo. In [DC-K] it is shown that it is a
maximal order in a division algebra of degree d — lN, N = \R+\. Thus we can apply
to this algebra the general theory described in Sect. 1.

Let V := SpecZ ε. The points of V parametrize, according to Sect. 1, the
semisimple d-dimensional representations of Uε. In ([DC-K-P]) we have described V
as a canonical ramified covering of H which has also a Poisson structure compatible
with the covering map.

A basic symmetry of our picture is associated to the Poisson structure of H. In fact
we have a canonical (infinite dimensional) group G of analytic automorphisms of the
algebra Uε generated by 1-parameter groups exptPE£ and exptPFt (ί = 1,... , n)
which covers a group of Hamiltonian flows on H [DC-K]. In particular:
(a) The group G acts on V and on H and its orbits coincide with the symplectic
leaves.
(b) The semisimple representations of Uε parametrized by the points of a given
symplectic leaf in V are all of the same "type" (i.e. are equivalent up to a twist
by an automorphism of Uε).

We shall describe now the semisimple ^-dimensional representation of Uε corre-
sponding to a given point of SpecZ ε. Recall [DC-K] that given a homomorphism
λ : Uε —> C and a homomorphism v : ZQ —> C we construct the associated left
Uε-module M ε (λ, Ϊ/), called the triangular Verma module, as the quotient of Uε by
the left ideal generated by the elements Ea, KΊ — λ(if7), x_a - v(x_a), where
7 G P, a G R+. This is a <i-dimensional indecomposable representation of Uε.
Hence all irreducible factors pλ,... , ps of M e (λ, v) have the same central character

5

Proposition 4.5. (a) The representation φ p% is the semisimple representation of U£

2 = 1

corresponding to χ G Spec Z e .
(b) G/V^Λ x G SpecZε, choose g G G such that χx = g(χ) has the property that
χx(xa) = 0 for all a G R+ (see Proposition 4.6 below), and let v = X\\z- Then

there exists a homomorphism λ : Uε —> C such that the central character of the

module M ε (λ, v) is equal to χx; let p 1 ? . . . , ρs be all its irreducible factors. Then
— 1

φ p\ is the semisimple representation of Uε corresponding to χ.
I—\

(c) Triangular Verma modules having the same central character have the same
irreducible factors.

Proof, (b) and (c) follows from (a). Due to_the discussion in Sect. 1.1, it suffices
to show that the triangular Verma modules M ε (λ, v) are compatible with the trace
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map. It is obviously the case if M ε (λ, v) is irreducible. But the module M e (λ, v) is
irreducible provided that λ ( ^ ) φ ±\ for all β e R+ [DC-K, Corollary 3.2]. Hence,

by continuity, all the modules M ε (λ, v) are compatible with the trace map. D

4.6. Let λ e P+ be a dominant weight and let p λ be the finite-dimensional

irreducible representation of the group G in a vector space F λ . Then we have a

map τrλ = p λ o 7r : Spec Zo —>• GL(y Λ ). Let

0λ(w) = t r y λ π λ (w), u e Spec Z o . (4.6.1)

This is a polynomial function on Spec Zo.

Proposition 4.6 [DC-K-P]. (a) π " 1 (Center (G)) is the fixed point set F of G in
Spec Zo (it is a finite set of cardinality 2n |Center (G)|).
(b) Let (9 he a non-central conjugacy class of G. Then π~ι(&Γ)G°) is a G-orbit and
all G-orbits in Spec Z0\F are thus obtained.
(c) The elements φχ(λ £ P+) form a basis over C of the subalgebra Z^ of G-
invariants in Zo.

(d) The algebra Z^ is a polynomial algebra over C on generators φω , . . . , φω .

b
Remark 4.6 (cf. Remark 3.3.) Let (α^ ) be the Cartan matrix of type G2 and let

£ = 3£', where £' is an odd integer greater than 1. Then E^ is a central element of
Uε if a is a long root. Proposition 4.6 holds in this case as well if we replace E^ by

E^ in all constructions.
We return now to the Z^_AΓ+1 -filtration of the algebra Uε obtained by the special-

ization of that of f/̂  (see Sect. 4.2). Recall that the monomials Mfc r α (given by
(4.2.3)) form a basis of Uε over C (see Lemma 4.2a). For an element φ of Uε we
denote by φ the monomial of maximal degree in the above filtration that occurs in φ
with a non-zero coefficient.

Fix a reduced expression (3.2.1) of ω0. Fix a fundamental weight ω, let a be the
corresponding simple root and let

be the corresponding subset defined by (3.2.2).

Lemma 4.6. Let φω be the element of Zo defined by (4.6.1) for λ = ω. Then

Φω = ZωX~βkr ' X-βkχ

 Xβkχ ' Xβkr

Proof. Fix a basis {v^}, j = 1,... , t = dim V^, of Vω such that Vj is a weight
vector of weight μJ and i < j if μi > μj9 so that υt has the highest weight ω and
i j has the lowest weight — tω. Let {t;*} be the dual basis of (Vω)* and consider the
matrix coefficients

We define the height of a monomial in Zo by H(za Π; ^-β^β) = Σβi(ri +
i

and we write iί(z) < λ for 2 e Z o and λ G Q if the heights of all monomials in z
are < λ.
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Note the following properties of matrix coefficients:

Si3 ° π + = 6ij ί f l ^ ^ H ^ J ° ^ ^ ^ ~ Vj ; ^ 4 6 2 )

Si:j oπ_= 6i3 if i > j ; H(Si3 oπ_)<μ3-μτ; (4.6.3)

Siά o π 0 = < 5 ^ ; # ( 5 ^ o π0) = 0. (4.6.4)

Since

we deduce from (4.6.2-4) that

H(SJ3 o π) < 2(ω -μά). (4.6.5)

Since

it follows from (4.6.5) that the highest possible height of a monomial in S -O7r occurs
for j — 1 and it is equal to 2(CJ + tω). Moreover, this monomial may occur only in
the summand (Sιt o π_)(Stt o 7τo)(Stι o π + ) of S ĵ o π.

Thus, it remains to show that the highest degree monomial (with respect to our
-filtration) in (*Sf

lίoπ_)(5ίΐoπ0)(*S'tlo7r+) is the monomial φω. But Sttoπ0 == z
hence it remains to show that the highest degree monomial in Sιtoπ_ (resp. Sn oπ+) is

r
x-βk - - x-βk ( r e s P xβk - - χβk )• (Recall that, by Lemma 3.2d;, ω+ tω = J2 fik{ •)

But this follows immediately, recalling formulas (4.3.1) and (4.3.2) from Lemma 3.2
b' and d (resp. b and c) D

5. The Main Theorems

5.7. As before, we assume that ί is an odd integer greater than 1 and relatively prime
to all the d%. Let ε be a primitive £th root of 1 and let d be the degree of the algebra
Uε. We have already recalled in Sect. 4.5 that d = ίN.

We are in a position now to prove the main result of the paper.

Theorem 5.1 Let V be a irreducible Uε-module and let (9 be the G-orbit ofχ0(V) in
Spec Zo. If @ has maximal dimension (= IN), then V has maximal dimension (= d).

Proof Let Ω° = Ω^ = {u G SpecZ0 | all representations from χ ^ 1 ^ ) have
dimension d}, as introduced in Sect. 1.2. We are claiming that, given a (5-orbit
(9 of maximal dimension, (9 C Ω°. By symmetry (cf. Sect. 4.4) it suffices to see that
the Zariski closure (9 of (9 has nonempty intersection with Ω°. We wish to apply
to our situation Lemma 1.5 with I the ideal of (9. For this we need first of all, to
show that each of the algebras Uψ introduced in Remark 4.2 has degree £N. Since
the degree can only decrease in each step, it is enough to show that d is the degree of
U^N\ In this case we apply Proposition 2.2c and Lemma 3.3b. By an easy induction
we are then reduced to show that, if J is the associated graded ideal of I in UfN\
and (9λ is its set of zeroes, then

^ n ^ r ( 2 i V ) / 0 . (5.1.1)
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We will describe / using the method of Proposition 1.4. It is well known that the
Zariski closure of τr(^), being the Zariski closure of the conjugacy class of maximal
dimension in G, is given by the equations (for some c{ 6 C):

trvωtg = c , i = 1,. . . , u, g G π(<9).

It follows from Proposition 4.6b and d that the Zariski closure of (9 in Spec Zo is
given by the equations

Φωi = cn i = 1» > n (5.1.2)

Consider the elements φω , images of φω in the final graded algebra UfN\ We
want to show that these elements form a regular sequence of Z^N) C UfN) so that
they generate I (cf. Proposition 1.4). The elements φω have been computed in Lemma
4.6 where we have seen that they are monomials in disjoint sets of indeterminates.
Hence they form a regular sequence by trivial reasons. In order to complete the proof
we have to show that the set <9X of solutions of the system of equations

φω.=0, ί = l , . . . , n , (5.1.3)

intersects nontrivially the set Ω^QN)
The variety given by the equations (5.1.3) is a union of subvarieties given as

follows: we choose from each monomial φ a factor x±β and letting them 0 we
define a component of the variety under study. It is enough to prove that each one of
these subvarieties intersects the open set Ω^J(2N) non-trivially. But U^2N) is essentially
a twisted polynomial algebra (see Remark 4.2b). Thus, according to Proposition 2.2d
and Lemma 2.2, the statement follows from Lemma 3.3c, completing the proof. D

Remark 5.1 (cf. Remarks 3.3 and 4.4). Let ί be an odd integer greater than di for all
i. For each a e R+ let ίa = ίj(l, da). (Note that £a = £ in all cases except for long
a of type G2 and ί divisible by 3.) Then

Here is a simple proof of this formula. Since degree Uε > degreef/^27V), we deduce
from Proposition 3.3 and Proposition 4.2c (and Remark 3.3) that d > Y[£a Using

a

the triangulizability of an arbitrary irreducible representation of Uε (which follows
from Proposition 4.6b), we obtain the reverse inequality.

Theorem 5.1 holds for these ί as well.

5.2. In this last section we denote by U the algebra U <g>̂  C(g), let U{2N) = GvU
etc. We discuss in some detail the center Z of GrC/ (resp. Z£ of GrC/ε) having in
mind some possible applications to a more detailed analysis of the geometry of the
degeneration. Recall that this is an algebra over C(q) (resp. C) on generators Ea

(a G R) and Kβ (β e P) with defining relations (4.2.4-7) (resp. where q = ε). Let
Z denote the center of U. From Proposition 2.2a and Lemma 3.3 we derive

Proposition 5.2. (a) The algebra Z is a polynomial algebra over C(q) on generators
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(b) The algebra Z£ is an algebra over C on generators xa := E^ (a G R), Zβ := Kβ
(β G P) and ui (i — 1,. . ., n) with the following defining relations:

D

Theorem 5.2. (a) Z = GrZ.
(b) Z ε = GrZ ε.

Proof. It is clear that Z D GrZ and Zε D GrZ ε . In order to prove the reverse
inclusion recall the construction of Z from [DC-K]. Let {7° (resp. U+ and ί/~) be
the subalgebra of U generated by all the Ka (a G P) (resp. all the E% and all the
Fj). Recall that W acts on Z7° by wKa = Kw{θί). Let Uow denote the subalgebra of
invariants. Given φ = φ(Kωχ,..., ^ n ) G t/o v t /, there exists a unique element in Z
of the form:

where 5 | G UZβU°U+ and Up = {u e U^K^uK^ = q{a\β)u}. Furthermore, the

map /ι : p \-+ φ defines an isomorphism Z^>U0W.

The algebra 17° is canonically isomoφhic to the coordinate ring of the torus T of
G. Given λ e P+ define an element χ λ G {7° by χ λ ( t ) = t r y Λ π λ (ί), ί e Γ . Of course,
χ λ G /70M/ and we let pλ = pχχ G Z. The elements p ω j , . . . ,p W n generate Z. Let j ^

denote the monomial of highest degree in pφ with respect to the Z^AΓ+1-filtration of
U (defined in Sect. 4.2). In order to prove (a), it suffices to show that

Since the elements pω. are defined at q = ε and together with Zo they generate Zε

[DC-K-P], (5.2.2) implies (b) as well.
In order to prove (5.2.2) we use another approach to Z, developed in [R] and

[Ta]. First, one introduces the unique bilinear form ( . , . ) : U°U+ x U°U~ —> F : =
^ satisfying the following relations:

Then one has

X€U°

Xγ^Xi G

Oί\β) n f.

ae P

Ίdi), i;

Oifa,

U+, Vie U°U~,

U°U+ , y e U°U~ ,

, i = l , . . . , n ,

,j=l,...,n.

is non-degenerate.

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)



426 C. De Concini, V. G. Kac, and C. Procesi

Furthermore, using that U = U~U°U+ = U+U°U~, one extends this bilinear
form to the whole algebra U by the formula:

(xιKaS(y1),y2KβS(x2)) = (x1,y2)(x2,yι)q-(a\β),

χi e ί/+, yτeU- , a,β eP. (5.2.10)

This bilinear form defines a linear map

j:U^U*(= Homψ (U, ¥)) by j(α)(u) = (w, α).

The basic fact of [R] and [Ta] is that, considering the irreducible representation τrλ q

of {/ in the vector space Vq

λ over C(q) which is a deformation of (Vλ, π λ ) , we obtain:

J(Pχ)(u) = t r v x τ τ λ i q ( K _ 2 p u ) , ueU. (5.2.11)

Let us now remark that any weight of Vx has the form λ — β, where β G Q+ and
β < λ + *λ. Hence it follows from (5.2.11) and the definition of the bilinear form on
U that in (5.2.1) we have:

o=ϊβ<χ+ tχ. (5.2.12)

Furthermore, let χλ' = ^ Kw(X) (λ e P+) and let p'x = p , . Since
w/W λ

Xλ = Xλ + Σ Cλ-/3Xλ-/3 » w h e r e cλ-/3 ^ C '
/3:0</3<λ+ tλ,

A-/3GP+

we deduce from (5.2.12) that

S*'λ 7^0=^/3 < A + * A , (5.2.13)

and we see that

Pλ=K ( 5 2 1 4>

On the other hand, choosing i relatively prime to all the di we have from Proposition
4.6 in Uε for a fundamental weight ω:

A, = < - . ^ A l

 E-βkr

Ek Ekr (5 2 15)

By (5.2.13) we have in Uε:

P > ( P Ϊ ) £ ^ l A - A e P + . (5.2.16)

Choosing ί big enough, we may assume that the highest monomials of pω and p'ω
do not vanish at q = ε, hence coincide according to (5.2.14). Therefore comparing
(5.2.15) and (5.2.16) gives (5.2.2) which completes the proof of the theorem. D

Corollary 5.2. Let Zψ be the center of the algebra Uf>. Then Z(j+l) =
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