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Abstract. For each Boltzmann weight of a face model, we associate two quantum
groups (face algebras) which describe the dependence of the partition function on
boundary value condition. Using these, we give a proof of (non-)flatness of A-D-E
connections of A. Ocneanu, which is a crucial algebraic part of the classification of
subfactors with Jones' index less than 4.

1. Introduction

The development of Jones' index theory have exhibited significant similarities to
solvable lattice models (SLM). Jones' basic construction naturally gives a quotient
of braid group algebra which is known as Temperley-Lieb algebra in SLM. More
recently, A. Ocneanu announced the classification of certain class of II 1 -subfactors,
in which he reduced the problem to that of a certain kind of Boltzmann weights on
graphs called flat connections. While his full paper has not been published, S. Popa
obtained further deep analytic results.

Since flatness of connection is equivalent to certain conditions on values of its
partition function, the classification can be viewed as a problem of SLM theory.

In this paper, we propose a new framework to deal with partition functions of
SLM's via our notion oϊface algebra, which is a generalization of bialgebra. For
each IRF model, we associate two face algebras § v (v = 1, 2) and a bilinear pairing
<>>• δ i ® §2 -+ C Generators of § v are indexed by "boundary conditions" of
finite size models and the values of the pairing are given by partition functions.

As an application, we compute partition functions of connections on A-D-E
Dynkin diagrams under some boundary conditions. Thanks to the results of
Kawahigashi [K] , it gives a proof of flatness of these connections, which is different
from that of [ K ] for Dn and Izumi's recent work [ I ] for E 8 .

In Sect. 2, we fix some terminologies on IRF models which we use in this paper.
In Sect. 3, we introduce a notion of face algebras, and construct these from IRF
models. In Sect. 4, we show some relation in the face algebras which correspond
to Boltzmann weights on non-oriented graphs. In Sect. 5, we construct some
representations Σr of these algebras. In Sect. 6, we give a proof of flatness of
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D2n -connections using the relations of the algebras, which we give in Sect. 4. In
Sect. 7, we give a proof of (non-)flatness of £„-connections using Σr.

2. Partition Functions of IRF Models

Let <8γ and ^ 2 be finite graphs with the common set of vertices f~, which is either
oriented or non-oriented. When % (v = 1, 2) is non-oriented, we will identify
% with an oriented graph <S'y which is defined as follows: (1) Take an orientation on
%. Then (2) define an oriented graph <&'y by vertex (#J) = IT and edge(^) =
{p, p~|peedge(^v)}, where p~ means the edge with its orientation reversed. For
example, we identify the Dynkin diagram Λ4 with the following graph.

/ P \We say that a quadruple r s or a diagram
\ 1 /

I • J

r j is

k >{
q

is a cell (or a face) if p, q e e d g e ^ ) , r, seedge(^2) and d(p) = i = d(r),
^(p) =7 = ^(SX ^(r) = k = d(q), *(q) = / = ̂ (s), where ^(p) and ^(p) denote the
source (i.e. start) and the range (i.e. end) of p respectively. We say that (^1? ^ 2 ? W) is

coupling if W: (p, q, r, s) i—• W\ r s I is a complex-valued function on

edge(^)2 x edge(^2)
2 such that wίx P s j = 0 unless (r P s j is a cell. We call

Wthe Boltzmann Weight of (# l 9 ^ 2 , ^ ) .
For r > 0, let P ' ^ ) = L J U e ^ ^ίjί^v) be the set of paths on ^ v of length r. That

is, pGP[9 j (^v) if p is a sequence ( P i , . . . , p r ) of edges of % such that
d(p):= d(pi) = U *(pi) = d(p2),. . ., *(p r_i) = ̂ (pr), *(p):= *(pr) = ; . Also we use
the following notation:

PlΛ%) = UjerPriM Pr-M) = liter

For a path pGP r (^ v ), we define p l 9 . . . ,pΓeedge(#v) by p = ( p l 5 , pΓ). If
*(p) = d(r) for pGP r (^ v ) and Γ G P S ( ^ V ) , we define the composition p r G P r + s ( ^ v ) by

Let p , q G P r ( ^ ) r, seP s(&2) be paths such that <*(p) = o(r)9 *(p) = ̂ (s),

£(r) = d(q), ^(q) = #(s). We define the partition function W\τ s I to be a complex
\ q /

number defined by the following formula:

£ Π ^(cell),
configurations cells
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where "configuration" means a choice of cells which fills the following rxs-
diagram:

Pl P 2 Pr

Γl i i I i Si

For convenience, we set w( r s = δm (respectively w( r s = δrs) if s = 0

(respectively r = 0). Also, we set W\ r s I = 0 for sequences p, q, r, s of edges

V q /
which do not satisfy the above condition. We note that the partition function is
characterized as an extension of the Boltzmann weight which satisfies the following
algebraic relations:

( ^ ) ( 9 t ) w ( t r ' s ) 9 (2.1)

W[ r r r P s s7 ) = Y W[τ P s ) W[xf * s r ] , (2.2)

V q / k \ t / V q /
where p , q e P r ( ^ ) , r,SGP s(^2), p', q ' e P ' ^ ) , r^s'e

Let (^l5 ^ 2 ? W) be a graph coupling such that ^ = ^ = <&2. We say that
a bίunίtary connection if the following three properties are satisfied: (1) ^ is
a bipartite non-oriented graph. (2) For each cell, W satisfies the following renormal-
ization rule:

where μ(—) denotes an entry of the Perron-Frobenius eigenvector of the adjacency
matrix of each graph. (3) For each q, q', r, r 'eedge^X the following biunitary
axiom is satisfied:

Σ W r r s \W r' r , s = δ4rMq)δ4rΊ4qΊδrr>δqq> . (2.4)
P,s V q / V q /

We say that ( ^ , ^2> ^ ) is^Zαί wfί/z respect to * ei^ iϊ W[r s I = (5Dα^ΓS for each
\ q / *"*

p, q e P ^ J ^ ) and r, s e P j . + ί^) (r, s ^ 0). It is known that Wis flat if and only if

(2.5)
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for each ieΨ* and p, p ' e P ^ f ^ ) , where C p p q q ' denotes a constant which depends
only on p, p', q, q' (see [Ol, K]).

Actually, the above definition of connections is only a special case of the
original. We refer the reader to [Ol, O2, K ] for a precise definition. For a connec-
tion on graphs, one can construct an AFD Ili-subfactor. Conversely, a flat
connection appears as an invariant of certain subfactors via Ocneanu's "Golois
functor." Moreover classification of AFD I^-subfactor with Jones' index less than
4 is reduced to that of flat connections on A-D-E diagrams.

Lemma 2.1. // W is a connection, then its partition function also satisfies the
renormalizatίon rule (2.3) for each p e P f ^ ) , q e P J E ^ ) , *εPϊk(&2) and

l

3. Face Algebras

Let § be an algebra over C which also has a coalgebra structure (§, A, ε). Let

x I . I \ίj e Ψ* > be elements of 9) indexed by two elements of a finite non-empty

/ ( / '\1 \
set TΓ. We say that ( §, < x I . I > ) is a 'V-face algebra if the following conditions

are satisfied:

A(a)A(b) =

where i,j, m,nei^ and a,beξ>. When card(iΓ) = 1, ^"-face algebra is an equiva-
lent notion of bialgebra.

Let (^ 1 ? ^2> W) be a graph coupling with the vertex set Ψ*. Let § v (v = 1, 2) be

the linear span of the symbols ^ 0 > . We define a face

algebra structure on § v as follows:

\ ί / v w ' P s d Γ ' ( q 'd S \^#s

/i I V I I I — 7 V I I (^) V I I p| v I II — Λ
LΛ I Λ,y I II / Λ/y I I \^/ Λr y I I , C I Λ/ y I II DO ?

\ V fl / / n7//-z> \ \ t / \ fl / V \ fl / /

where p, qeP r(^v)> r,seP s{%). We define a bilinear pairing <, >: § i ® §2 ^ Ĉ by
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It follows easily from (2.1) and (2.2) that <, > is a face algebra pairing [H2], that is,
we have:

(3.1)

, c> = £ <α, C(i) > <ί>, c(2)
(c)

where iJe'T, a, beξ>l9 c,jieξ)2, A (a) = £ ( β ) α(1) <g) α(2) and zl(c) = £ ( c ) c(1) ® c(2).
Hence 3χ := {aeξ)1 \ <α, § 2> = 0} (respectively 3 2 : = {ceξ>2\ < § l 9 c> = 0}J be-
comes both an ideal and a coideal of §χ (respectively |>2), and §v

:=l>v/3v
(v = 1, 2) becomes a face algebra. We call § x and § 2 horizontal and vertical

(p

via the projection § v -^ § v again by x y

We say that a graph coupling (^i,^2, W) is self-dual if ^ = ^ 2 and
P s ) = W(p Γ q) for each fcqeP1^) and ^ S G P 1 ^ ) . Since

J \ s /
) / = \ λ : i ( 19 %2 ί I ) , we have the following.

s// \ Vv \q//
Lemma 3.1. //(^ i ,^ 2 , ^ ) is self-dual, then there exists an algebra, coalgebra

/p\ /p
isomorphism ξ>1 ->ξ>2 which sends xA ) to x2\

For a self-dual graph coupling, we identify § x with § 2 by the above lemma and

denote § and x( I instead of ξ)1 and Xx I ) respectively.

Proposition 3.2. Lei (^, ^ 2, W) be a self-dual graph coupling such that W satisfies
the star-triangle relation (Yang-Baxter equation). Then the following relation holds
in § :

(a face version of L-operator relation [RTF, H3])

i) r sj c.A&m \ b / \p-q

(a b ) P q6P 2 (^)) .

Proof. Let RI I be the left-hand side of the above relation. Then we have
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/ /a b \ / i \ \
Hence, by (3.2), it suffices to verify ( R\ , xl . I ) = 0for i, j e P (^), which is

\ \p q/ \j//
equivalent to the star-triangle relation by the self-duality. D

4. Jones- Ocneanu's Connections

Let ^ be a connected non-oriented finite graph which has at least one edge. Let
β be the Perron-Frobenius eigenvalue of the adjacency matrix of <§. Let ε be
a solution of the equation ε 2 + ε~2 + β = 0. We define a self-dual biunitary
connection W= W%^ on (^, 0) by

and call it Jones-Ocneanvίs connection on 0. If ^ is one of the A-D-E Dynkin
diagram, each connection on ^ is equivalent to W^ε (cf. [Ol, K]).

Lemma 4.1. The Boltzmann weight W<$^ ε satisfies the star-triangle relation.

We use this result only in case that ^ is bipartite. In this case, this lemma
follows easily from Ocneanu-Sunder's path model for Jones' construction for
multi-matrix algebras (cf. [GHJ, Chap. 2]). When ^ is not bipartite, this lemma is
proved directly using the path model picture and we omit the details.

Let ξ> = ξ>(&, ε) be the generating face algebra of (9, &, W^ε).

Proposition 4.2. For each p, q e P 1 ^ ) and jeΨ", the following relations hold in

Proof. Except for p = q~ the relation follows from Proposition 3.2. Also, from
Proposition 3.2, we see that

does not depend on the choice of peP^_(^) and qeP/_(^). Since

J

= y (^M^Xx(*'K\<* Y
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we have

Hence d e t r . J - xί\ J = 0 follows from / d e t r ) ' x ( s ) ) = \x\'X X U

for r, s e P ^ ) , which follows easily from (2.3) and (2.4). D

Remark. When ^ is the Dynkin diagram An9 the relations given in the above
proposition agree with the defining relation of the face algebra

1, expί ] ] which appeared in [ H I ] . In a forthcoming paper, we show

that ξ>(&9 ε) is actually isomorphic to Sf ( Au exp ί

5. Representations of § ( ^ , ε)

Let Vs be the linear span of the symbols (w(p) |peP s (^)}. Since

w( s) •—̂  ΣrePs(^) w(r) ® x I J defines a right § ( ^ , ε)-comodule structure on V\ Vs

hhas a left § ( ^ , ε)-module structure given by:

Let B be a linear operator on V2 defined by

wvP

Then, as an immediate consequence of Proposition 3.2, we obtain the following.

Proposition 5.1. The operator B commutes with the coaction and the action ofξ){^^ β)
on V2.

We define an associative algebra Σ(&) = φr^oφijer Σr

utfg) by

Σ{&) = / σ ( p ) ( p e P r ( ^ ) , r ^ 0)| σ(p)σ(q) = δt{]

X M*(p)) 1 / 2σ(p p"') = 0 {ier))9

Since Im(B — ε id) = ® ί e ^ ^ ΣpePI

1_(^)^(^(p))1/2w(p pΛ') is a subcomodule of
F 2 , Γ r ( ^ ) : = ®uSΣ

r

u0) has a quotient comodule structure of Vr. Hence 2:r(^)
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also has an §-module structure given by

(s)= Σ ^ ( r P s W ) . (5.1)
rePr{<#) \ Q /

6. Flatness of Dn -Connections

In this section and later, we work on the Dynkin diagrams Dn,E6, EΊ and £ 8 , and
denote a path p = (Pi,. . ., pr) by p = (^(pi),. . ., <j(pr\ *(Pr)) We fix the following
labeling of the vertices of the diagrams:

• b = n-2

(Dn) . _ . _ . . !

0 1 2 n-4 a=n-3 c=n-1

• b = n-3

(En) '

0 1 2 n-5 a = n-4 c = n- 2 n - 1

By considering the structure of string algebras, Kawahigashi [ K ] showed that the
flatness of An-connection is obvious and that flatness of D2m, E6 and E8 -connection

is equivalent to the single equation W<§\ b b I = 1. Here and hereafter we set:
b

b = (0,1, 2,. . ., α, 6, α,. . ., 2,1, 0),

c = (0,1, 2,. . ., α, c, a,. . ., 2,1, 0) .

Lemma 6.1. (1) Let <§ be either Dn or En (n = 6, 7, 8) and let r be either (0,1,. . ., i),
(z, i - 1,. . ., 0) (1 ^ i g b) or (0,1,. . ., a, c\ (c, α, α - 1,. . ., 0).

maps X"(^) -* §>{&) which are given by σ(p) \-^ x ( I anrf σ(p) h-> x I

(2) There exists a linear map Σ2n 4(DM)-• §(DM) which sends σ(p) to

Proof. Since r does not contain a sub-path of the form p p~ part (1) follows from
Proposition 4.2. Also, by Proposition 4.2, we have:

x \ „ ) — x \ « = 0 .

Part (2) follows from this relation and part (1). D

Lemma 6.2. The following formulas hold in ξ>(Dn9 ε):
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Proof. By Proposition 4.2, we have

3, 1,. . ,,a- 1, a, a- 1,. . . ,O y

Let i be a vertex of ̂  such that 1 ̂  i ^ α. Since

σ(0, 1 , . . . , / - 1, i, i - 1) = const. σ ( 0 , 1 , . . . , / - 1, i - 2, ί - 1)

= const. σ(0, 1, 0 , 1 , . . . , / - 1)

= 0 ,

we have

, 1, .
(6.2)

by Lemma 6.1(1). Hence the third term of the left-hand side of (6.1) is 0. Using (6.2)
and Proposition 4.2, we obtain

/ 0 , . . . , / , . . . , 0
x V o , . . . , * ' , . . . , o

/0,...,;,...,0\ (μ(i-2)\l2

X l θ ? . . . , f , . . . , θ i + l μ(i) ) ~ V 0 , . . . , / - U - 2 , i - l , . . . , 0

Hence by induction, the right-hand side of (6.1) is μ(b)1/2xί 1. D

Lemma 6.3. Let n^ 4 be an even (respectively an odd) integer. Then for each

VePΪ"~*(Dn) {respectively ^eP^b~
4(Dn)\ we have x( J = xΓ

Proof. By Lemma 6.1 (2), it suffices to show that ΣJ;n

c~
4(Dn) = 0ϊovne2Z and that

ΣiX\Dn) = 0 for nelTL + 1. Let p = (pθ9. . ., p2nί4) be an element of Σ%~\ϋn)
(rielΈ). We show σ(p) = 0 by reverse induction on m(p):= m i n l p j . Suppose
m(p) = a and σ(p) φ 0. Since σ(b,a,b) = σ(c, a, c) = 0, p is of the form
(b, a,c9a9b9. . ., c\ which contradicts to length (p) = 2n — 4. Next suppose
m(p) = a — 1. Since σ(pi-ί,ph pi + 1) = const. σ(α, fo, a) + const. σ(α, c, a) for each
i such that p{ = m(p), σ(p) is a linear combination of {σ(q) | m(q) = α}. Thus we also
obtain σ(p) = 0. Proof of the case m(p) < α — 1 is similar. •

Theorem 6.4. The Jones-Ocneanu's connection on Dn (n ̂  4) is flat with respect to
* = 0 if and only if n is even.
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Proof Suppose n is an even integer. By Lemma 6.2, we have the following
formulas:

= 1,

= 0 .

Since

/ ( 0 , 1 , . . . , ft)

( 0 , 1 , . . . ,

by Lemma 6.3, we obtain

pePath2"-4^) \ (P, 1, ,<

Solving these three equations, we obtain W\ b b I = 1. When n is odd, a similar

/ b λ V b /
calculation gives W\h b I = 1/2. D

V b /

7. Flatness of /^-Connections

In [ K ] , Kawahigashi gave some numerical computations of partition functions,
which were done by a C program on a Sun. They show that En -connections with
a wrong choice of * do not satisfy the criterion (2.5) of flatness. Here we compute
exact values of these using representations of ξ>(En, ε) on Σ(En). Unfortunately, our
method needs tedious calculation.

Proposition 7.1 (cf. [K]). We have the following formulas. Therefore, the E6 (respec-
tively Ej9 E8) connection is not flat with respect to * = 3 (respectively * = 0, 6, 4,
* = 7, 5).
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(E6)

/3 2 1\ /3 2

W\2 2\ W\2 2 = - ,

2 3/ \4 2 3y

(£7)

W

/0 1 2 3 4\

\4 3 2 1 0/

W

/0 1 2 3 4\

\5 3 2 1 0/

[4]5[6] V' 2

[2] 4[3]V

341

\rarn'
1/2

(Ί 6 4 5\

\3 4 6 7/

/7 6 4 5\

6 6

4 4

\5 4 6 11

DV

Here, for example, the first multiplicand of the left-hand side of the last formula is

w((5,4,3) ^ ' ^ j (6,4,5)Y g = exp(πy^Ί/12) (respectively exp(πy^T/18),

exp(πy^T/30)) and [n] = (q" - q-')/{q - q'1).
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Proof. We give a proof of the third formula. Using (5.1) and the relations of Σ(EΊ),
we obtain the following formulas:

5 ό

3 5

x{6

4 ^ ( 5 , 6 , 5 , 3 1 =

x l - ~ )σ(5,6,5,:

Combining these, we get

W

W

/6 5 3 4\

5 3

3 5

\4 3 5 6/

/6 5 3 4\

5 3

3 5

\2 3 5 6/

[2]

6 ' 5> 3 ' 2)

[2] [6]
σ(6,5,3,4),

σ(6, 5, 3, 2) = σ(6,5,3,2).

Since σ(6,5,3,4), σ(6,5,3,2) + 0, this proves the third formula of the
theorem. •

Theorem 7.2. The Jones-Ocneanu's connection on E6 and E8 are flat with respect to
* = 0.



Quantum Group Symmetry of IRF Models 343

Proof. Similar computations to the above proposition yields the following for-
mulas.

= 0,

(E8)

W

/0 1 2 3 4 5 \

1 4

W

\ /
\5 4 3 2 1 0/

/4 5 4 6 4 5

6 4

= ε

/2 3 4 6 4 5 \

3 4

\5 4 3 2 1 0 /

= 0 ,

\5 4 3 2 1 0 /

/4 5 4 6 4 5 \

5 4

[2]3[5]

/4 6 7 6 4 5

6 4

7

6

4

\ 5

3

2

1

4 3 2 1 0

[2]3[4]

β- 2 5 g 1 7 [9]

[2] 2 [3][5]
(7.1)

4 3

6 2

4 1 .

\5 4 3 2 1 0 /

Using these, the self-duality of W and Lemma 6.1(1), we obtain the exact

value of W\ r b' for each paths p and r, where b' = (3, 2, 1, 0) for E6

V b /
and b' = (5, 4, 3, 2,1, 0) for E8. For example, if p, r = (4, 5, 4, 3, 4, 5), this value

/4, 5,4, 3, 4, 5N

is equal to "the value of (7.1)" xμ(6)/μ(3), since xl ' '

( — l)(μ(6)/μ(3))1/2x( ' ' ). Now a straightforward computation using

/ h
Lemma 2.1 and the self-duality yields W\ b _ b ) = 1. D

V b
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Note. In a forthcoming paper, we will show the next two fundamental results. Let
$ and ε be as in Sect. 4.

(1) The face algebra §(^, ε) has an antipode, that is, there exists a linear operator
S on ξ>(9, ε) such that

<«) (a)

Σ'(*α))S(α(2)) = Σs(aa))*'(ai2)) = S(a),
(«) (a)

where A (a) = Σ(a)a(1) (x) α(2) and S and S' denote linear operators defined by

Explicitly, S is given by

( }

(1) Let g(0) be a face algebra generated by elements < x ί P j p, q e P r(^), r ^ 0

with the defining relation (4.1). Then g(^) is a co-quasitriangular face algebra, that
is, there exist elements ^ + and 0Γ of (g(0) ® S(^))* such that

= (mop)*(l), ^ " ^ + = m*(l),

(m (x) i d ) * ( ^ + ) = ^ i + 3^ 2

+ 3, (id ® m ) * ( ^ + ) = ^ i +

3 ^ i +

2 ,

where m denotes the product of S(^) and (βl^, αx ® a2 ® α3> =
<^ + , α£ ® aj}ε(ak) for {i,;, fc} = {1, 2, 3}. Explicitly, M± is given by

jj
The face algebra 3(^) also has an antipode which is given by (7.2).

Acknowledgement. The author would like to express his thanks to Prof. M. Izumi for valuable
discussions.
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