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Abstract. We discuss the topological sigma model on an orbifold target space. We
describe the moduli space of classical minima for computing correlation functions
involving twisted operators, and show, through a detailed computation of an
orbifold of CP1 by the dihedral group D4, how to compute the complete ring of
observables. Through this procedure, we compute all the rings of dihedral CP1

orbifolds. We then consider CP2/D4, and show how the techniques of topological-
anti-topological fusion might be used to compute twist field correlation functions
for nonabelian orbifolds.

1. Introduction and Summary

Orbifolds define consistent string vacua [11]. Therefore, we may wonder whether
the string theories described by orbifolds have a simple topological description, or
we may inquire about topological properties - for example Yukawa couplings of
fermion generations - of string theories with orbifold compactifications. Such
knowledge can also be applied to the non-topological theory as well. We consider
topological sigma models on orbifolds of Kahler manifolds. These theories are
defined by twisting the N = 2 supersymmetric sigma models, and have associated
with them a ring of observables. This "quantum ring" is a generalization of the
chiral primary ring to models which are not conformal field theories. The dis-
cussion of these rings - their characterization and product structure - for topologi-
cal orbifold models is the focus of this paper.

The observables of the (untwisted) topological sigma model are described by
cohomology classes of the target space. Interactions are treated by taking intersec-
tions of homology cycles in the moduli space of holomorphic maps (Sect. two). An
orbifold is a possibly singular space, defined by equating points related by a group
action. In order for the orbifold to have a sigma model description at the non-
singular points, the metric and complex structure must be preserved by the action
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of the group on the target space. We show (Sect, three) that the observables of the
orbifold model are described in terms of the cohomology of the fixed point
manifolds of the group elements. At the singular points of the group action, there is
an identification of tangent space vectors. Since the fermions of the sigma model
have tangent space indices, the fermionic sector of a twisted state obeys twisted
boundary conditions. These conditions lead quite generally [20, 30] to a fractional
chiral fermion number assigned to the vacuum in this sector. Thus twisted states
have a shifted fermion number. By analogy with the familiar correspondence
between topological observables and cohomology elements (for non-orbifold the-
ories), we may assign Hodge labels based on the chiral fermion numbers of
observables. In this way, we describe the "cohomology" of the singular orbifold.
We show that Poincare duality is preserved, and in the case of a Calabi-Yau
orbifold by a group action which preserves the unique (d, 0) form, this "cohomol-
ogy" has the Hodge diamond we would expect from a Calabi-Yau manifold. In
fact, in several examples (Sect, four) we show that this cohomology is precisely that
of the manifold one gets by resolution of the singularities. Another check is
agreement with the appropriate Landau-Ginzburg orbifold theory, when the
manifold in question is a Calabi-Yau variety defined by a quasi-homogeneous
polynomial. We offer no general proof of this equivalence.

Computation of the product structure of the ring of observables involves
intersection numbers in an appropriate moduli space. For a correlation function
involving several #rtwisted observables inserted at points pt on a Riemann surface,
the moduli space is holomorphic maps having proper monodromies around these
points, or equivalently, holomorphic equivariant maps from an appropriate bran-
ched cover of the Riemann surface. We use this formalism in computing an explicit
example - a detailed computation of the complete chiral ring for the orbifold of
CP 1 by the dihedral group D 4 (Sect. five). These findings can be the generalized to
the higher even dihedral groups Dlk and odd groups D2u+1 (Sect, six), or to a higher
dimensional target space (Sect, seven). With knowledge of these rings, and in
particular behavior under scale transformations, we can use recent techniques [6]
to try to compute the proper normalization of twist operators in the conformal
limit of large radius (Sect, eight). The CP 1 orbifolds reduce to abelian orbifolds in
this limit, and the requirement of regularity fixes the boundary conditions, giving
the twist field correlations. For higher dimensional spaces, it is unclear whether
regularity is enough to determine the solution.

2. Topological Sigma Models and Quantum Rings

Let us briefly recall the topological sigma model on a Kahler manifold, K. In this
case, the action can be derived as a twisted N = 2 model. This twisting leads to an
isomorphism (as vector spaces) between local BRST observables and the states of
the chiral-primary ring. Specifically, we have [31]

S = 2t\ά2z\gudzφ
ιd-zφ

3 + iφΪDzψLgn + iψ^D^gn
Σ *

+ RύjjφW+ψLψL . (2.1)

Here Σ represents the Riemann surface, which, for our purpose will always be of
genus zero, gu and R^j are respectively the metric and Riemann tensor of the
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target space. D is the pull-back onto Σ of the connection under the map, Φ. The
N = 2 structure implies a holomorphic (7(1) current, by which we may twist the
energy-momentum tensor. Mathematically, this is equivalent to redefining the
bundles in which the fields live. Specifically, we now take ^ ί

+ e Φ * ( Γ 1 ' 0 ) and
ψ[_ G Φ * ( Γ 0 ' 1 ) . And, we put φΓ

+eΩU0(Σ; Φ*(T0Λ)\ and φLeΩ0Λ(Σ; Φ*(Γ 1 ' 0 )),
that is, they combine to form a one-form on Σ with values in the pull-back of the
tangent space of K: call these components φι

z and φ\ respectively. These redefini-
tions correspond to shifting the spins of the fields by

T^T-^dJ, T^T+^-dJ, (2.2)

which is equivalent to adding a background gauge field to the spin connection. To
make this theory topological, we reinterpret the supersymmetry transformation as
a BRST transformation associated to a topological symmetry (in order for this to
close off-shell, more fields must be introduced) [31]. We make the replacement

QL + QR - GBRST (2.3)

Thus the topological observables are precisely the chiral-chiral fields, and when the
original model is a conformal field theory, i.e. when K is a Calabi-Yau manifold,
the elements of the BRST cohomology correspond precisely with the chiral-
primary ring of the conformal theory [23]. When the manifold is not Calabi-Yau,
the topological theory is still well-defined, and the ring of observables generalizes
the chiral primary ring; it can be thought of as a "quantum cohomology ring."

[Note that there is another "twist" we may perform, which, due to a global
anomaly, is only defined on a manifold with vanishing first Chern class, i.e.
a Calabi-Yau manifold. The observables in this theory have a different co-
homological description [31].]

We have

S = it\d2z{Q, F} + ίjΦ*(/c), (2.4)

where Fis an appropriate pre-potential (see [31]) and Φ*(fc) is the pull-back of the
Kahler form. The second term in (2.4) is a topological term, and for the moment, we
restrict ourselves to maps Φ within a given component of the space of maps. That
is, we take maps of a given instanton number, so that the second term in (2.4) is
constant in this component of maps from Σ to K. By standard arguments based on
the vanishing of all correlation functions with β-exact terms, our calculations
reduce to a semi-classical treatment. That is, we may take the large t limit, and
restrict ourselves to the moduli space of classical minima, which occur when

d-φ1 = dzφ
ι= 0 , (2.5)

i.e. Φ is a holomorphic map. Thus the moduli space for this problem is

Jί = {Φ: Σ -• K\Φ holomorphic} - 0 Jί-X, (2.6)
ί

where / labels the instanton number.
The correspondence between the cohomology of the target space and the local

observables (BRST cohomology) is described by replacing form components by the
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fermion fields. Let A — Aιjdz1dzj be a form on K, written in local coordinates,
where / and J are multi-indices. The corresponding operator, ΘA, is obtained by
replacing dz -• ι/4 and dz -• ι/4 The isomorphism of cohomologies is described by
the equation

{Q9βA}=-ΘdΛ. (2.7)

Since BRST trivial operators annihilate all correlators, expectation values only
depend on BRST cohomology classes. If we label observables by their correspond-
ing forms, this means we may choose the forms to have delta-function support on
the cycle to which they are Poincare-dual. This way of representing the observables
clarifies the degree zero instanton sector contribution to observables: the correla-
tion functions will have non-zero contribution only at the points of intersections of
the representative manifolds. The degree zero holomorphic maps are simply
constants, so the integral over JίQ is just an integral over K. Thus, because of the
cancellation of bosonic and fermionic determinants familiar to topological the-
ories, each point of intersection contributes 1 to the correlator; so the degree zero
correlations are precisely the intersection numbers of the cycles representing the
observables.

Generally, the correlation function must be evaluated by considering the
contribution from each component of moduli space. This is done as follows
[31]. At a given component of moduli space M^ we define a manifold LjΛ c Jd
for each observable Θj{pj) to be the set of maps in Jit which take Pj to a
point in the manifold representing the form corresponding to &j. Then the
zth sector contribution to the correlation of any number of observables is given by
the intersection number of the L^{. This is equivalent to integrating over the
pullbacks of the forms by the evaluation maps at the points of insertions. In
equations:

Π «UM) > = Σ Π (ev/%.,) = Σ ί Π <P>Ui), (2.8)
7 = 1 I i j=l i Mi j = l

where the evaluation map ev,-: Jί -» K is defined by ev/(Φ) = Φ(pj). Here we have
ignored the second term in (2.4). This is a topological term which has a constant
value in each component of moduli space. Thus, if St represents the value in the ίth

component of moduli space, then the ίth term in (2.8) must be weighted by e~5ί.
Note that the moduli space may need to be compactified in order to have a sensible
intersection theory.

It is instructive for us to discuss the CP" model as an example [25]. Here
we have K = CPW, which has hu = 1, i = 0. . .n, with all other Hodge numbers
vanishing. The intersection theory of nontrivial cycles is very simple, then.
The intersection number of homology cycles is one if the codimensions sum to
n, zero otherwise. Basically, this is because Lt of codimension k can be taken
to be the CP n ~ k defined by setting k coordinates equal to zero, in an appropriate
basis.

Consider Jίk, i.e. the holomorphic maps of degree k from CP 1 to CP" (we
consider genus zero correlations, for these define the ring).1 These are described by
(n + l)-tuples of homogeneous polynomials of degree k in two variables, which act

I thank S. Axelrod for explaining this to me
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as shown below:

Vk <

/φ00 ... φok \
Φ

Φ(X, Y) =

\φnθ Φnk I \

(2.9)

The homogeneity property insures that scale changes on (X, Y\ which are
trivial on the CP 1 , only result in (trivial) scale changes on the (n + l)-tuple. Now we
should ensure that the polynomials, defined by the matrix rows, do not have
common zeros. This would make the map Φ ill-defined. However, in the
compactίfied moduli space, we allow such points, which can occur as limits
of well-defined maps. Basically, if there is a common root, we can factor it out
of the (n + 1)-tuple of polynomials and get a new, well-defined map (of a lower
degree). Thus the only requirement we make on the matrix elements φtj is that they
are not all zero. Of course, the matrix Φ is only defined modulo an overall scale. So
we have shown

/is/ rv Γ*I>(n+ l ) ( f c + 1 ) ~ 1 n i m
tMk = V^Γ . {ΔΛΌ)

The cohomology ring of K has a single generator X with Xn+ί = 0. The
quantum ring is defined by the correlation functions. Consider the correlator
(XaXbXc). This will be nonzero if there is a k such that (n + l)(/c + 1) - 1
= a + b + c. In this case, the instanton action is Q~kA = βk, where A is the

one-instanton action. All these correlators derive simply from the relation

Xn + 1 = β, (2.11)

which defines the chiral ring. Note that the chiral fermion number is conserved if
we make the artificial assignment of n + 1 as the chiral fermion number of β.

3. The Orbifold Theory

We would like to study these theories when the target space is an orbifold, i.e. we
consider the quotient K/G of a Kahler manifold under a group G, which acts on
this manifold by isometry. Thus, the metric will be well-defined on the quotient
space - the inner product of two vectors in K/G may be computed by choosing any
lift of the vectors to K and using the metric on K; G-invariance guarantees
independence of the particular lift. Furthermore, we will assume that the action of
G preserves the complex structure. That is,

g*°J = J°g* for all ^ G G , (3.1)

where the asterisk represents push-forward action on vectors, and J is the complex
structure. When G acts with fixed points, the orbifold will have a set of singular
points, though the string theory is not necessarily singular. If the manifold is not
Calabi-Yau, then the quantum field theory is not conformal and not a string
vacuum [5]; for K/G to be a "Calabi-Yau orbifold," we must have that G leaves
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invariant the unique holomorphic (d, 0) form under pull-back. In either case,
though, the topological sigma model is well-defined.2

To properly consider the full orbifold theory, we must specify the action of the
group G on every operator in the theory. In particular, if we were considering the
orbifold as a space for string compactification, then we would need to specify the
action of G on the fields representing the rank 16 gauge group. This can lead to
phenomenologically desirable symmetry breaking. In any case, we see that the
proper definition of a ^-twisted state, Θ (where Θ may be any type of quantum
field), is that

Θ(σ + 2π) = g°Θ{σ), (3.2)

where σ is the coordinate along the string.
For our purposes, we will restrict attention to the twisted N = 2 theory

at hand. The action of G on the bosonic fields Φ is the action considering the fields
as coordinates on the manifold K. On the fermionic fields, which involve (pull-
backs of) the tangent bundle TK, the action is induced from the coordinate action
by the push-forward of vectors. At any point p on X, the tangent space Tp is
identified with Tgp. However, at a fixed point / of g (i.e. gf = f), we must identify
tangent vectors in 7} related by the action of g. More precisely, we must identify all
tangent vectors related by the stabilizer group of elements fixing
/: S(f) = {geG\gf= g}. Because g acts by isometry, each geG defines an element
of SO(2d) at a fixed point, where d is the complex dimension of K (SO(2d) may be
replaced by some subgroup depending on the properties which G preserves). The
tangent space for the orbifold (denoted 7") at / is thus

Tf = R2 W ) . (3.3)

On the fixed point sets, i.e. where S(f) is non-trivial, the tangent space is not
a vector space but the cone (3.3), so the orbifold is not a smooth manifold; it has
a conical singularity.

3.1. Observables in the Orbifold Sigma Model. We have already discussed the
isomorphism between local operators (BRST observables) and the cohomology
classes of the target manifold. What, then, are the observables of the topological
theory on the orbifold? To answer this question, we may begin by recalling the
standard lore or orbifold theories [11]. For these theories, the Hillbert space of the
theory splits into a direct sum of twisted sectors, one for each conjugacy class {g} in
the group G:

(3.4)

In each of these sectors, only the G-invariant states survive the group projec-
tion. A brief word on our notation is in order. Really, the Hubert space splits
into one sector per group element. However, the action of group elements not

2 As stated in [31], this follows from the positivity of the fermionic determinant, which
allows us to define it as a function of the moduli. In general the fermionic determinant gives
a line bundle over the moduli space of theories, which will lead to an anomaly. The anomaly
cancellation condition for the topological theory of the inequivalent twist is that the manifold
be Calabi-Yau
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commuting with g permutes the sectors in the conjugacy class of g.3 We thus define

\{g)\

•*%> = ® *, = Θ ^ W 1 (3 5)
ge{g} i = l

for an appropriate set {rj. We further take the projection onto {#}-invariant
states. Now let

C(β} = ( C # , ί r i ί r r . , . . . ) 6 j r { β ) . (3.6)

The action of any h in the centralizer, heC(g) = {k\kg = gk}, on ζ{g) is defined by

ΛC,β) = (ΛC ί,r1ΛrΓ1C r i β r i-.,...) (3-7)

This is still {g}-invariant. With these definitions, each J^{g} is invariant as a vector
space under the action of any group element. Thus, the concept of G-invariant

states now makes sense, and the state ]Γ(r,, ΣfceC(g)^{g} *s S r o u P invariant. In
|C(G)|

effect, we only have to take a C(g) projection.
A similar description of the observables is found for the orbifold sigma model.

Once again we will make notation simpler by eliminating the conjugacy class label,
and only considering C(#)-in variant states. By the above procedure, in which
g represents {#}, this suffices.

As always, we begin with the untwisted sector. Here we have all of the
observables in the original theory (the cohomology classes of K\ and must project
onto those which are G-invariant. That is, we are interested in the differential forms
A obeying g*A = A. Let Θp{q represent the untwisted observables in the orbifold
theory with fermion-anti-fermion number (p, q\ where for simplicity in the follow-
ing we have chosen the anti-chiral fermion number to be positive; thus the total
fermion number is p — q. (Although the chiral fermion numbers will only be
conserved for Calabi-Yau orbifolds, we will be able to make sense of chiral fermion
number violation as we did following (2.11).) We see that we have

ΘP,q = Hp

ό

q(K) , (3.8)

where the subscript represents G-invariance. By considering the Poincare duals of
these forms, we may think of them as lying on the quotient K/G. In this way, we are
able to see the equivalence between HQ(K) and the simplicial cohomology
H*imp(K/G) of the coset space, which is well-defined even though K/G is not
a smooth manifold. This interpretation allows us to show the familiar equival-
ence [11] between the untwisted Tr(—1)F and the Euler characteristic. Since
(anti-) chiral fermion numbers correspond to (anti-)holomorphic form degree,
we have

Ύτ^(-1)F= Σ /z£« = χs imp(K/G) . (3.9)
p,q = 0

In the above formula, Jίf^ represents the untwisted, G-invariant Hubert space, and
the h%q are the Betti numbers of the G-invariant simplicial cohomology. In fact the
value of (3.9) may be calculated by considering the operator which projects to

For a string obeying X(2π) = gX(0) we see that hX(2π) = hgX(0) =
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group invariant states, P = — Σg (note G = C(l)). Now in the calculation of

Tr^( — l) f by the path integral, the presence of g (from the group projection) in the
trace yields the Lefschetz number of g, which is the Euler number of the fixed point
sets [32]. Hence [11],

T r ^ ( - l ) F = ^ - χ Z ( M , ) . (3.10)

Note that (3.10) agrees with the right-hand side of (3.9), as it should.4

Consider now a ^-twisted ground state, which corresponds to a string sitting at
a point. If this state is twisted, the point must lie in the fixed point set of g. Let us
call this manifold Mg.

5 These manifolds will play a crucial role in our analysis, so
we pause here to consider the geometry of these spaces. It is important for us to
show the complex structure of Mg. In fact, we may use the same J that we used for
K, considering the tangent vectors on TMg as vectors in the larger space TK
(specifically, we use the push-forward under the inclusion map). Let ve TfMg. We
may express v as the "time" derivative of a path Q(τ) on Mg, i.e. v = Q(τ0). Now
since the action of g is compatible with J, by (3.1) we have

= J(Q(τ0)) = J(v), (3.11)

where we have used the fact that g*(Q) = β, since Q lies entirely in the fixed point
manifold Mg. So we see that J(v) is fixed under g^. But since

TK\Mg = TMg®NMg, (3.12)

where NMg is the normal bundle on Mg9 on which g* acts nontrivially, we see that
J(v)eTfMg9 which shows that J is a complex structure on Mg. Similarly, one can
show that Mg is Kahler. Therefore, it makes sense to speak of the Hodge numbers
of the fixed point manifolds. The Dolbeault cohomology classes of these spaces will
correspond to observables in the K/G theory.

Finally, we should consider the nature of the G-action on the normal bundle.6

We know that G respects the metric, hence also the volume form. In a real basis
{V}, the volume form is a multiple of η = dx1 Λ . . . Λ dx2d. Now g*η = η means
that at a fixed point, the pull-back action of g* is represented by a matrix in
GL(2d, R) (g is invertible) satisfying

4 This was proved, for example in [26]. The basic point is that we may take a simplicial
decomposition of K on which G has a well-defined linear action on simplices of a given dimension.
Then the simplices fixed under G form a decomposition of the fixed manifold. Now, when we sum
over the group elements in the projection and take the trace over homology classes, we get zero
from the other classes and the cardinality of the group for each fixed class
5 To see that this space is a manifold, consider the linear ^-action on the tangent space of K at
a fixed point / of g. We denote this (push-forward) map by g%. Then the exponential map
exp :TfK -+ K will diffeomorphically map the linear subspace annihilated by dg onto the fixed
point set of g. (Since G respects the metric and complex structure on a Kahler manifold, it
commutes with the connection, and hence the exponential map as well.) This coordinatization
shows why Mg is a manifold. Similar considerations reduce other questions about Mg to linear
algebra
6 G acts trivially on the tangent bundle since it fixes all possible paths in M and hence all vectors
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but since the highest exterior power of a matrix is its determinant, we find that
g* e SL(2d, R). Note that the same is true of g%, since g* = [ (#*) Γ ] ~1 which can be

easily seen by preservation of ( dz\ -—. ) = δ). The above reasoning extends to the
\ ozJI J

other conditions we've placed on g. Since g preserves the complex structure, which
means locally that it doesn't mix z's and z's, we can see that g* e U(d) in a complex
basis. We also require that g* preserves the holomorphic top forms, which restricts
the determinant to be unity, i.e. g*,g^eSU(d). But we already know that
g* decomposes into the identity on TMg and a matrix which, by abuse of notation,
we call g. That is, g% — 1 ®g in (3.12). Collecting this data, we have that g is
non-trivial and

g e SU(codimcMg) . (3.14)

As an immediate corollary, we see that for group actions satisfying the Calabi-Yau
conditions we have imposed, there are no fixed manifolds of codimension one. We
will need this result.

To understand twisted observables one must first understand twisted interac-
tions, a subject of the next subsection. Here we will need the following result, which
is proved in that subsection. Essentially, twisted observables are also differential
forms, but the only piece which matters in correlations is the value of the pull-back
onto Mg by the inclusion map. Of course, for the untwisted case, this characteriza-
tion is still true, since M1 = K. Then, BRST cohomology corresponds to differen-
tial cohomology on Mg. Note, then, that the original form A need not be closed on
K: if i*A is closed, then the non-closed part of A on K must contribute zero always.
Hence, we have the twisted version of (3.8) for the g-twisted sector:

Θβ * HG(Mg) , (3.15)

where we have intentionally omitted the Hodge labels (/?, q). Once again, we must
keep in mind that each label represents a full conjugacy class. In this case, the
different sectors within a conjugacy class are equivalent since r\Mg-> Mrgr-\ is
a holomorphic homeomorphism. For simplicity in labeling, we have dropped the
conjugacy class symbol.

Recall now that the equivalence of (anti-)holomorphic form degree with
(anti-)chiral fermion number was due to the construction of the observables with
fermionic fields of definite chirality. Implicit in the above was that the vacuum had
fermion number equal to zero. This reasoning breaks down in the twisted sector
because of a shift in the fermion number of the vacuum [20, 30]. Although
a constant bosonic field at a fixed point describes a vacuum, the fermionic fields,
even though at a fixed point, cannot be constant - for to be twisted they must go
from one tangent vector to the ^-translated vector, and g acts nontrivially on all
fields corresponding to normal directions. Thus the fermionic vacuum corresponds
to a sector with generalized boundary conditions on the ends of the string; the shift
in the chiral fermion number of the vacuum is a general phenomenon for fermions
in one real spatial dimension obeying nontrivial boundary conditions (Originally,
in [20], the fermions were in the presence of instantons). As we have previously
discussed, g acts nontrivially on the normal bundle, NMg9 and trivially on the
tangent bundle TMg. Focusing on the chiral fermions, let us imagine just one chiral
fermion in one spatial dimension obeying generalized boundary conditions. It was
shown in [30] that when the (chiral) fermion number is properly regularized to
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account for an infinite spectrum of energies, the more general boundary condition
ψ(σ + 2π) = Q~2πifφ(σ) leads to the non-zero result7

F =f (3.16)

for the twisted fermion vacuum. We take F = 0 for the periodic case, corresponding
to the unique Neveu-Schwartz vacuum (the fermionic fields are periodic after
twisting). This argument extends simply to the anti-chiral and multiple-fermion
cases. Choosing a basis for the tangent space so that g is diagonal, we can see that
we have a separate shift for each of the chiral fermions. If the eigenvalues of g are
Q~2πιfj,j = 1. . .n, where n = codimcM^, then the chiral fermion number of the
vacuum shifts by

F9= Σfj> (3-17)

where we always take the fj to satisfy 0 <fj < 1. The formula (3.17) looks like
Fg = (ι/2π)Tr (log g) = { — i/2π) log det #, but is of course different (for example if α is
a primitive third root of unity, then diag(α, α, α) yields Fg = 1 or 2). However, for
Calabi-Yau orbifolds we do have detg = 1, which means that Fg is integral. This
gives us

0<Fg<n for 0 * 1 , FgeZ . (3.18)

Some words are in order about the choice in defining fermion number. We have
chosen the untwisted sector to have Fx = 0, of course, and have 0 </} < 1 for
nontrivial g. The reasons for this choice are twofold. One way to set the fermion
number is through interactions. Namely, the three-point functions on the sphere
determine the ring structure of the observables (the chiral ring). For the vacua,
these correlation functions correspond to twist field calculations. By requiring the
twist fields to respect fermion grading (in the Calabi-Yau case this is possible), we
are led to unambiguous assignments. We will encounter an example of this in Sect,
five. The other way of determining the value of the shift is to consider the path of
a twisted string with no oscillator modes. In one complex dimension, that path
looks like X(z) = zfj, which is non-singular as z -> 0 for fj positive, and is minimal
for fj < 1. (By this we mean that X(z) = z1 +fj could be thought of as the product of
a twisted string and a closed untwisted string.) Finally, note that Fg is now
well-defined and independent of which point on (the connected component of)
Mg we choose to determine it; for g has a finite order, say m, so fj = kj/m, which is
fixed, since it cannot vary continuously along a component of Mg (other compo-
nents have forms corresponding to separate operators with different shifts).

We should also point out that the shift is the same in the anti-chiral sector:
Fa = Fc, which yields the same shift of form degrees. (Remember, we choose the
anti-fermion number to be + 1 for an anti-fermion.) In the anti-chiral sector, g acts

7 The proof is straightforward [30]: the fermion number of the vacuum is the integral of
the energy density for all energies less than zero. This is the filled fermi sea. We regularize this
fermion number by subtracting the total number of fermionic states in the Hubert space -
a (perhaps infinite) constant - and inserting a convergence factor. We have F = C —
2lim s^0 ^ςβάEp(E)sgn(E)Qxp — s\E\. We choose the constant C to be — \ by requiring the
periodic fermionic vacuum to have zero fermion number. Using the plane wave solutions
φn(σ) = exp i(n —f)σ with En = (n —f) yields the result for the boundary conditions stated above
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by its complex conjugae (i.e. //->1 —fj) but the change in the Hamiltonian
compensates for this difference, yielding the desired result.

3.2. Twisted Interactions, Observables, and Poincare Duality. In this section we will
prove Eq. (3.15) by carefully considering interactions of twisted observables. We
will also show that the interpretation of the observables as cohomology elements
does not run counter to Poincare or Hodge duality, or to the Calabi-Yau charac-
terization. Namely, we show that the Hodge diamonds of Calabi-Yau orbifolds
have all the properties one would require of Calabi-Yau manifolds.

Let us briefly recall the procedure for computing interactions of orbifolds by the
path integral method [17]. Consider a loop X(σ) twisted such that X(σ + 2π)
= gX{σ). As a map from the Riemann surface, a configuration corresponding to

a g-twisted state at z = 0 must satisfy Φ(e2πίz) = gΦ(z). Orbifold configurations
involve multivalued maps Φ:Σ -+ K with proper monodromies around points of
insertion of twisted states. We can find an equivalent description with single-
valued maps by choosing a cover Σ of ξ on which G acts by automorphism
(preserves metric, complex structure): Σ ^ Σ/G. Now for a ^-twisted state at z0, we
choose our group action such that a small loop around z 0 (i.e., one not enclosing
other points of insertion) will lift to a line from z to gz, say. For an interaction
involving observables twisted by gu . . . , gn (with f|.gff = 1 for Σ ^ S2 the selection
rule, viewing all states as incoming), at p l 5 . . . ,pΠ, we consider Σ, a G-cover of
Σ9 with loops around the pt lifting to lines with endpoints separated by the action of
g{. In particular, continuity of the G action for very small loops means that the
Pi descend from fixed points of gt on Σ: giPi = pt. Now Φ:Σ -• K obeying

Φ(gz) = gΦ(z) (3.19)

is a single-valued map with equivalent information. That is, instead of S(Φ; Σ) we
consider the same theory on Σ with Φ and the pull-back metric (under the
projection from the cover), with the exception that we must divide by N = |G|, 8

since we have overcounted the area by the order of the covering. The genus of Σ can
be easily obtained from knowledge of G and the orders of the g x [17] (see footnote
following (5.9)); finding Σ explicitly, however, may be very difficult. Of course the
different thing about orbifold interactions is that each interaction requires a new Σ,
and the functional integral will be taken only over equivariant maps, i.e. maps
obeying (3.19).

Let us turn now to explaining (3.15). Generally, a candidate observable can be
likened to a differential form (not necessarily a cohomology class) as discussed in
Sect. two. There it was explained that exact forms should be set to zero, while the
interest with BRST-compatible observables forced us to consider cohomology
classes. This analysis must be reconsidered in the case of twisted observables. For
example, suppose we were to consider a correlation function involving a g-twisted
state at a point p on Σ. Then by the above, we would need to consider equivariant
maps around p. But the equivariant condition (3.19), together with our observation
that p lies at a fixed point of g on if means that at p we have Φ(gp) = Φ(p) = gΦ{p).

8 The cover need not be of order \G\, actually. The order of the cover can be chosen to be the
order of the group generated by the g.
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Hence Φ(p)eMg. This is an important observation! For instance, suppose we
consider a differential form Λ ΦOonK. If, however, the restriction of A to Mg were
equal to zero, i.e. A \Mg = 0, then the observable corresponding to A would always
be evaluated at some Φ(p) = meMg and hence always give zero. Thus as a g-
twisted observable, we could set ΘA = 0; for every correlation function with
ΘA would be zero.

Of course the (not necessarily closed) form A must be invariant under the group
action to be an observable in the orbifold theory. This gives us a condition for its
value at m, which we just saw had to lie in the fixed manifold Mg. For suppose
A had indices pointing in the direction normal to Mg. We know that g acts
nontrivially, i.e. has nonunital eigenvalues, in these directions, so invariance at
m - which is invariance under the differential matrix g - is impossible! Any normal
components are projected out. Thus, we see

A\Mg = i*A + (Noninvariant Terms -> 0), (3.20)

where we have abused notation slightly by considering ί*A as a form on TK\Mg (this
can be done because there is a 1-1 imbedding of TMg into TK\Mg) Thus, since all
values of A outside the manifold Mg do not contribute to correlation functions, and
since the normal components of A\Mg are projected out, the observable A is
completely determined by i*A.

We are now eready to classify the g-twisted observables. Since Mg is imbedded
in X, the map i*: Ω*(K) -> Ω*(Mg) is onto. Therefore, forms expressible as i*A are
isomorphic to all differential forms on Mg. Now, since i* and h* commute, where
heC(g), the invariant forms are just the C(#)-in variant forms on Mg (as always,
g represents any element of the conjugacy class {g}). Finally, we must impose the
BRST symmetry, which means only considering forms such that di*A = 0 modulo
all forms i*dA. But pull-back commutes with exterior derivative, and so we must
take all closed forms and mod out by all exact forms on Mg (remember i* is onto).
Thus we have shown (3.15).

We now know the observables associated to an orbifolded topological sigma
model. Furthermore, by carefully keeping track of the fermion number shift asso-
ciated to twisted boundary conditions on fermions, we were able to assign the correct
fermion numbers to these observables. Now by analogy with the untwisted case, it is
tempting to assert that these observables correspond to cohomology classes asso-
ciated to the singular space K/G, with holomorphic form degrees given by the chiral
fermion numbers. So let us consider what the Hodge diamond of such a space would
be. In several examples in the next section, we show agreement with the Betti
numbers of the resolutions of orbifolds.

In the ^-twisted sector, the vacuum has chiral-anti-chiral fermion number
(Fg, Fg\ as we've defined it. We saw in (3.15) that the space of observables in this
sector was isomorphic to the C(#)-in variant cohomology of Mg. These observables
are built from untwisted fermion operators, which have their usual fermion num-
bers (form degrees), and the twist field part which shifts the vacuum. For example,
the identity operator in the twisted sector is the actual twist field. Thus these
operators have their degrees shifted by (Fg, Fg). We may thus define the twisted
Hodge numbers of the orbifold K/G to be given by

Hpq{K/G) = ©Hp

r-
F°>q-F°{Mg) (3.21)

• c Ϊ
 {9}

for any g representing {g}.
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Does this definition preserve the familiar structure of the Calabi-Yau Hodge
diamond? Yes. This is easily seen by realizing that Mg = Mg-ι and C(g) = C{g~1).
Thus if {kj/m} represents the fj for the action of g on the normal bundle, then
{(1 — kj)/m} represents g~ι. We conclude that

Fβ-i = n-Fg9 (3.22)

where n = codimcM^. This shows us that there is indeed Poincarέ duality. Namely,
let θ be a C(#)-invariant (p, q) form on Mg. Then in the language of (3.21):

θeHp + F«>q + F°(K/G); 0^P,q^n. (3.23)

Let έΓbe the Poincare dual of θ in Mg-ι = Mg. As observables, the Poincare dual of
θ is θ in the sector twisted by g"1. This is easily seen; for

(324)

Using (3.22), we see

(3.25)

and likewise for q. So Poincare duality oϊK/G is shown. We note here that θ has the
product structure of a Poincare dual as well. That is, if we consider the correlation
function (θ(p)θ(q)} on the sphere, then by considering θ and θ to have support
only on their Poincare duals, these will intersect only at a single point, call it x. So,
going to the ΛΓ-fold cover of the sphere with two fixed points, where N is the order
of g (i.e. another sphere, with g acting as rotation by 2π/N), we find a single
equivariant holomorphic map of degree zero - the constant map x. Thus

<θ(p)θ(q)} = 1 . (3.26)

This suggests θθ = X, where X represents the volume form on K (which is an
untwisted observable). As we have discussed, however, nonabelian observables are
composite operators. This complicates the product structure. The identity (3.26)
requires the knowledge of the dimension of moduli space of equivariant holomor-
phic maps of given degree; we must show that there is no higher component of
moduli space of dimension d containing an equivariant map with this property.
This is easily seen in the examples we compute, as the dimension increases with
instanton number.

We must also show that the (p, 0) and (0, q) cohomological structure of
a Calabi-Yau manifold is preserved in the K/G theory. In fact the above proof
suffices to show this. Since Fg > 0 for all non-trivial g, we see from (3.21) that no
twisted sector can contribute to H* °(K/G) or H°*(K/G). By the duality proven
above, the same is true for H*d(K/G) and Hd**(K/G). Finally, since the volume and
holomorphic top forms are group invariant, the familiar structure of the Hodge
diamond for Calabi-Yau orbifolds is preserved. As an example, let K be a three-
fold with Mg codimension two (codimension one is impossible by (3.14)). Now
(3.18) tells us that Fg = 1 and the Hodge diamond of Mg fits right in the center of
the diamond H**(K/G).

To what extent can we show the equivalence of our cohomology with the
standard cohomology of the resolved manifold? We know of no general proof
(nor is there a complete understanding of the relationship between the Landau-
Ginzburg models and geometry - see [26, 27,2] and references therein). Let us thus
concentrate on a less lofty equivalence - that of the Witten index or Euler
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characteristic. As was shown quite generally in [11], the Witten index can be
computed for the orbifold theory to be

Xorbifoid(K/G) = Σ ^ - Σ X(Mβth). (3.27)

Now by the footnote below (3.10), we can see that the h sum simply computes the
Euler number of C(#)-in variant forms for each Mg. Thus,

. (3.28)

Since the fermion number shift of the observables always changes the form degree
by 2Fg, an even number for a Calabi-Yau orbifold, the "Euler number" of our
orbifold, calculated directly from the counting of observables, agrees with expecta-
tions.

4. Hodge Numbers of Orbifolds: Some Examples

As a concrete example of a Calabi-Yau orbifold which is not expressible as
a complete intersection (and hence has no simple Landau Ginzburg description
- see [16]) we may consider the Z orbifold Z = (Γx Tx Γ)/Z 3, where Γis a torus
with modular parameter τ = λ = e 2 π l / 3 and the Z 3 group action is generated by
diagonal multiplication by λ. Note that in this example TxTxT is not Calabi-
Yau, but the quotient gives a group-invariant cohomology with Calabi-Yau
structure. There are 27 fixed points of this action, all of which have a Z 3 action on
the (three-dimensional) normal bundle which is simply diagonal multiplication by
α " 1 (we must remember that tangent vectors transform contravariantly). Now let
g be the generator of the Z 3 action. We have {fuh>h) = (1/3,1/3, 1/3), which
gives us Fg = 1. Thus, the 27 vacua in the ̂ -twisted sectors all contribute to
H1Λ(Z). In the g2 sector, Fg2 = 2, so we have a contribution of 27 elements to
H22(Z). In the untwisted sector, the invariant forms contribute nine elements
(dzi dzj) to Hlf ι (Z) and also nine (the duals) to H22(Z), in addition to the standard
volume, identity, holomorphic and antiholomorphic forms. This analysis agrees
with the Hodge structure of the resolution of Z [3].

Let us now compute another example which can be directly compared to
a resolved manifold. We start with the quintic hypersurface K in C P 4 defined by
the zero locus of the homogeneous polynomial W(X) = Σf = 1 Xf. Now automor-
phisms of C P 4 (given by PGL(5)) which leave W(X) fixed will act on K. Let us
consider the orbifold of K by G = Z 5 , where the generator g of G acts by

g:(Xl9X29X3,Xt,X5)^{Xl9*X2,*X39**Xt9oι*X5)9 (4.1)

where a = e 2 π ί / 5. If we recall [5] that the holomorphic three-form has a polynomial
representation as Π ϊ ^ f ^ e n we can easily see that this form is preserved (because
the transformation acts analytically, G respects the complex structure as well).

Now it is simple to do our fixed point analysis. First, in the untwisted sector, we
search for invariant forms. K has Hodge numbers h1Λ = l,/z2)1 = 101. The Kahler
form (equivalent to complex structure) is preserved since G acts holomorphically,
so it remains to calculate which of the 101 forms of H2Λ are invariant. These
have representatives as homogeneous polynomials of degree five, modulo the
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polynomial ideal generated by Xf [5]. Those monomials which remain invariant
under the action (4.1) represent invariant forms [33]. It is not difficult to see that

X\AU (4\X1A
2U2 (4\A3B2 (4), U3V2 {4\X1ABUV{\) (4.2)

represent the seventeen invariant forms in i/ l ' 1 , where A + B range over X2, X3
and U φ Vrange over X3, X4 (the numbers of such forms are in parentheses). First
note that g has ten fixed points:

Mg = {(0, 1, - αm, 0, 0), (0, 0, 0, 1, - α"): m, n = 0,. . . , 4} (4.3)

(this is the full set of fixed points - others are related by projective equivalence).
Note that all group elements have the same fixed point sets; since these are discrete,
we see that the vector bundle NMg9 which is trivial, has rank three. What is the
action of g? Let us consider the point p, an element of the first set of five fixed points
listed in (4.3). We can coordinatize the manifold K near p by
(εi, 1 + ε2, — αm + ε3, ε4, ε5). Now we may fix ε2 = 0 by projective invariance, and
use the defining quintic equation for K to determine ε3. In this way (ε 1 ? ε 4 ,ε 5 )
represent a basis for differentials near p. It is simple to see then that g acts by
diag(α4, α3, α3) on these differentials. Since tangent vectors transform con-
travariantly to differentials, we find that (fu / 2 ,/ 3 ) = (4/5, 3/5, 3/5) (recall the
hidden ( — ) sign) and thus Fg = 2. Analyzing the second set of fixed points for
g gives Fg = 1. Thus, in the g-twisted sector, we have h2'2 = \ιι

g

Λ = 5, since each
fixed point has a single invariant cohomology element. The same is true for
02> θ3, g* We conclude that the orbifold observables have the structure exhibited in
the figure below: h1Λ(K/G) = h2>2(K/G) = 21; h2^(K/G) = hU2{K/G) = 17.
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Indeed the above numbers agree with the Hodge numbers of the resolved manifold
of this singular space [15]. The same result can be obtained by considering an
appropriate Landau-Ginzburg orbifold [16, 18, 29]. Namely, the topological
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sigma model on K corresponds to the N = 2 superconformal Landau-Ginzburg
model with superpotential W = Σ f = i Φ f , orbifolded by the group j , which is
generated by j = e 2 π i J o [16]. If we consider the orbifold of this theory (i.e. we take
W/(j x G)), then a careful treatment of the U(l) charges leads to this theory: one
must identify the Hodge numbers (/?, q) with (J, 3 — J) of the NS sector of the
N = 2 LG theory. Note that we are only interested in j cosets; for example, we
consider all elements in the g, gj, gj2, gj3

9 gf sectors to lie in the ^-twisted sector,
and of course only consider group-invariant states [18].

Let us consider a case involving a fixed manifold. Again we consider
W(X) = Σi=ιχi = 0 in CP 4 . We now orbifold by the Z 5 group generated by g:

Now Mg = {XeK: Xί = X2 = 0}. This is clearly a one (complex) dimensional
space; we can compute its Euler number by a simple application of the adjunction
formula for Chern classes (see, e.g., [16]). Since Mg is defined by the zero locus of
the three polynomials W, Xl9X2 of orders 5,1, 1, we have

c(Mg) =
(1 +

(1 + 5J)(1 + J)(l + J)
= 1 - 2 J (4.5)

where J is the Kahler form. This yields χ(Mg) = —10. Of course all forms are
group-invariant since they are invariant under g, the generator (this is true in all
twisted sectors since the order of the group is prime). We may now use (ε1? ε2) as
infinitesimal coordinates normal to Mg. Then g* acts by diag(α, α4), which gives
Fg = 1, as it must for the Hodge diamond of Mg to fit into the orbifold cohomology
without disturbing the Calabi-Yau properties. This same structure is repeated for
each of the four non-trivial group elements. The results are summarized in the
following tables:

/***

Z
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0
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25

0
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0

0
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0

0
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4

0

0
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0

0
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0
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0

1

0
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5

0
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0

1

0
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Once again, we find complete agreement with the appropriate orbifold of the
corresponding Landau-Ginzburg model.

As a final example of computing the Hodge numbers of an orbifold, we consider
the following mirror pair. Let

w = Σ X5k-W Uχk (4.6)
fc=l fc=l

define a variety M = (W = 0) c CP 4 . This is a Calabi-Yau space, as is easily seen
from the adjunction formula. Note that W is the most general quintic invariant
under the Z 5 x Z 5 x Z 5 action generated by diagonal multiplication by

g± = (α 1,1, 1,1, α4)

03 = (1,1, α 1 , 1 , α 4 ) . (4.7)

Note #4 = (1,1,1, α1, α4) = (QIQIQZY1 is not independent.
We must determine the fixed point structure of each of the 125 elements of the

group. This is simplified by noting that whenever more than one homogeneous
coordinate is multiplied by the same power of α, then there will be a fixed point set
determined by setting all other coordinates to zero. The results are summarized in
the following table, where we have denoted any (complex) curve by C, and
a number indicates the number of discrete fixed points; group elements are denoted
by the exponents of α: e.g. gx = (1,0, 0,0, 4).

% g Example Mg χ χiny

1
12

12

24

12

24

12

12

12

4

1

g"ι

g?g?
n, + Άj = 5

n, + n/φ5

gψgγ

gfgjgt

gψgγgT

3ιti + nke5Z

2tt; + 2nke5Z

(910293)"

(0,0,0,0,0)
(1,0,0,0,4)

(1,4,0,0,0)

(1,2,0,0,2)

(1, 1, 0, 0, 3)

(1,2,3,0,4)

(1,1,3,0,0)

(1,1,2,0,1)

(1,1,4,0,4)

(1,1,1,0,2)

M
C

C

10

10

0

10

c

10

c

- 2 0 0
- 1 0

- 1 0

10

10

0

10

- 10

10

- 1 0

0
2

2

2

2

0

2

2

2

2

(4.8)

This table was calculated using the G-index theorem (or Lefschetz fixed point
theorem) to compute group-invariant cohomology, as described below. For the
elements with isolated fixed points, the group-invariant cohomology is just the
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number of orbits under the action of the other group elements (things are simplified
since this is an abelian orbifold). As an example, we consider g1g2 = (1,1, 0, 0, 3).
The fixed points are (1, - αr, 0, 0, 0) and also (0, 0,1, - a\ 0), r, s = 0. . . 4. We
now concentrate on the first set of points. These points are also fixed under g3.
Now under gx or g2 these points are mapped to (1, — α1""1,0,0,0) and
(1, — α r + 1 , 0, 0, 0) respectively. So the first class contains only one orbit under the
group action. Similarly for the second. Thus g1g2 has 2 orbits of fixed points:
χ i n v = 2. The analysis is similar for other group elements with isolated fixed points.

Now consider a fixed curve. All are of the form

C = {X5 + Y5 + Z 5 = 0} cz C P 2 , (4.9)

and the adjunction formula tells us that χ = — 10; since this curve is a connected
complex manifold, h00 = hlx = 1, h10 = hOί = 6. We also know that the volume
form and trivial form 1 are invariant. So we have

fclO,inv = V i - v = ^ . (4.10)

Now to figure out χ i n v we need to compute the alternating sum of invariant
cohomology elements of various dimensions. This is much like the Euler character-
istic, except we must insert a projection operator for C(g) invariance, i.e.

^ (4-11)

The above reduces to a sum over fixed points of g (when the fixed points are
isolated [1]), where we have the formula

Σ (-l)jΊτg\Hj = Σ sgn(det(l - dg)), (4.12)
j = 0 fixed points

where dg is the differential ^-action on the cotangent space. In this example, the fixed
point spaces are all one (complex) dimensional, so dg acts are a rotation by a phase.
In the real sense, we see that det(l — dg) = 2 — 2cos(#) ^ 0, with equality only for
g = 1, in which case the g-index is just the Euler characteristic, χ = —10 for any fixed
curve. So we only have to count the number of fixed points for any g Φ 1.

Now how does G act on the fixed curve? Any fixed curve has the form of (4.9),
with the action by the group equivalent to the group generated by the elements
(1,0,0), (0,1,0), (0,0,1), where we have used the same notation as in (4.8). One of
these elements is dependent, say (0, 0, 1), so the action on a fixed curve is by Z 5 x Z 5

generated by two elements a and b (it is obviously fixed under the Z 5 of the twisting
element). This group has 25 elements, 12 of which are nontrivial and have fixed
points. They are of the form (i, 0, 0), (0, ι, 0), (i, U 0). Each of these elements has
exactly five fixed points. Thus for any curve we insert the projection operator onto
invariant states to get

Σ (-

12 5) = 2 . (4.13)

Thus, for all fixed curves (4.10) tells us hi1 = h%° = 1, hι

G° = h%1 = 0.
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Now to construct the Hodge diamond from the observables, we just need to
shift by the appropriate amount. There are 101 elements with fixed points. The
curves have codimension two and thus have a shift of one, fitting in the center of the
Hodge diamond. A simple analysis shows that half of the 80 fixed point orbits have
a shift of one, half by two. The invariant untwisted elements have no shift. Thus, the
Hodge diamond is the same as that of the mirror manifold, obtained by resolving
this orbifold [4]:

h**(M/G)

This is the mirror orbifold of M.
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0

1

0

1

101

0

0
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1

0

1

0

0
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5. A Dihedral Orbifold

Now that we know how to compute the "cohomology" of the orbifold, we would
like to compute the ring structure as well. This involves computations of intersec-
tions on the moduli space of equivariant holomorphic maps from appropriate
branched covers of the Riemann surface, depending on the interaction under
consideration. In this section, we offer a detailed computation of this quantum ring
for a nonabelian orbifold.

We wish to consider an orbifold of CP 1 by the dihedral group D 4 , the symmetry
group of a square. Recall that CP 1 is topologically a sphere, and that all the point
groups act naturally on the sphere, since they are subgroups of the rotation group. The
dihedral group DN is generated by an order N rotation θ and a flip r, with the relations

r 2 s s Q N = ί 9 r θ r ' 1 = θ - 1 . (5.1)

We take the action on CP 1 ̂ C u o o to be r(z) = z~\θ(z) = αz, with α = Q2πi/N.
Note that for the even dihedral groups there is a non-trivial center containing the
element ΘN/2. In homogeneous coordinates (X, Y) for CP 1 , this group has a repre-
sentation in PGL(2) given by9

r =
0 1

1 0/

1 0

0 i
(5.2)

Note that this is a projective representation - matrices are only defined modulo
nonzero scale factors.

Let us first discuss the fixed point geometry. Each nontrivial group element
g acts by a rotation of the sphere CP 1 , and thus has two fixed points, which we label
Ag and Bg. Let us make the following definition for r.

(5.3)

9 We required action by a holomorphic isometry, hence the group must act as a subgroup of the
automorphisms of CP1, i.e. of PGL(2)



320 E. Zaslow

Thus the cohomology of Mg is just C 0 C. Now we know that we can only use
C(g)-invariant forms. Consider the element re{r}. We have C(r) = {1, r, θ2, rθ2},
and thus

H«r){Mr) = ίAr + lBr => r (5.4)

since the two fixed points are related under C(r) by θ2 and rθ2. In this way, we can
find all the observables of the theory.

Although C P 1 is not a Calabi-Yau manifold, and thus the chiral fermion
number is not conserved, we can still try to ascribe chiral fermion numbers to our
observables using the methods described in this paper. This will then be conserved
by assigning a chiral (and anti-chiral) fermion number Fβ = 2 to the parameter β,
representing the instanton action (recall X2 = β is the ring for the CP 1 model,
which is still true since X remains as an element in the untwisted sector). Quite
generally, all elements g of order two in a one-dimensional complex space must
have Fg = \, since in a neighborhood of a fixed point at z = 0, we have g(z) = — z,
or dg = — 1. For θ the action on a local coordinate at Aθ gives dθ = e 2 π i / 4 and hence
FAΘ = έ Conversely, FBe = f. These observations are tallied below.

Observable: &

1
X
r

g
Θ

A

θ
2

Θ
B

Sector

1
1

M
{rθ}
{θ}
{θ

2
}

{θ}

F
e

0
1
1/2
1/2
1/4
1/2
3/4

(5.5)

Before computing correlation functions, let us anticipate a symmetry of the
chiral ring. The automorphisms of the group D 4 have a normal subgroup known as
the inner automorphisms, given by conjugation by the various elements.10 The
outer automorphisms are those defined modulo inner automorphisms. Conjuga-
tion acts trivially on our ring elements by construction, but the outer automor-
phisms should survive in some form in our ring. The group of outer
automorphisms of D 4 is easily seen to be Z 2 and is generated by σ, which is
determined by its action on r and θ: σ(r) = rθ, σ(θ) = θ.

In order to derive the chiral ring, we must compute all the three point functions
of the theory. There is a subtlety, though. When we write the observable r we really
mean a sum of terms related by conjugation. In the case of r, for example, we have
a nontrivial centralizer which includes the element θ2, relating Ar and Br. Thus, we
have

r = Ar + Br + Arθ2 + Brθ2 . (5.6)

In order to compute a correlation function^involving an r-twisted operator at p, we
have to choose an appropriate cover Σ over Σ. (We will always take Σ to
be a sphere, since the genus zero correlation functions determine the ring of

1 0 N cz G is normal if aN = Na VαeG. Let / be the inner automorphisms, ίgεl represents
conjugation by g. Let p be an automorphism. / is normal because p°ig(x) = (p(g))p(x) (p(g))~Λ

= ί op(χ). SO pi = Ip
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observables.) The different choices of points p covering p are related by the group
elements and correspond to different twistings in the conjugacy class. By the way
we constructed our operator r, our results will be independent of this choice.
However, to compute correlations involving r we must choose a particular lift.

We begin by considering some simple correlation functions involving two twist
fields. An explicit computation will show us how to generalize our procedure for
the more complicated three-point functions. In genus zero, the selection rule states
that the product of all twists is the identity (we consider all states as incoming). Let
us compute (Aθ(p)Bθ3(q)Xr}, for example; the "pre-operators" in this correlation
function are pieces of a full-fledged observable - they are only defined for a particu-
lar choice of lift. The first thing we notice is that the two twisting elements
commute. In fact they generate an abelian Z 4 subgroup, which means that our
cover need only be a Z 4 cover of the sphere; the other elements of G will act
redundantly. One can compute general Zn orbifolds of the sphere by a similar
calculation [8]. Since it is a twice-twisted correlator, we need a cover of the sphere,
branched by θ and θ3 over p and q. Since we can choose an automorphism of the
sphere which takes p to the south pole and q to the north pole, we may choose
p and q to be the points z = 0 and z = oo. The covering surface Jf, is also a sphere,
and the Z 4 acts by rotation. If w is the coordinate on Σ, then θ(w) — ίw.
The covering map is w i—• w4, or in other words z = w4, so the lifts of a point z
are given by the four points w = z1 / 4. At z = 0, a branching point, there is only one
w, and we note that a small circle around the origin lifts to one whose endpoints
are separated by the action of θ. Now we need to find the equivariant maps from
Σ = CP 1 to the target space K ^ CP 1 . We know the (compactified) moduli space
Jί = {Φ: CP 1 -• CPί\Φ holomorphic} decomposes into maps of degree /c, with
Jίk ^ c P ( 1 + 1)(fe + 1 ) " 1 . We need to find equivariant maps. Consider the general
degree k holomorphic map given by (see (2.9))

Φ: (X, Y) H+ (ΣΦoιXk-ιY\ΣΦuXk-ιYι) . (5.7)

Now θ acts by ΓH-MT, so recalling that there is an overall scale ambiguity, we see
that Φ = φlm is equivariant if m = I + 1 mod 4 and / has ranges over a fixed value
mod 4. The four values of m mod 4 represent the four components of J(k, which we
label JίKm. For example, we have ΛT9t 1 = {{a^Y1 +a5X

AY5 + Y9,b2X
ΊY2

+ b6X
3 Y6)}. The astute reader will recognize from the form of (2.9) that equiva-

lence of Φ means that it commutes with the projective group action, and so the
different sectors of Jίk correspond to different spaces of intertwiners of projective
representations of the dihedral group with various multipliers [24]. The group
action on the space of homogeneous polynomials of degree k is obtained by the
symmetric tensor product of the representation on (X, Y).

We need the maps which take p = (1, 0)H->(1,0) = Λθ and q = (0, l)ι->(0,1) = BΘ.
The maps will be ill-defined unless there are terms like XkY° and X°Yk. So we
require the Xk term to be in the first coordinate, and the Yk term in the second.
Thus we must have / = 0 and k = 1. Let us write k = Aq + 1. Counting α's and fo's,
we see that d i m ^ 4 β + l j 0 = ( # + l ) + ( g + l ) — 1, where we must subtract one for
global rescaling of ds and fc's. The minimum dimension is one, so we must add the
observable X, representing the volume form, to our correlation function in order to
get a non-zero correlation number (i.e., to have finite intersection of the cycles in
the moduli space): r = 1. Since X will require maps from a given point to a single
point in the target space, X is a linear condition on the as and frs, and so defines
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a cycle of codimension one. Thus, we see that there is a unique map of degree
4a + 1 for the correlation function (Aθ(p)Bθ3(q)X2a + 1 >. Since we need the three-
point function, we take a = 0. Then k = 1 and the equivariant maps are (aX, bY). If
we take the point of insertion for the observable X to be (1, 1), say, and we represent
the (dual of the) volume form by the point (c, d\ then the unique map is just
Φ(X, Y) = (cX, άY\ Now since the degree just counts the instanton number, let
β = Q~A represent the contribution of instanton number one (A is the area of CP 1).
We recall again that we must rescale the action (and the area) by S -• S/N for an
iV-fold cover. We find:

<AθBθ3Xy = )81/4 . (5.8)

Although we should really only consider three point functions to define the ring, we
note here that (AθBθ3X2a + 1} = βaβί/4 is consistent with the known relation
X2 = β. From this we can see how some ring relations are derived. For example,
from the above, with the knowledge that X is the only observable with <X> = 1,
we can guess that

Aθ-Bθ3 = βlί\ (5.9)

although this product could conceivably contain other untwisted elements like
X - further analysis shows it does not. Again let us stress that we are deriving these
relationships for a particular lift to Σ. The full ring of observables (r, etc.) is
independent of this choice.

The procedure is similar for the three-point functions. We briefly consider the
correlation function (Ar(pί)Bθ(p2)Arθ(p3)y. One can apply the Riemann-
Hurewicz formula to find the genus of the appropriate covering space.11 The cover
is once again a sphere, where we take the group action to be the same as for the
target space, namely that of (5.2). We take the lift of pi to be pr = (1,1) (not (1, -1)),
with pθ = (1, 0) and prθ = (α, 1).

We begin by considering the equivariant map

φt: (X, Y)\^(Xk~ιY\ εXιYk~ι), (5.10)

where equivariance under θ and r (and hence all of D 4) requires

/c = 2 / + l m o d 4 , ε = ± l . (5.11)

The general equivariant map will be a sum of the φt of fixed values of ε and
(/mod 4). Therefore, there are eight sectors of equivariant maps of a fixed degree. As
before, the different sectors have different properties, sending pr,pθ, and prθ to
different fixed points in CP 1 . Some sectors drop out, all maps being multiples by
XY of other maps (of two degrees less), and hence equivalent. For example, to
compute the correlation function (BrAθBrθy, we find that there is a unique map of
degree one, namely (X, - 7), which gives

<BrAθBrθy = β'l* . (5.12)

1 1 This formula [17,13] gives the genus g of the covering space in terms of the orders vf of the
twisting elements, and the cardinality N of the group they generate: 2 — 2g
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Note that the chiral fermion number is always violated mod 2 in correlations. This
allows the ring structure to preserve F as long as we take β to have Fβ = 2, as in the
untwisted CP 1 case. Similarly, one must compute all three-point functions for
pre-operators. These include the abelian ones involving (r)(θ2)(rθ2\ which only
require a four-fold cover of the sphere (by a sphere), since the three group elements
only generate a Z 2 x Z 2 subgroup.

Once we have solved for the (now commutative) chiral ring, we try to find an
economical way of presenting it. It turns out that all the ring relations are
generated by the following:

= 4X + 4β1/2-4βί/4(θA)
2 ,

= 2X- 2βί/2 + 4β1/4(θA)
2 ,

(5.13)

The other observables are expressable in terms of r and ΘA (for example, the
right-hand side of the last equation is just βί/4θB). In fact, using the second and
third equations in (5.13) we can eliminate X, and make the ring "dimensionless."
We also normalize the variables in a way which is most suitable to more general
even dihedral group orbifolds. We define:

v*P ) IP )

In terms of these generators, the ring of observables is defined by

pφ2 = 4p, 2p2 = φ4-2φ2, φ5 = 6φ3-Sφ. (5.15)

This ring contains all the information of the topological theory. We use it to define
higher genus amplitudes through factorization. Note too that the single outer
automorphism survives as an automorphism of the ring of observables. In the
variables of (5.15) it has the form

p-^-pφ, φ-+φ. (5.16)

The ring (5.15) is the ring of observables of a topological sigma model orbifold on
the space CP 1 . This space is not a Calabi-Yau manifold. However, as we let the
area of the space go to infinity, the curvature must go to zero, giving us a Ricci-flat
manifold - the plane. Thus, as in [8], the limit β -> 0 should give the chiral primary
ring of a conformal field theory. In order to take the β -> 0 limit, we should use
(5.14) to recover the β dependence of the ring. In doing so, we easily obtain the
following chiral-primary ring:

We may ask whether this ring is familiar. Is it the ring of a Landau-Ginzburg
model in two variables? The anaser is no. In fact, it is quite easy to see that no such
superpotential could give rise to this ring. However, the ring (5.15) contains an
interesting subring. Let us consider the ring generated by the elements p and φ2. In
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terms of these generators, the last relation in (5.15) becomes dependent on the
others. It only enters as φ6 = 6φ4 — Sφ2, a simple consequence of the other
equations. Let us define x = φ2,y = p (do not confuse x with the observable X).
This subring is then described by the relations

x2 = 2y2 + 2x9 xy = 4y. (5.18)

Now this ring has a simple Landau-Ginzburg description. It is the same as the ring
derived from the superpotential

W= — - 2xy2 -x2 + Sy2 . (5.19)

The last two terms in (5.19) are the ^-dependent perturbations, which vanish as
β -• 0. In this limit, we recover the superpotential

(5.20)

which is none other than the superpotential corresponding to D4 in the A - D - E
classification of N = 2 minimal models. So a subring of the dihedral C P 1 orbifold is
the same as the ring of the corresponding dihedral Landau-Ginzburg series!?
There is no obvious connection. In fact, we will show in the next section that this
relationship is somewhat general: the chiral ring of the D2k orbifold has a subring
described by a perturbation of the Dk+2 superpotential W = xk+1 + xy2 (up to
normalization). It is a coincidence that 2 2 = 2 + 2.

In this section, we will outline the generalization to orbifolds of CP 1 by an
arbitrary dihedral group DN. Let us first consider the even case N = 2k. The
features of the previous section are quite general, so we will be brief. The dihedral
group is defined by (5.1). When N = 2/c, there are two "flip" conjugacy classes, {r}
and {rθ}, as before. We also have the trivial class 1, the central element θk, and
k - 1 conjugacy classes {01'}, i = 1 . . . (k - 1) (here {θ1} = {θ\ θ"1'}).

Now to determine the ring, we must compute many correlation functions
involving the twists (r) (θι) (rθ1). These turn out to be very similar to the ones we just
computed. The main difference is in the factors of β in the ring coefficients.
However, by F conservation, we can always determine the correct /J-dependence
from the "dimensionless" operators p and φ. Once again, these generate the ring,
though the relations between them are a bit more complicated.

Consider the /-twisted sector, by which we mean the conjugacy class of {θ1}.
There are two observables in this sector, which we will label φt and φ2k-ι- Here we
define

We use the convention φ0 = 2, and the abelian result (Aθ)
2k = X gives us that

Φik = (β~ί/2)2X = 2χ (χ is the dimensionless version of X). We also have the
generalization of (5.9):

Ae-Be-^β112'. (6.2)
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This, combined with another abelian result, AΘAΘ = Aθi, allows us to compute all
products of the φt in terms of φί = φ. The trick is to derive a recursion relationship
for the φh Note, for example, that

Φ'Φi = Φi'Φi

= φ2 + φ0. (6.3)

More generally, we find the following recursion relation among the φt:

Φ'Φn = Φn+l+Φn-l (6-4)

This is a difference relation which can be solved as follows. First, assume that φ acts
as a constant (which it is not); let's call it A. Then, as for a second order differential
equation, we say that φn ~ tn, solve for t and impose boundary conditions. We
easily see that we must have

t2-At+1=0 (6.5)

which gives

t± = (A/2) ± iy/l - (A/2)2 . (6.6)

The general solution is φn = c+1 + + c_ fί.. We must have that φ0 = 2 and φx = A.
This gives

φn = t\ + t"- . (6.7)

If we formally put ,4 = 2cos(z), then t+ = e ± ι z , and we can easily see that
φn = 2cos(nz). The Chebyshev polynomial Wn(X) is a degree n polynomial in
X defined by (conventions vary)

Wn(X = 2 cos(z)) = 2 cos (nz) . (6.8)

We thus have derived

Φn = Wn(φ) . (6.9)

Although the recursion relation did not have constant coefficients, the ultimate
justification of this method is that it works!

Now the generalization of (5.8), along with (6.1), tells us that

χΦι = Φiu-i (6.10)

Of course χ = (1/2) φ2k, so, in particular

φW2k(φ) = 2W2k_1(φ). (6.11)

In fact this relation generates all of the equations in (6.10). For example,

xΦi = X(Φ2 - 2) = (χφi)φ - φ2k = Φik-iΦ ~ Φik = Φik-i , (6.12)

where we have made use of (6.11) and the recursion relation (6.4).
The ring relations involving r can now be made simpler by defining
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where r is the conjugacy class operator and contains 2k terms, exactly analogously
to (5.6). The simple relations ArAr = X and ArBr = β1/2

9 along with their generaliza-
tions for the other flips, are helpful in deriving

P2 = 1 + 1 + *Σ Φ* > ( 6 1 4 )
1=1

which we can rewrite as

P2 = l+τW2k(Φ) + kΣW2l{φ). (6.15)
Z 1=1

Finally, the first relation in (5.15) survives unchanged with our present definitions.
This relation exactly parallels the multiplication of conjugacy classes in the group
ring. Summarizing, the general ring of observables for the topological orbifold
CP702* as:

pφ2 =4p,

P2 = ι+\w2k{φ)+ Σ w2l(φ),
z 1 = 1

φW2k{φ) = 2W2k.ι{φ). (6.16)

The group outer automorphism survives in the ring as before, and we have
defined our generators so that (5.16) is valid as written.

Once again, our ring has a subring generated by x = φ2 and y = p, and the last
relation in (6.16) becomes redundant. Note that W2ι{φ) is a degree / polynomial in
x alone, so we can define a degree k + 1 polynomial F(x) such that the right-hand
side of the second equation in (6.16) is given by F'(x). We can write this subring as
the chiral ring associated to the superpotential

W=F(x)-xy2 + 4y2. (6.17)

This is a perturbation of the Dk + 2 Landau-Ginzburg potential. The perturbation
involves the Chebyshev polynomials, which have been shown to be integrable
[10, 12], though we don't know whether this model is integrable. This is remini-
scent of the CPVZn case, where the ring was found to be that of a perturbed
A2n minimal Landau-Ginzburg model. (For recent work on the relationship of
orbifolds to Landau-Ginzburg models, see [9].) Work in progress shows a connec-
tion between CP1/Dk orbifolds and extended Dynkin diagrams of Dk+2 [9, 35].

In the odd case, N = 2k + 1, there is perhaps only one subtlety. In considering
the covering surface of the sphere for the three point function, one must be careful
in choosing the lift. For example, the sphere covers the sphere with the usual action,
but if we are considering a (r)(θ)(rθ) correlation, we should make sure the points
representing r and rθ do not lie on the same orbit (or else they represent the same
point on the underlying sphere). For the odd orbifolds, there is only one "flip"
conjugacy class, but there are two operators associated to it, since the two fixed
points are not related by any element. Proceeding in much the same way as for the
even case, we find the following ring:

pφ2 = 4 p ,

(6.18)



Topological Orbifold Models and Quantum Cohomology Rings 327

This ring also has the automorphism

P^^pΦ, Φ^Φ, (6.19)

though now it corresponds to the geometric symmetry corresponding to a θ rota-
tion by π, which is not a group element. No connection to the D-series is evident.

7. CP2//)4

Our techniques allow us to compute higher dimensional orbifolds as well. In this
section, we consider the orbifold CP2/D4, with the group generators acting by the
matrices

(7.1)

The reason for considering this orbifold is that as we let the area of the CP 1 go to
infinity, we can obtain a nonabelian conformal orbifold theory. Nonabelian orbi-
folds have not been heavily studied (though see [14]) and little is known about
their twist fields. To see how this limit arises, consider the point p = (1, 0, 0). This
point is fixed under the entire group D 4 . Thus, in the conformal limit β -• 0, the
space around p becomes C 2 and the action of the group is given by the differential
action near p, which is the linear action defined by the bottom two entries of the
matrices in (7.1).

There are no subtleties in the computation of the ring for this theory. The ring
contains three observables for each conjugacy class, fifteen total. Some group
elements have fixed spheres, leaving us with a twisted volume form Vg as an
observable. This is equal to X lg.

The ring of observables is generated by three elements

χ = β~1/3X, μ^-β-Wr, α ^ i / r 1 ' 3 ^ , (7.2)

where r represents the composite operator associated to the nontrivial 0-form on
the fixed sphere of r, and Aθ represents the operator corresponding to the fixed
point (1,0, 0). The defining relations are

α

7 = a , μ2 = α4 , μα6 = μ , χ3 = 1 , μχ = μoc4 , αχ = α5 . (7.3)

The group automorphism takes the form

α->α, μ->μα 3 , χ^χ (7.4)

in this presentation of the ring.
We leave to further study the consideration of orbifolds by other groups and

higher dimensional spaces, though we expect orbifolds of CP 1 by the exeptional
discrete subgroups have a soliton spectrum described by the associated extended
Dynkin diagrams [9, 28, 35].
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8. Methods for Computing Twist Field Correlations

Our observables are nothing but twist fields - they create twisted chiral-primary
states in the full non-topological sigma model. With our knowledge of the ring, we
have the jS-dependence of the theory (which means scale dependence since
β = Q~A). There is another theory we could have gotten from the original sigma
model which is the complex conjugate theory, obtained by performing the twist of
the N = 2 theory so that αnίί-holomorphic maps were the instantons. The ring of
this theory is obtained by complex conjugation. Now we can use recent non-
perturbative results [6] for computing the metric

gu=<T\i> (8.1)

as a function on coupling constant space. This is the metric of the full non-
topological sigma model, restricted to the chiral states, and is closely related to
Zamolodchikov's metric [34] (see [6] for a discussion). In reference [6], the authors
derived differential equations for (8.1). We will consider here the scale-dependence
of this metric. The non-trivial input is that as the area of the CP 1 goes to infinity the
curvature goes to zero, so there is no curvature anomaly and we have a conformal
field theory. So we expect good behavior of g^/as β -> 0. As was discussed in [8] and
[7], demanding finiteness in this limit can be enough to specify the exact form of
solution to these equations.

Let us see how this works. Consider a Zn orbifold of CP 1 , as in [8]. In order to
consider the β behavior of the theory, we must find the operator corresponding to
a perturbation in β. Because we constructed the action from the Kahler form, X is
the operator corresponding to β variation. Actually, — In β = A multiplies the

X term, so the operator corresponding to β is properly Cβ = — -X. The differen-
P

tial equation for the metric g is [6]

dβ-(gdβg-1) = lCβ,gClg-^. (8.2)

The metric gtj represents a fusion of topological and anti-topological (in which the
anti-holomorphic maps are instantons) theories. The states in these two theories
are related by the real structure matrix:

<ί\ = O\Mij. (8.3)

The topological metric is η^ = (φiφj}. From (8.3) and the definition (8.1), we see

M = η~1g. (8.4)

The CPT conjugate of |i> is |i>. Acting twice by CPT is the identity, so we see

1gr = l. (8.5)

For our CP1/Zn example, we have two observables in each sector, corresponding to
the two fixed points (north and south poles). The metric g is block diagonal in each
sector, while the metric η relates h- and h~^twisted sectors (since it involves no
"out" states). There is a symmetry (h-th'1 or z-+z~ι) equating the north pole in
the /ί-sector to the h~ ̂ twisted south pole (analogous to the symmetry giving rise to
the automorphism (7.4)). Consider heZn. On the h and h'1 subspace, with basis
{U,a, Kb, lΛ-ifβJ lfc-i,fc} we have
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la 0 0 \

c* b 0 0

0 0 b c*

\0 0 c a I

η =

0 0 1 0\

0 0 0 1

1 0 0 0

0 1 0 0

(8.6)

where we have used hermiticity and the aforementioned symmetry (note that a and
b are real). Applying (8.5), we find ab = 1, c = 0. Note that h = h~1^>a = b= 1.
Now g depends only on jyS| [8], so we can define

2, u{x) = 2log(a\β\in-2l)/2n). (8.7)

We find from (8.2) that u obeys a special form of the Painleve III equation:

u" + - u' = 4sinhw .
x

Now we must require that

• r log x + 5, r = 2
n-2l

(8.8)

(8.9)

in order for a to be finite at x = 0. It turns out [19] that restricting the coefficient on
the logarithm in (8.9) determines s by the equation

~Ύ (\ r
(8.10)

Resolving the morass, we find

nι-
α(0) =

Π 1 - -
n

(8.11)

which we use to derive the proper normalization of the twist fields.
For CP 1 /D 4 , we have already solved for the ring, so we know what multiplica-

/ gl/2 gl/2 \

tion by X is (recall from (6.9) that X = β1/2χ = ^— φ4 = f-— W±{φ) j . For

example, rX = β1/2r (r is given in (5.14)), which means that the matrix Cβ has an
invariant subspace of dimension one. We easily see that the right-hand side of (8.2)
is zero, which, combined with the fact that the metric only depends on \β\, tells us
that the normalized operator ^r is independent of β (aside from the normalization
arising from <111>). The same is true for g and θ2. The untwisted observables were

discussed in [7]. This leaves us with —τ=θA and —?=ΘB, where we have chosen

V2 V2

a convenient normalization. In this subspace, the relevant matrices take the form

_ 1
β~ β

0
η =

0 1

1 0 9 = (8.12)
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where g is a general hermitian matrix (with no components outside this subspace
due to the selection rule). The reality constraint (8.5) gives us c = 0, ad = 1, so there
is only one real variable, a. It is now clear that the twist operators reduce to simple
Z 4 twist operators. The reason for this is that the fixed points of 0, for example, are
fixed by an abelian stabilizer group. In the large limit, we are left with two copies of
the Z 4 orbifold, with operators that create twisted states in both.

The situation is different for our CP2/D4r orbifold. In that case, the point
p = (1,0,0) was fixed under the entire nonabelian group. Now consider the theory
in a neighborhood of p as we take β -• 0. As discussed in Sect, seven, this will
correspond to a nonabelian orbifold of C 2. Consider the 0-twisted sector. We have
three operators. Let θ'/y/2 represent the fixed point p under 0, with θA/y/2 and
ΘB/\/2 the operators associated to the two remaining fixed points (similarly to
(5.14)). In this sub-basis we have

(8.13)
μ\β1/4 o o /

and the topological metric

/I 0 0

(8.14)

It is clear that η is essentially diag(l, 1, — 1), which means, from the reality
condition (8.3), that the hermitian matrix g is just a unitary transformation of an
element in the complexified group SO (2,1). In general, the equations resulting from
(8.2) using (8.14) are quite complicated. Similar equations were studied in [22], in
the context of Landau-Ginzburg models perturbed away from criticality. It is not
known whether the requirement of regularity is enough to fix the values of the
metric (the objects of interest to us) at the point β = 0. The equations simplify when
an extra discrete symmetry requires the metric to be diagonal (e.g. a Z 3 symmetry
for (8.13)). In such a case, the reality condition gives gOό = 1> and gιig2i = 1> so we
have one real parameter. Then if we define

x = *\β\1/2 b = 2gιi (8.15)

we see that b(x) obeys another special form of the Painleve equation:

fe" = I ( f t ' ) 2 _ i 6 ' + i 6 2 _ l ( 8 1 6 )

u X X u

This is called the Bullough-Dodd equation, and was studied in [21]. Requiring
regularity of b in the limit x -> 0 again specifies the boundary conditions. We find
0i ϊ = Γ(3/4)/Γ(l/4), so we know that a regular limit exists, though there appears to
be no symmetry forcing the metric to be diagonal. We leave this question to further
study.
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