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Abstract. We prove that the Stark effect perturbation theory of a class of bound
states uniquely determines the position and the width of the resonances by
Distributional Borel Sum. In particular the small field asymptotics of the width is
uniquely related to the large order asymptotics of the perturbation coefficients.
Similar results apply to all the "resonances" of the anharmonic and double well
oscillators.

1. Introduction

Distributional Borel (DB) summability was defined in [7], following a suggestion
of't Hooft [23] for double well problems. In particular a criterion for summability
was proved [7] and some applications were performed to lattice field theories and
to double well problems ([7, 8]) and to the justification of the semiclassical method

[9].
Here we prove the DB summability of the perturbation series for the resonances

of anharmonic oscillators of unstable anharmonic oscillators and of the Hydrogen
Stark effect resonances. More precisely we should say that each resonance is
directly given by the lower DB sum, or that the position is given by the DB sum itself
and the width by the modulus of the DB discontinuity. With respect to the previous
result [14] of complex field Borel summability (and continuation to the real axis),
this yields a more direct connection between perturbation series and resonances. In
fact now we are able to connect uniquely all the types of asymptotics introduced by
Bender and Wu [2, 3, 4] for the anharmonic oscillator case (also see [16, 5]; for
other references see [21, 22]). In such a way we extend the well known
Herbst-Simon connection formulas. Such connection is clarified by the first singu-
larity on the positive half-axis of the Borel transform of the perturbation series. The
kind of this singularity agrees with the one suggested by Ecalle's theory of resurgent
functions [12].
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The proof proceeds the following way. First we prove that the anharmonic
oscillator "resonances" are analytic in some Nevanlinna disk and then we show the
same result for a class of Stark effect resonances. As for the method of the proof,
Hunziker's theory of Schrόdinger eigenvalue stability ([18, 19]) and subsequent
extensions by Caliceti and Maioli [11] and all of us ([8, 10]) are combined with
a suitable version of an "energy bound."

DB summability follows from the known ordinary Borel summability in con-
tiguous sectors plus the analyticity extension result. Equivalence of the different
types of asymptotics is proved by application of the direct and inverse Borel
transform.

Finally, all these results apply to the double well "resonances," too, which are in
fact related to quartic anharmonic oscillator "resonances" for particular values of
the parameters ([13, 1, 6, 8, 10]).

2. Analyticity of the Anharmonic Oscillator Eigenvalues
in the Nevanlinna Disk

Consider the quartic d-dimensional anharmonic oscillator in L2(Rd) with coupling
constant g2 = p2exp(2ι0):

- A + x 2 + <72x4 . (1)

For each fixed eigenvalue En(g) and for any ε0 > 0, there is p 0 > 0 such that En(g) is
analytic (see [20] and related references) in the sector

{g: _ 3 π / 2 + 2ε0 S 2Θ S 3π/2 + 2ε0, \g\ ύ Po} (2)

We look for the behaviour, as p -• 0, of a minimal infinitesimal function ε = ε(p),
such that the eigenvalues are analytic for

- 3π/4 + ε(p) ̂  0 ^ 3π/4 - ε(ρ)9 0<p^B (3)

for some B independent of θ. Setting θ = — 3π/4 + ε and scaling x -> λx, with
λ = e~iθ/3, it is sufficient to study the radial part of such an operator in the case of
angular momentum /, i.e.

A(p) = e

i{

in £2(R+), p= —i-r,j = d + 2{l- ί)J ^ 0 oτ j = - 1 , with suitable conditions

at the origin. We are going to prove that the eigenvalues are in fact analytic in the
region (3) if

ε ( p ) : = ^ R - V (4b)

is chosen with R sufficiently small. Such a property is easily checked to be
equivalent to analyticity in the disk of radius R/2 tangent in the origin to the
imaginary axis of the #2-plane, as stated in the following

Theorem 1. For each eigenvalue En, n = 0, 1, 2,. . . , of the quartic oscillator (1),
there is R > 0 such that En(g) is analytic in the Nevanlinna disk 5%~2 S — R1 of
the g2-plane.
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Of course the theorem is true if level crossings of the eigenvalues do not exist inside
such a disk for R sufficiently small; since any given disk is the union of the
boundaries of disks of smaller radius, the proof reduces to a stability argument for
the operator family (4) as g tends to zero along the boundaries asymptotically
specified in (4b).

First let us consider a transformation U in the set of L2 functions which are
translation analytic in some suitable strip |gr| < δ (for fixed η0, 0 < η0 < 1):

Uf(r) = ξ'{rγl2f{ξ(r)), (5a)

where, setting r0 = (p^/ϊy1 for any fixed p > 0, we define ξ(r) in CCO(R+) SO that

ξ(r) = r-2ίηo + 2iηo(l +Γ 3 )" 1 / 6 , 0 < r g r0 (5b)

ξ(r) = r, r ^ r0 + η0 . (5c)

Setting f(r) = (ξ'(r))"1, the transformed operator UA(p)U~1 is given by

p + 4"1(/(r)2)"] + α 7 ^ = i + a " ^ ( r ) 2 + ap2ξ(r)4 , (6)

where a = gι(~π/2 + 2ε/3)# The quadratic form which generates the operator Hp is
defined by:

hP[u] = J | α / 2 | p W | 2 + W ^ - + α4- 1 (/ 2 )" + α " 1 ^ + α p 2 ^ l | W | 2 | r f r (7)

on the maximal domain with the condition at the origin: u(r) ̂  r(1+J')/2.
We notice that the limit in the strong resolvent sense, as p -• 0 + , of Hp is well

defined by

Ho = - i{pfh + 4-Hf2o)"} ~ l^τ^- + %l, (8)

where fo(r) = (ξ'0(r))~: and the expression in (5b) provides ξo(r), Vr > 0. From now
on, let k = 4~1(j2 - 1).

The proof of Theorem 1 consists in obtaining a stability result for the eigen-
values of Ho with respect to the family {Hp}p>0. This is achieved on the basis of
a preliminary estimate (a kind of position-dependent energy bound).

Lemma 2. Let ε = ^R~1p2. There is p0 > 0 and there are positive constants
aί9 a2, c, cu c2 such that

r 3)~ 7 / 3] + η0r
2(l + r3yΊ/6}\pu\2dr

(9)

uniformly for 0 < p ^ po,ueD(hp). A similar estimate holds with hp replaced by
K (ro= +co,ε = 0).
Moreover, Vw :supp u c (n, + oo),

W p M ^ ί c i Λ - ' - c j J H u l l 2 (10)

/or n /αrgfe and cί,c2 independent of R,0 ^ p ^ p 0 .
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Proof. We have

f {f2\pu\2 + kξ-2\u\2}dr = ]
o o

r. (11)
o

Since the second integral on the right-hand side of (11) is bounded by const. | |M | | 2 ,

91 Ϊ {P\pu\2 + kξ-2\u\2}dr ^ J <R(α/2)[|pu|2 + kr-
2\u\2]dr - const. ||w||

= J ( . . . ) + ? ( • • • ) + ? ( • • • ) - c o n s t . H u p ,
0 1 r0

with the obvious meaning of the notation.
Next, for r ^ r0, notice that

(12)

= {1 - »f§^(l + r3)-7'3}'|l - iη0r
2(ί + r 3 ) - 7 ' 6 ! " 4

^ 4 " 1 { l - r 4 ( l + r 3 ) - 7 / 3 } , (13)

%f2 = 2ηor
2(ί + r 3 )- 7 ' 6 | l - ii?0r

2(l + r 3 ) - 7 ' 6 ! ' 4

^ 2 - ^ 0 ^ ( 1 + r 3 ) - 7 / 6 . (14)

Hence

l - r 4 ( l + r ) " J l + —cos —

(15)

Now, since the integral from 0 to 1 in (12) is nonnegative, using (15) for Jj° and (5c)
for J», we get:

]kξ 2\u 2Λdr> > k, ί ε\pu\2dr — k2\\u\\2

i
+ /c3j{ε[l-r4(l+r3)-7/3]

1

ir (16)

for some kί9 k2, k3 > 0, VWGD(/ZP).

As for the remaining terms appearing in 9ihp[u]9 (7), notice that {f2)" can be
neglected since it is bounded. Moreover, fixing R > 0, for any b > 0 there is c > 0
such that

r e ^ & ί ^ S R ί α - ^ ί r ^ + α p ^ ί r ) 4 } ^ - c . (17)
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Choosing b > 0 such that, within (b, r0), ^l{(x~1ξ(r)2 + ap2ξ(r)4} attains its min-
imum in r0, we have

re(fc, r0 + ^ ^ M f c Γ 1 ^ ) 2 + ap2ξ{rf}

^ r2sin(2ε/3) + p2r4sin(2ε/3) + 4πf0cos(2e/3)

- 8r3f/0P
2cos(2ε/3) ^ c ^ " 1 , (18)

where cγ is independent of R (and, of course, of b). Notice that (18) is obtained using
the definition of ξ(r) and the assumption ε = (2R)~1ρ2. As a consequence of (18),

re(r0 + η0, + oo)^K{a~^(r) 2 + ocp2ξ(r)*} ^ c ^ " 1 (19)

since such a real part turns out to be increasing in that half line. Of course (17), (18),
(19) hold uniformly for 0 < p rg ρ0 for some p0 = po(R) > 0 and the lemma is
proved. D

Corollary 3. Let χn(r) = χ(r/n), χeC°°(IR + ) and χ(r) = 1 for r ^ 1, χ(r) = 0 if
r ^ 3/2. Then 3c3 > 0 such that

ll + llMll) (20)

Proof It is enough to prove (20) for p > 0, since for p = 0 the argument is even
simpler. For simplicity, let u ED(HP) be such that \\u\\ = 1. Let y2n be the character-
istic function of [1, 2ή]. By the choice of χ,

= - y2n{af22ίn-1χ'(n-1r)p + rc

Thus
Ίn ϊ l/2

(21)

^ f \pu\2dr\

In -Jl/2

2n)"1ή-V J |pw|2f/or
2(l + r 3 )" 7 / 6 dr J

l/2

,W> + l } , (22)

where the last inequality follows from Lemma 2. This concludes the proof. D

Remark. By a direct analysis of the adjoint operator H* it is not difficult to obtain
the analogous estimate

WlH^χn-]u\\ £ c 3 n - 1 / 4 ( | | J / * u | | + Ml) (23)

Vi i6D(J ί*) ,0^p^po.

Proposition 4. Lei

M M = 1 - χn ,

where χn is defined in Corollary 3. //

dn(λ, p):= inϊ{\\(λ - Hp)Mnu\\-\\Mnu\\ = ί,ueD(H(p))} , (24)
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then V/leC, 3R > 0, 3n0, Po> <5 > 0 such that in the Nevanlίnna disk $lg~2

<-R~\

dn(λ,p)^δ>0, V n ^ n 0 , V p ^ p o . (25)

Proof. By (10)

9ί<MΛ tfPM,,W> ^ < M Λ d Λ " 1 Mnκ> - c2 . (26)

Now cx # "* can be made large enough so that (25) holds, by choosing JR sufficiently
small (of course R will tend to infinity like \λ\~* as λ -> 0).

Remark. The estimate (26) is an indication for the following conjecture: the radius
of the two disks, tangent to each other, between which the Bender-Wu horn of
singularities occurs, tends to infinity like EoίO)"1, where E0(g) is the ground state
energy. This clearly appears as 7 -> - 2 in (4a), where E0(g) -> 0, \/g.

Lemma 5. Let the two sequences ρm > 0, umeD(HPrn) be given so that p m ->0,
\\HPrnum\\ is bounded and \\um\\ = 1, um tends weakly to 0. Then the sequences
p m ( π ) , MMwm(π) satisfy the same properties for some suitable m = m(n) if R is chosen
sufficiently small.

Proof. The boundedness of \\HPrnMnum\\ reduces to the boundedness of | |HP mMm | |
by virtue of Corollary 3. Thus it is enough to prove that for all n

l i m | | χ n W m ( n ) | | = 0 . (27)
n

To prove (31), let H'p = d~γEp and λeC - σ(H'o) be fixed. Then

WXnUmW2 S c(\\χnRΌ(H'o - H'Prn)um\\2 + \\XnRΌ(H'Pm - λ)um\\2) . (28)

The second term tends to zero because R'0 = (HΌ — λ)'1 is compact and
{H'Prn — λ)um tends weakly to zero. Calling y2n the characteristic function of [0, 2w],
the first term is bounded, up to some constant factor, by

WymR'oXniH'o ~ H'pJum\\2 + \\γ2nlRΌ, *„](#Ό - H'pJum\\2 . (29)

In turn the first term in (29) can be bounded as follows:

c )H \R'oXn(H'o - H'pJum\2dr ίc\\R'0\\2 J \(H'O - H'Pm)um\2dr
0 0

= cUK'oll2 \{\ξ{r)\2\\ - e-4i*"'3\ + P

2

m\ξ(r)\4)2dr
0

^ c 1 ( β m n 2 + p ^ 4 ) 2 | | W m | | 2 , (30)

where εm = ̂ R~1 p^ by hypothesis. As for the second summand of (29) we have:

Wy2nRΌXn(HΌ-H'pJum\\ ^ \\R'o[H'o, Xn~]R'o{H'o - H'Prn)umII ^ cn~1/4 . (31)

Indeed by (23) the operator R'O[_H'O, χ j = ([χB, {H'0)*~](R'?)*)*, when applied to
the bounded sequence R'0(HΌ — H'Prn)um, satisfies the last inequality in (31). D

Proof of Theorem 1. The theorem follows from the preceding propositions by
applying the eigenvalue stability theory as in [18, 19, 11, 10, 8]. In particular the
essential hypotheses are satisfied by virtue of Corollary 3 and Lemma 5.
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3. Analytidty of Stark Effect Resonances in a Nevanlinna Disk

As is well known ([14, 17]), the Stark effect operator

-A - M " 1 +Fx1 (32)

has proper eigenvalues for $F > 0, which admit an analytic continuation, for small
| F | , to any phase preceding arg(F) = 3π/2 (or arg(F) = — π/2).

To prove DB summability in the real direction we want to extend the analyti-
city region and the asymptotics of the Stark resonances.

Theorem 6. The Stark resonances Ekikiϊn(F\ k = 0, 1, 2,. . . , m = 0, + 1 , + 2,. . .
admit an analytic continuation from $F > 0,\F\ < z0 to a Nevanlinna disk:

Dzo = {z:\z-zo\<zo}, (ifzeDZ0, -zφDZ0) (33)

for some radius z0 > 0.

Proof Consider the ordinary operators associated with (32) and let μ(β) = μΐiβ)

be the kth eigenvalue of - T ^ + (m2 - 1/4) ̂  + x2 + βx*,xeR + . We define
dx x

f(β) = μ(β) + μ(e-
iπβ) and we have [14]:

η=f(β\ where η = (-2E)-^\ β = Fη3 . (34)

By the results of the preceding section f(β) is analytic in Dzo with image Ω con-
tained in Ω1 defined by:

Ωx = {z: \z - η0 - η,β2\ S Cβ\ VβeDZ0, η0 > 0, η, Φ 0, C > 0} . (35)

Since

p
and

βeDZ0^-βφDZ0

we have the existence of a unique β =f~1(η) = Fη3, f~ι\Ω^D. Therefore
F = F1 (η) = η ~ 3f ~x (η) is analytic in ί2, and

Tβ(f (1))

tends to infinity as η -> η0, that is as β -> 0. Thus there exists an analytic inverse:
77 = ηι(F); ηx: Z)1 -^ Ω, where D 1 cz D Z i , for some z1 > 0. Of course from (34) we
have the continued resonance in the disk D 1 :

l (37)

4. DB Summability and Oppenheimer-Bender-Wu Asymptotics

The following theorem depends on the analyticity in the perturbation parameter
proved in the above sections and on the known sectorial summability [15, 14].
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T h e o r e m 7. The eigenvalues Eφ(g2) = E(g2eiφ\ S % ~ 2 > R 1 , of the quartic anhar-
monic oscillator (1) are Borel summable

a) in the ordinary sense for \φ\ <π;
b) in the distributional sense for φ = π.

This implies that the Borel transform B(t) is analytic in the cut plane with exponential
bound:

Vε > 0, 3C, γ: \B(teiΘ ± ίε)\ ̂  C exp(yί), V0: ± 0e [0, π] . (38)

Similarly the eigenvalues EKKm(Feiφ) of the Stark effect operator (32) are Borel
summable in the ordinary sense for 0 < φ < π,in the distributional sense for φ = 0,
and φ = π.

Proof Theorem 1 allows us to apply the criterion for DB summability given in [7]:
indeed it essentially requires analyticity in some disk 9?(#~2) > R~ \ together with
the well-known estimates of the remainders

N

cng
2n - Eφ(g2) Skann\\g\2n (39)

in any sector (2), where the constants /c, a can depend on ε0 (see e.g. [20] for the
standard proof of such estimates). Thus DB summability is proved for the quartic
oscillator resonances and, in an analogous way, for the Stark resonances. D

Since the eigenvalues E(g2) continued to arg(#2) = π are non-modal eigenvalues
("resonances") of the formal operator p2 + x 2 — | # | 2 x 4 , the above DB summability
result has the consequence of linking in a stricter way the position and the width of
such "resonances" with the perturbation series. In particular the following theorem,
which connects such different types of asymptotics, depends on DB summability by
making use of the direct and inverse Borel transform. For sake of simplicity, we
analyze the expansion only up to the second order.

Theorem 8. Let Φ(z) = z~γ j ^ B(t + ίθ)p(t/z)dt be an upper DB sum with respect to
the measure pa(t) = e~ fia with asymptotic expansion X^°=o

cnz" and vv/ί/ι Borel
transform locally defined by

B(t) = Σ cn{μnyH\ μn=] tnpa(t)dt = Γ(n + a + 1) . (40)
n = 0 0

Let f(z) = z-1 Jo°° pa(t/z)WB(t + iθ)dt9 and g(z) = z " 1 f» pa{t/z)%B{t + iθ)dt be
the DB sum and the discontinuity respectively.

Let us assume that B(t) has convergence radius 1, with the only singularities
t = ± 1 on the circle | ί | = 1 and let us distinguish two cases:

(a) the singularity is only at t = 1,

(b) B(t) = B{- i).

Then the following facts are equivalent:

i) gJ5(ί + iO) = πδ(t - 1) + M 0 ( i - 1) + O((ί - l)0(ί - 1)), as t - 1,
ϋ) (a) cn = Γ(n + α + 1){1 + bjn + O(l/n2)} asn^oo,
ϋ) (b) c2n = Γ(2n + α + 1){1 + bjn + O(l/n2)} asn^oo, c2n+ί = 0,

iii) g(z) = (π/z)pΛ(ί/z) {1 + bxz + O(z2)} as z -> 0 + .
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Formulas corresponding to i), ii), iii) can be obtained under dilation t —• σί. σ > 0 in
the Borel transform B, which corresponds to a shift of the positive t-singularity from
1 to σ" 1 .

Proof Let us consider the case (a) (the case (b) is analogous).
i) implies ii).
Indeed i) is due to a polar and a logarithmic singularity in the Borel transform: i.e.
there exists a regular function C(ί), I C(t)\ ^ C, 0 ^ t ^ 1 so that, for 0 g ί < 1,

B(t) = (1 - ί ) " 1 + M o g ( l - ί) + C(ί){(l - ί)log(l - i) - (1 - ί)}

= 1 + £ (1 - bjn)ir - C(t) j log(l - τ)dτ
n=l 0

00

w = l

00

11 = 2

where

^ = O(l/n2) (42)

depends on C(t). Hence the asymptotics of f(z\ as z -> 0 + , follows:

y(z) = J pα(ί/z)9?5(ί + iθ)dt/z
o

= /pβ(τ){l + (1 + b,)τz + Σ (1 + ί^/n + yB)(τz)"}rfτ
0 n = 2

00

_iV+1 \ i f Λ /#0{zA

i/z

(43)

where crt obeys (ii) because of (42).
ii) implies i).
By (ii), for 0 ^ t < 1,

Σ (cn/Γ(n + α + l)}t" = Σ {1 + *i/« + A}ί" . (44)

where βn = O(l/«2), as w -• oo. Therefore there is some regular function C(ί) such
that

B(ί) = (1 - ty1 + 6X log(l - t) + C(ί){(l - ί)log(l - ί) - (1 - ί)} , (45)

whence i) follows,
i) implies iii).
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Employing the obvious notation

\g(z)-gi(z)\

1 J" pa(t/z)%{B(t + iO) - (t + iO - I ) " 1 - M o g ( l - ί - iθ)}dt
o

<c p.{t/z){t-ί)dt/z

^ ce-1/z/z«\ J

~ε/2J e" ί /

l + ε

ί Λ/z + J

iO ε)| Λ/z

1)| Λ/z

iii) implies i)
First notice that, if h(t) = H'(t), an integration by parts shows:

z - 1 ] pa(t/z)H(t)dt = O(z)z-ί J pa(t/z)h(t)dt •
0 0

(46)

(47)

Now, assume for sake of simplicity α = 0. A discontinuity having the principal
behaviour of iii), can be written as

g(z) = πz xe 1/zG(z\ where G(z) is regular, near z = 0 . (48)

The inverse Borel transform of g(z) is essentially given [7] by the Riemann-Fourier
inversion formula of the Laplace transformation, regarded in the variable w = z~ι,
so that for t > 0:

iO) = et/zg(z)z-1 dz

1 ' J I0° e ( t

= Co5(l-ί-iO)"1 + C

f + iO

+ C2$ J log(l -τ)dτ+ . . . ,

ί w x + . . .) dw

- t - ίO)

(49)

where YCnz
n is the convergent expansion of G(z) at z = 0, and the integral is

performed on the path SRz"1 = r" 1 , with r less than the radius of convergence of
G(z).

Hence the principal behaviour in i) is proved, as well as the other singular
behaviours as t -> 1 by the above remark (47). D
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