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Abstract. We show that for the problem of directed polymers on a tree with i.i.d.
random complex weights on each bond, three possible phases can exist; the phase
of a particular system is determined by the distribution p of the random weights.
For each of these three phases, we give the expression of the free energy per unit
length in the limit of infinitely long polymers. Our proofs require several hypo-
theses on the distribution p, most importantly, that the amplitude and the phase of
each complex weight be statistically independent. The main steps of our proofs use
bounds on noninteger moments of the partition function and self averaging
properties of the free energy. We illustrate our results by some examples and
discuss possible generalizations to a larger class of distributions, to Random
Energy Models, and to the finite dimensional case. We note that our results are not
in agreement with the predictions of a recent replica approach to a similar problem.

1. Introduction

The behavior of directed polymers in a random medium has become over the last
few years a central problem in the theory of disordered systems [10, 13, 17, 18, 19,
22, 25, 27]. In its lattice version the problem can be formulated as follows:
a random energy is assigned to each bond of the lattice, and every directed walk on
the lattice has an energy given by the sum of all the bonds visited by the walk. As
usual in statistical mechanics, the problem is to understand the thermal equilib-
rium of this system; in particular, we wish to calculate its partition function.

The problem is related to several physical phenomena: interfaces in two
dimensional disordered magnets [14], the pinning of vortex lines by impurities, and
the growth of the surfaces of Eden clusters and of ballistic deposits [18, 20]. The
problem also has many features in common with spin glasses, particularly at the
mean field level [10]. (There are traditionally several ways of defining the mean
field theory of a system in statistical mechanics. Here, as in [10], we will use this
term to refer to the model of directed polymers in which the lattice is taken to be the
Cayley tree.) This mean field case is so far one of the very few disordered systems for
which it has been possible to prove that the predictions of the replica theory, in
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the case of broken symmetry between the replicas, give the correct free energy
[8, 22, 25].

Except in 1 + 1 dimensions and in the mean field limit, the problem remains
poorly understood from an analytical point of view. In dimension 1 + 1 the
equivalence of the KPZ equation [18] to the Burgers equation yields an exact
knowledge of the critical exponents [15,17]. The mean field case, that is, the model
on the Cayley tree, has been attacked by various techniques: travelling waves [3,
10], replicas [8], an analogy with random energy models [5], and martingales [2].
All these approaches lead to the same phase diagram and to the same expressions
for the free energy in the different phases. At present, however, the last approach,
based on the calculation of bounds of noninteger moments of the partition function
[2, 11], is distinguished by its combination of simplicity and rigor.

In the original version of the directed polymer problem the weights assigned to
the lattice bonds are positive. The problem may be generalized [5,21,24,26,28,29]
by removing this restriction: for example, the weights may have random signs or
may be random complex variables. This generalization seems reasonable as
a model for the hopping conductivity of strongly localized electrons, since the
transmission of such electrons is dominated by directed paths, and interference
effects are produced when the contributions of the individual paths are added.

The theory of directed polymers on the tree, with randomly chosen signs for the
weights, was solved in [5] by generalizing the random energy model approach; it
was pointed out there that the conclusions would be qualitatively the same for the
case of complex weights. This approach predicted a phase diagram consisting of
three different phases, called phases I, II, and III. Phases I and II are the two phases
already present for positive weights; in that case they are respectively the high and
low temperature phases (the replica approach predicts a broken replica symmetry
in phase II). Phase III is a new high temperature phase, characterized by strong
interference effects, which occurs when the flucutations in the phase (or sign) of the
weights is large.

More recently, Goldschmidt and Blum [12] have used a replica approach to
look at the problem of continuous directed polymers with complex weights in finite
dimension. In the limit of high dimension, where it is expected that the results
should coincide with those for the model on the tree, they found a phase diagram
rather different from the one predicted by [5]. In particular, they obtained two
additional phases (IV and V), corresponding to different schemes for the broken
symmetry of the replicas. On the basis of these findings they questioned the validity
of the results of [5].

Since neither of the two methods [5,12] used so far for the study of the complex
weights problem is rigorous, we believe that it is appropriate to attack the problem
from a more mathematical point of view, in the hope of settling some of the open
questions decisively. This is the motivation for the present paper.

Here, we extend the techniques based on the calculation of bounds of nonin-
teger moments ([2, 11]) to obtain rigorously a complete description of the phase
diagram in the case of complex weights (signed weights are a special case of this
result). Our proof is valid when the amplitude and phase of the weight associated to
each bond of the lattice are independent random variables. Under this hypothesis
(which was present in the main example of [5] and in the whole of [12]), our results
confirm the picture [5] of a phase diagram made up of three phases.

The balance of this paper is organised as follows. In Sect. 2 we define precisely
the model we consider and summarise our main results, and in Sect. 3 we outline
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our strategy for the proof of these results. In Sect. 4 we obtain bounds on
noninteger moments of the partition function, valid in phases I and III, as well as
another moment bound which holds in all phases and is used in the study of phase
II. In Sect. 5 we show that the free energy is partially self averaging in phases I and
III; this concept, which will be defined precisely in Sect. 3, means essentially that the
free energy is known with at least a nonzero probability. In Sect. 6 we prove that
the partially self averaging property implies that free energy is self averaging; this
completes the verification of our results for phases I and III. In Sect. 7 we use
a monotonicity argument to obtain the free energy in phase II by reducing the
problem to the known results from phase I and from the model with positive
weights. Finally, in Sect. 8 we discuss possible extensions of our results to other
models.

2. Definition of the Model and Description of the Possible Phases

In this section we define the model we are considering and describe the hypotheses
which we make on the distribution of the weights associated to the bonds. We then
present our main results on the possible phases of the system. Lastly we illustrate
our results by simple examples.

The model we consider throughout this paper is that of directed polymers on
the Cayley tree with branching ratio d > 1 (or more precisely on one branch of this
tree); the case d = 2 is illustrated in Fig. 1. On each bond b of the tree there is
a (possibly complex) weight xb randomly chosen according to a given probability
distribution p. These weights are statistically independent.

There are dL walks of L steps on this tree which start at the top and are directed
downward. By definition, the weight Xw of a walk Wis the product of the weights
xb of all the bonds b visited by the walk,

Xw = Π *b > (2.1)
beW

and the partition function Z L of walks of L steps starting from the top of the tree is
the sum of the weights of these walks,

(2.2)
w

Our goal is to predict the large L behavior of log|ZL |/L.

Fig. 1. A tree with branching ratio d = 2
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A useful way of attacking this problem is to write a recursion relation [10]
for Z L :

Z L = Σ XkZ(

L

k)-u f o r L ^ l . (2.3)

Here the xk and the Z ^ - i are independent random variables, the xk have the
distribution of the bond weights xb, and the ZΪ-i have the distribution of ZL-1;
from the definition of Z L , it is clear that Z o = 1. The recursion can easily be
understood by grouping the walks appearing in (2.2) according to the direction of
their first step: the contribution to ZL from all the walks making their first step in
the kth direction is XfcZχk-i, where xk is the weight of their common bond and
Z(L- i is the partition function of walks of length L—\ starting at point Ak (see
Fig l).

In the present paper we determine the limiting behavior of log\ZL\/L com-
pletely, with some restrictions on the distribution p of the bond weights. Through-
out this paper we will make the following hypotheses about this distribution. We
write x for any random variable with distribution p and < > for the average with
respect to this distribution.

Hypotheses on the Distribution p:

HI: The distribution of the amplitude |x | is continuous, that is, for any real
number α, Prob{x = a} = 0.

H2: The phase s = x/\x\ (well defined by HI) and the amplitude |x| of x are
independent random variables.

H3: All moments <|x|α>, with α > 0, are finite.

The most serious restriction here is the requirement of statistical independence
between the phase and the amplitude. We believe that in fact the results below
should remain true without this restriction; some further discussion of this point is
given in Sect. 8.

We now turn to a discussion of the possible phases of this system. Let us first
define the function G(α) for α > 0 by

G(α) = ^ l o g ( d < M « » . (2.4)

By H3, G(α) is finite for all α; it is easy to check that G is an infinitely differentiable,
strictly convex function of 1/α (the latter is verified by calculating the second
derivative of G with respect to 1/α) and hence has at most one minimum α m i n . Since
d > 1, G(α) is decreasing for α sufficiently small; thus we may appropriately take
αmin to be infinite if G(α) has no minimum, and conclude that G(α) is strictly
decreasing on the nonempty interval 0 < α < αm i n and is strictly increasing for
α > α m i n .

The system may exist in any of three phases, or lie on the common boundary of
two or more of these. Distinct phases are characterized by distinct analytic
expressions for the value of the free energy per step in the limit of infinitely long
polymers. We begin by defining the various phases and will then state our results
for the free energy.
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Definition. The phase of the system is determined as follows.

Phase I: The system is in phase I if

3 α e ] l , 2 ] such that G(α) < log(d|<x>|) . (2.5)

Phase II: The system is in phase II if

or (2.6)

lS«min<2 and G(αm i n) > log(d|<x>|) .

Phase III: The system is in phase III if

α m i n > 2 and G(2) > log(d |<x>|) . (2.7)

We will say also that the system is on the I-II phase boundary if 1 ^ αm i n < 2
and G(αm i n) = log(d|<x>|), on the I-II I phase boundary if αm i n > 2 and
G(2) = log(d|<x>|), on the II-III phase boundary if αm i n = 2 and G(2)>
log(d|<x>|), and at the triple point if αm i n = 2 and G(2) = log(d|<x>|).

It is straightforward to verify that any system must be in precisely one phase, on
precisely one phase boundary, or at the triple point, and that these possibilities are
exclusive; the verification uses the properties of G(α) discussed above and the
observation that

log(d|<x>|) = log(d< |x | » + log|<s>| ^ G(l) . (2.8)

Note that equality holds in (2.8) only when |<s>| = 1, i.e., only when the phase
variable s does not fluctuate.

To describe the large L behavior of the system we adopt the following terminol-

Definition. The free energy per step, log|ZL |/L, is self averaging to the value f if it
converges in probability to the constant f as L goes to infinity, that is, if for any ε,
η > 0 there exists a constant Lo such that for L> Lo,

ProlJ 1 O 8 | Z i

j L , >ε}<η. (2.9)

Now we may summarize the results of this paper as follows:

Phase I: In phase I, log|ZL |/L is self averaging to the value

/i = log(d |<x>|) . (2.10)

Phase II: In phase II, log|ZL |/L is self averaging to the value

/π = G ( α m i n ) . (2.11)

Phase III: In phase III, log|ZL |/L is self averaging to the value

/m = G(2) . (2.12)

Moreover, these results hold also on the phase boundaries and at the triple point,
where the corresponding limiting values of the free energy per unit length are easily
seen to agree (f = / π on the I-II phase boundary, etc.).
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It is easy to check, using the properties of G(α) mentioned above and (2.8), that
(2.10)-(2.12) are equivalent to the statement that ίog|ZL |/L is self averaging to the
value / given by

/„, when αm i n ^ 1,

/ = { maxt/,,/,,) when 1 ^ αm i n ^ 2, (2.13)

max(/i,/IΠ), when 2 ^ α m i n .

This is precisely the prediction of [5].
One should note that these results are not sensitive to details of the structure of

the distribution of the phase variable 5. In particular, G(α) is independent of this
distribution, and the only way that the phase variable s enters the criteria (2.5)-(2.7)
and the expressions (2.10)—(2.13) is through the magnitude |<s>| of its average.

In the next section we shall outline the main steps to be followed in proving
these results. Before this, however, let us close this section with a discussion of two
examples.

Example 2.1. The Random Phase Problem. In the random phase problem, the
weights xb have the form

xb = e x p ( - βεb - iyφb), (2.14)

where the energy εb and phase φb are real random variables with fixed distribution,
and β and γ are parameters. For the purposes of exposition we will assume that
ε and φ are independent Gaussian variables with respective densities

1 -2 I° (2.15)

v
and

U 2 / 2 . (2.16)2π

These assumptions yield a lattice version, on the tree, of the continuum model
considered in finite dimension in [12]. The parameter β (the inverse temperature)
allows one to tune the width of the distribution of the amplitude |x| of x, and
γ plays a similar role for the phase variable 5. The hypotheses HI, H2 and H3 are
clearly satisfied for all β > 0 and all real γ (the model is invariant under the
transformation γ -> — γ, so we consider only γ ^ 0). For this choice of penergy the
function (2.4) determining the phases is simply

Y, (2.Π)

and thus αm i n = βo/β, where β0 = (2 log d)1/2. The phases throughout the β, γ plane
are determined by straightforward calculation from (2.5)-(2.7):

Phase I: The system is in phase I if

β < — and — H < — ,

or (2.18)

IT = β < βo a n d β + 7 < βo -
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Phase II. The system is in phase II if

β>βo,

or

227

(2.19)

γ<β^βo and

Phase III. The system is in phase III if

y>β0.

(2.20)

From (2.10)-(2.12) we find that in these three phases log(|ZL |)/L is self aver-
aging to the respective values fl9fn a n d ^ π given by:

/π = ββo , (2.21)

The phase diagram is shown in Fig. 2. We note again that three phases exist for
this model, in contrast to the five found in a replica calculation for a similar model
in [12].

Example 2.2. The Random Sign Problem. In the random sign problem [5], the
weight xb on the bond b is given by

v c n -βεb /O OTl
Xb — Sbe , \L.LΔ)

where εb is an energy variable as above, which again we take for simplicity to have
the Gaussian density penergy °f (2.15), and sb is a sign variable with distribution

+ 1, with probability 1 — p ,

— 1, with probability p .
(2.23)

β

βo/2--

III

Fig. 2. The phase diagram for the random phase problem of Example 2.1, with Gaussian energies
and Gaussian phases
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The parameters are now the inverse temperature β ^ 0 and p; the obvious sym-
metry p -> 1 - p allows one to limit the discussion to 0 ^ p ^ 1/2. G(α) is again
given by (2.17). The conditions determining the phase diagram and the expressions
for log|ZL |/L in the various phases are the same as those ((2.18)—(2.21)) in the
random phase case above, but with — y2β replaced by log|l - 2p| throughout
(this follows from our earlier remark that the phase diagram and limiting free
energy depend on sb only through its mean |<s>|) and are identical to the
predictions of [5]; we omit here the specific formulae, which are given in pages
969-970 of that reference.

3. The Strategy of the Proof

We now outline our strategy for proving that the free energy per unit length is self
averaging to the values /i,/n, and fm in phases, I, II, and III, respectively. The result
for the I—III phase boundary will be obtained during our proof for phase III, and
that for the I—II and II—III phase boundaries, and the triple point, during our proof
for phase II; we omit any further details in this section.

For phases I and III, the arguments differ only in detail, and we summarize
them together. In Sect. 4 we establish bounds on certain ratios of noninteger
moments of the partition function (Theorem 4.1). In Sect. 5 we use these bounds to
show (Theorem 5.2) that log|ZL |/L satisfies a weaker version of the desired
conclusion: that it is partially self averaging to the value fλ (respectively fm) in
phase I (respectively phase III).

Definition. The free energy per step, log|ZL |/L, is partially self averaging to the
value f if (i) there exists a constant a < 1 such that for any ε > 0 there exists
a constant Lo such that for L> L o,

Uα, (3.1)
L

and (ii) for any ε, η > 0 there exists a constant Lo such that for L> L o,

: η . (3.2)

Speaking loosely, we might say that this definition asserts that, as L -• oo,
log|ZL |/L is at most /with probability one and is at least / with some strictly
positive probability 1 — a.

In Sect. 6 we prove (Theorem 6.4), for any distribution of the bond weights, that
if log|ZL |/L is partially self averaging then it is self averaging to the same value. It
is here that the hypothesis that |x | has continuous distribution is used. This, with
the discussion of Sect. 5 noted above, completes the proof of our results in phases
I and III.

Remark 5.7. It is instructive to compare our treatment of phases I and III with the
treatment given in [2] of phase I in the positive weight case. The authors of [2]
observe that when ZL is defined by the formula (2.2), ZL/(ZL} is a positive
martingale, and that the martingale convergence theorem then implies that
ZLK%L) converges almost surely, as L -> oo, to some finite random variable M.
Self averaging of log ZJL then follows if it can be shown that M has no atom of
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mass at the origin. This is proved in two steps: first, it is shown that the event
{M = 0} is a tail event and hence that Prob{M = 0} is either 0 or 1; second,
bounds on noninteger moments are used to show that this probability is less than
one in phase I. We could, in fact, also use the martingale convergence theorem in
phase I, although we have chosen to give a treatment that is uniform in phases
I and III. An important difference is that, due to the possibility of cancellations in
Z L caused by the presence of complex or negative weights, the event {M = 0} is no
longer a tail event, and we need some other argument to show that these cancel-
lations do not produce a mass in the distribution of Z L , in the limit L -> oo, which is
concentrated on the value zero or even at values exponentially small compared to
expL/, where f = fι o r / m . This is the argument that we give in Sect. 6.

The proof for phase II is very different. The main idea we use is to vary the
distribution of the phase variable s while keeping the distribution of the amplitude
|x| fixed; this allows us to relate the distribution of log|ZL |/L in phase II to that in
phase I (near the I—II phase boundary) or to that in phase II of a system in which all
the bond weights are positive. In this argument it is convenient to consider, along
with the free energy log |Z L | , the auxiliary function log « | ZL | 2 »/2, where «•>)
denotes the average over all phase variables sb, with the amplitude variables \xb\
held fixed. This function is of use for two reasons. On the one hand, we will show
that the asymptotic behavior of l o g « | Z L | 2 » / 2 L and of log|ZL |/L is the same. In
particular, in Sect. 4 we derive a moment bound (Theorem 4.2) which involves
averages, over the phase variables sb only, of | Z L | 2 and | Z L | 4 , and in Sect. 6 we use
this bound to show that log « | ZL \2 »/2L is self averaging to the value /if and only
if log|ZL |/L is. On the other hand, « | Z L | 2 » is naturally expressed as a sum of
positive terms and is shown in Sect. 7 to be closely related to the free energy for
walks on a tree with positive weights on the bonds. From known results for the
latter model, and from our earlier results on the behavior of the system in phase I,
we prove in Sect. 7 that l o g « | Z L | 2 » / 2 L is self averaging t o / π in phase II. This
completes the proof of our result.

To finish this section, let us recall three well known inequalities which we shall
use repeatedly in what follows. The first of these is valid whenever 0 < γ ^ 1 and
tl9129 . . are nonnegative:

/ \ y

SΣitiY- (3-3)
i

The others are special cases of Jensen's inequality: if y is a nonnegative random
variable, then

if 0 < γ ^ 1, (3.4)

if 1 ύ y (3.5)

4. Moment Formulas and Bounds

In this section we obtain explicit and asymptotic formulas for the first and second
moments of the partition function Z L , as well as bounds (Theorem 4.1) for certain
ratios of its noninteger moments. These results will be used in Sect. 5 to show that
in phases I and III, and on the I—III phase boundary, log\ZL\/L is partially self-
averaging to the value/j or/ m . We also derive a bound (Theorem 4.2) on the ratio
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« | Z L | 4 » / « | Z L | 2 » 2 , which will be used in Sect. 6 to relate the behavior of
l o g | Z L | / L a n d l o g « | Z L | 2 » / 2 L .

The calculation of the first two integer moments of the partition function can be
done directly from the recursion (2.3), which yields

(4.1)

and then

Σ [k) Σ F F (4.2)

(where * denotes the complex conjugate) so that

< | Z 2 + 1 | > = < / < | x | 2 X | Z L | 2 > + d(d - l ) | < x > | 2 | < Z L > | 2 . (4.3)

Then an induction on L yields

<ZL> = [ d < x > ] L (4.4)

and, with a = d(\x2\} and ft = \d(x}\2,

)(^F)
Thus if α > ft, which is always true in phase III (see (2.7)), <|Z£|> grows as aL:

1 , (d - ί)a ,
( 4 6 )

while if a = ft, as on the I—III phase boundary, <|Z£|> grows as LaL:

Note that the ratio < | Z\ \ >/1 < Z L > | 2 remains bounded when the system satisfies
the condition (2.5) for phase I, and also the condition αm i n > 2, since then a < ft.
This could be exploited to show that log|ZL |/L is partially self averaging to fλ

under these conditions, but sharper results valid whenever the system is in phase
I may be obtained from the next theorem, which gives bounds on ratios of
non-integer moments of Z L .

Theorem 4.1. (a) In phase /, there exists an α satisfying 1 < α ^ 2 and a constant Ba

such that for all L ^ 0,

(b) Whenever αm i n > 2, and in particular inj>hase III and on the I—III
boundary, there exists an a > 2 and a constant Bx such that for all L^O,

Proof (a) Recall that « 7 » denotes the average of the quantity Y over the phase
variables sb = xb/\xb\. For α ^ 2, Jensen's inequality (3.4) implies that

<|Z L | α > = <( |Z L | 2 ) α / 2 > ^ < « | Z L | 2 » α / 2 > , (4.10)
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and since < | Z t | > ^ | < Z t > |, to establish (4.8) it suffices to give a bound for the ratio
RL = < « | Z L | 2 » α / 2 > / | < Z t > Γ From (4.2),

+ Σ l<s>|2 |xk | |x j |«ziίc )»«Z^ )*»Ί\ . (4.11)
J /

Clearly «ZL>> has phase <s>L and hence « Z i » « Z £ * » ^ 0 whenever ZL and
Z"L have the distribution of Z L . Therefore the second term in (4.11) is positive and
hence by the inequality (3.3) and another application of Jensen's inequality (3.4),

+ Γ Σ ι<s>ι2ι^ιiχJι«zί* )»«z^ ) »Ί<f/2

Ll^ j+k^d J

- i)]«/2ι<χ>rι<zL>r,

(4.12)

so that, from (4.1),

Now in phase I (see (2.5)) there exists α e ] l , 2] for which d<M α >/(d|<x>|) α < 1;
with this value of α, RL will remain finite as L -> oo (recall that α ^ 2 was necessary
for the use of (3.3) and Jensen's inequality (3.4)). Thus (4.8) holds with Ba given by

(b) We now must estimate R'L = < | Z L | α > / < | Z L | 2 > α / 2 for αm i n > 2. From (2.3) we
have

i z t + 1 r ^ Σ I * * Z L V + 3 Σ I x ^ V f

jΦk

^ ^ ^ ^ . (4.15)

Now choose α satisfying α ^ 8/3, raise (4.15) to the power α/4, apply the inequality
(3.3), treating the right-hand side as a sum of d* terms (in contrast to what was done
in passing from (4.11) to (4.12)) and take the expectation, to yield

< ι z L + 1 ι « > ύ <*<iχ

d(d - ί)(d - 2)(d - 3 ) < | x r ' 4 > 4 < | Z L r ' 4 > . (4.16)
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Now Jensen's inequality (3.4), with the condition α ^ 8/3, implies that

> r / 2 and <\ZL\?y ί (\ZL\2y<2 , (4.17)

for γ = α/4, α/2, and 3α/4. Moreover, from (4.3), < | Z L + 1 | 2 > ^ < / < | x 2 | > < | Z t | 2 > .
Thus (4.16) yields

" ' " d < l X Π " ί + ^ (4.18)
~"^=(d<\x\2y)«2~* ά^

Since by hypothesis αm i n > 2, we may choose α in the interval ]2, 8/3[ so that
G(2) > G(α), i.e., so that the ratio d<M α >/(<KM 2 » α / 2 is less than 1. With this
choice of α, R'L is bounded and (4.9) holds with

- •
The next theorem holds in all phases, that is, for any bond weight distribution

satisfying the hypotheses H1-H3.

Theorem 4.2. The ratio « | Z L | 4 » / « | Z L | 2 » 2 is bounded as a function of L:

(4.20)
« | Z L | 2 » 2 = *

Proof If we denote by Sw = XW/\XW\ the phase associated to the walk W9 then we
can write from the definition (2.2) of Z L ,

« | Z L | 4 » = X \XWιXW2XW3XW4\(SWίS&2SW3S$4y (4.21)

and
/ / I 7 | 2 \ \ 2 V1 I V Y Y Y I / C C * \ / C C * \ (AΊΊ\

Under a permutation (Wu W2, W3, W4)-+(WP(ίh WP{2)9 WP(3)i WF{A)) of the
four walks the amplitude \XWίXW2XW3XW4 \ remains unchanged, and thus one can
write (4.21) and (4.22) as

« | Z L | 4 » = £ IXw^WtXwsXwJ—ΣζSjySψSiySμry
wι,w2,w3,w4

 Z 4 P
(4.23)

and

<ί(|zL | » = 2-i \XWIXWΪXWSXWΛ\^LJ(SWP sWp y(sWp sWp y.
wl,w2,w3,w4

 ZH" P
(4.24)

Now for every choice Wγ, W2, W3, WA of walks there is a permutation Q for which

W)

swQm>

) > (4.25)
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where m(Wu W2> W3, W4)is the number of bonds on the lattice which are visited
by an odd number of the four walks. Moreover, (4.25) maximizes
\<SwP{1)

swP(2)

swPi3)

swPi4)>\ among all permutations P, so that from (4.23),

« | Z L | 4 » S Σ \XWlXw2Xw3Xw{WWWW)

and using the fact that (Sw SZ ){SW S£ > > 0 for all P, one gets from
(4.24),

^ WuW2'W3'W4)- (4-27)

Theorem 4.2 follows by taking the ratio of (4.26) and (4.27). •

Remark 4.3. By a longer argument one can improve the estimate of the theorem by
showing that the ratio in (4.20) is at most 3. Any finite bound suffices in what
follows.

5. Partial Self Averaging of the Free Energy in Phases I and III

In this section we prove (Theorem 5.2) that log\ZL\/L is partially self averaging to
fι and fin in phases I and III, respectively, and to fλ =fm on the I—III phase
boundary. The proof is based on Theorem 4.1 and the following lemma.

Lemma 5.1. Suppose that the nonnegative random variable Y satisfies < Yγ}/{ Y}γ

^ B for some constant B^l and for some y > 1. Then:

(a) For any η > 0 there is an M ^ 1 such that

^ l - ^ ; (5.1)

(b) For any η' > 0 there is an m, with 0 < m ^ 1, such that

Here M and m may depend on y and B and on η and η\ respectively, but not otherwise
on the distribution of Y.

Proof (a) The result follows immediately from the generalized Chebyshev inequal-
ity, which yields Prob{7/< 7> ^ M} ^ B/Mγ. Of course, the conclusion of (a)
holds whenever < 7> < oo.
(b) Let μ be the measure on [0, oo[ describing the distribution of 7, so that
μ(la, b[) = Prob{a ^Y<b). Fix m > 0, let A = μ([0, m< 7>]) be the prob-
ability that Y ^ m< 7>, and let μ and μ be the restrictions of μ to [0, m< 7>] and
]m< 7>, oo[, respectively, normalized as probability measures, so that μ = Aμ +
(1 — A)μ. Finally, let Fbe the random variable whose distribution is specified by μ.
Then

m(Yy oo

}, (5.3)
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so that

< y>^Γ^< f>' (5 4 )

and

<ry> = Λ f y'dfl + il-A) J y'dμ*(l-AKγyy. (5.5)

Since < Ϋy} ^ < Ϋ}y by Jensen's inequality (3.5), we conclude that

B ^ < 7y>/< Yy ^ (1 - ^ ) x - y ( l - mA) y, (5.6)

or, since 1 — mA ^ 1 — m,

j l A ^ L L (5.7)

Thus (5.2) is satisfied for sufficiently small m. •

Using this lemma we can prove the main result of this section:

Theorem 5.2. log \ZL\/L is partially self averaging to fλ = log(d| <x> |) in phase I, to
fm = log(d<|x|2>)/2 in phase III, and to fλ =fm on the I—III phase boundary.

Proof. The result is a direct consequence of Theorem 4.1, the asymptotic (or exact)
formulae (4.4), (4.6), and (4.7), and the preceding lemma. The proof is similar in
phase I and in phase III; we illustrate it by discussing the cases in which the system
is in phase III or on the I—III phase boundary, and first verify (3.2). Given η, ε > 0
we apply Lemma 5.1 (a) with Y = \Z\\ and y = α/2, B = Ba9 where α, Ba are the
constants of (4.9), to conclude that

for some M ^ 1 and for all L. If we now choose L so large that log M/2L < ε/2 and,
using (4.6) in phase III and (4.7) on the I—III boundary, that log<|Z£|>/2L
</πi + fi/2, then (3.2) will hold with f=fm. To verify (3.1) we suppose given ε > 0
and, with 7, y, and B as in the argument for (5.8) above and with ηf = 1/2, conclude
from Lemma 5.1(b) that

^ l θ g < | Z - l > + l θ g f f l j l , (5.9)

for some m, 0 < m ^ 1, and for all L. We now choose L large enough that

|logm|/2L < ε/2; an argument as before then leads to (3.1), with a =

6. Partial Self Averaging Implies Self Averaging

Our main goal in this section is to prove that if log|ZL |/L is partially self averaging
then it is self averaging to the same value; this result holds independently of the
phase of the system. Our proof is based on the recursion (2.3) for Z L and is inspired
by an argument given by [6]. When combined with Theorem 5.2, this will complete
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the proof of the results discussed in Sect. 2 for phases I and III. We will also prove
a result needed for our discussion of phase II in Sect. 7: that log|ZL |/L is self
averaging if and only if log « | Z£ | »/2L is.

Let us begin by introducing some notation and establishing two preliminary
results. Given complex numbers z ( i )

\z\\ = and for | |z| | φ 0 define
z(d\ we write z = (z

( 1 ) id)
) and

(6.1)

Lemma 6.1. Let x ( 1 ), . . . , x{d) be independent, identically distributed complex ran-
dom variables such that \x(k)\ has continuous distribution. Then for any v > 0, there
exists a c > 0 such that, for any ze(Dd with (z ( 1 ), . . . , z{d)) not all zero,

x, z)\ < c) < v . (6.2)

Proof The function q is symmetric in the variables (z ( 1 ), . . . , z(d)) so that it is no
loss of generality to assume that z ( 1 ) has the largest value among these; since not all
of the zU) vanish, |z ( 1 ) | = \\z\\ > 0. Then

Prob{|<?(x,z)| = Prob + Σ
fc = 2

d χ(k)z(k)

< c

^ Prob I
d χ(k)z(k)

< c (6.3)

Now suppose that v > 0. We claim that if c is sufficiently small, then for any real
number α,

P r o b { | | x ( 1 ) | - α | < c } < v . (6.4)

If this is true, then (6.2) follows from (6.3) by taking a =
{2\ x ( d )

] ' = 2z
(k)x(ί°|/|z(1)|and

integrating over the distribution of x{2\ . . . , x{d). To prove the claim let
F(t) = Prob{ |x ( 1 ) | ^ t}; F is continuous by hypothesis H3 and has the finite limit
1 as t -• oo, so F is uniformly continuous on R. This in turn means that we may
choose c so that if t' ^ t a n d | t - ί ' | < 2c, then F(i) - F(t') = Prob{tf < \x{1)\ g t)
< v, and this implies (6.4). •

We next show how the previous estimate may be combined with the recursive
definition (2.3) to prove that, if Prob {log \ZL\/L < / } is uniformly less than one for
all sufficiently large L, then this probability will be arbitrarily small for all
sufficiently large L. Let us begin with the following remark:

Remark 6.2. Suppose that the parameter v satisfies 0 < v < 1 and that the map
φv: [0, oo[ -• [0, oo[ is defined by φv(t) = td + v. Then for sufficiently small v, φv

has two fixed points ί* which satisfy 0 < ί v ~ < £ v + < l and limv^0ίv~ = 0 ,
lim v^o ίv+ = l Moreover, for 0 ̂  t < ίv

+, l i m ^ ^ φk

v(t) = t~.

Lemma 6.3. Suppose that for some L there exist real numbers F and α, with
0 < a < 1, such that

(6.5)
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Then for any η > 0 there exist a positive integer k and a real number A, depending
only on a and η, such that

P r o b { l o g | Z L + f c | ^ F - ^ } < f / . (6.6)

Proof. Choose v > 0 small enough so that φv has the properties summarized in
Remark 6.3, and so that t* > a and t~ < η/2. By Lemma 6.1, there exists a con-
stant C such that

Prob{log|<z(x,z)|< - C} < v , (6.7)

uniformly in z. ( C = — logc in the notation of Lemma 6.1 and will typically be
positive.) We will show that for all j ^ 0,

Prob{log|ZL +, | £ F -jC} < φ{(a) . (6.8)

The proof will then be finished by choosing k so large that φk

v{a) < η and then
taking A = kC.

We prove (6.8) by induction on j; the case; = 0 is (6.5). From (2.3), we have in
the notation of Lemma 6.1,

\og\ZL+j+1\ =log\q(x,ZL+J)\ + max log|Z<*> | . (6.9)

By the induction assumption (6.8) and the independence of the random variables

Prob \ max log|Z<*J | ^ F -jC \ < (φ{{a))d . (6.10)

Since by (6.9), the inequality l o g | Z ^ + 1 | £ F - (j + ί)C can hold only if either
maXi^fc^jloglZ^I I ̂  F -jC or log\q{x9z)\ < - C, (6.7) and (6.10) imply that

P r o b { l o g | Z ^ + 1 | g F - (./ + 1)C} < (0ί(α))d + v

= 0 ί + 1 ( α ) . • (6.11)

Now we can state and prove the main result of this section.

Theorem 6.4. If the free energy per site log\ ZL\/L is partially self averaging to the
value f then it is self averaging to the value f

Proof Given η, ε > 0 we must show that for sufficiently large L,

Prob < <f~ 2 / < 1 , (6.12)

and

finσlZJ 1

: η . (6.13)

Now (6.13) follows directly from the fact that log | Z L \/L is partially self averaging to
the value /, and the latter also implies that there exist a < 1 and Lo > 0 such that
for all L > Lo,

{ ^ l | } α . (6.14)
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But when (6.14) holds, Lemma 6.3 implies that for some k and A independent of L,

We may assume that Lo is so large that (A + kf)/L0 < ε/2, so that (6.15) implies
that (6.12) holds for L>L0 + k. •

Theorem 5.2 and Theorem 6.4 immediately imply that the results presented in
Sect. 2 hold in phases I and III:

Theorem 6.5. log]ZL\/L is self averaging to ^ = log(d|<x>|) in phase I, to
fm = log(d<|x|2>)/2 in phase III, and to fγ =fm on the I—III phase boundary.

We finally show that the behavior of that log \ZL\/L is closely related to that of
log«|Z£|»/2L.

Theorem 6.6. log \ZL\/L is self averaging to the value f if and only if log« |Z£| »/2L
is.

Proof Let us write Prob{E|{|x f t |}} for the probability, in the phase variables sb9

that some condition E holds at the fixed values {\xb\} of the bond weight
amplitudes. We now choose a number a satisfying 0 < a < 1/24 and apply Lemma
5.1, taking Y= |Z£| and using the bound « | Z L | 4 » / « | Z L | 2 » 2 ^ 24 of Theorem

4.2, to conclude: (a) for any ε, η > 0 there is an Lo such that for all L> Lo and all

{\xb\}>

and (b) for any ε > 0 there is an Lo such that for all L> Lo and all

Now suppose that log« |Z£|»/2L is self averaging to the value / If we
integrate (6.16) and (6.17) over the distribution of the bond weight amplitudes
{\xb\} we conclude that for any ε, η > 0,

«^ |2» } , (6.18)

for all sufficiently large L; and that for any ε > 0,

}α (6.19)

for all sufficiently large L. These equations, together with the assumed self aver-
aging property of log«|Z£|»/2L, imply immediately that log\ZL\/L is partially
self averaging to / Thus by Theorem 6.4, log|ZL |/L is self averaging to /

Now suppose conversely that log «\ZL\2 »/2L is not self averaging to / Then
there exist ε', η' > 0 such that for any Lγ there exists an L > Lx for which

> η' . (6.20)



238 B. Derrida, M.R. Evans, and E.R. Speer

On the other hand, it follows directly from (6.16) and (6.17), taking η = (1 - a)β
and ε = ε'/2, that there exists an Lo and such that for all L> Lo and all {|x&|},

Now certainly if |log|ZL |/L - log« |Z£ |»/2L| < ε'/2 and | l o g « | Z 2 l » / 2 L - / |
> ε', then |log|ZL |/L —/ | >ε'/2. Thus if we integrate (6.21) over those bond

weight amplitudes for which | log« |Z£ | »/2L — / | > ε', and use (6.20), we find that
for any Lx ^ Lo there exists an L > L1 such that

/

so that log\ZL\/L is not self averaging to /

7. The Free Energy in Phase II

In this section we complete the proof of our main result by showing that in phase II,
log IZL \/L is self averaging to the value fn. The main idea of the argument is that, by
varying the distribution of the phase s while keeping the distribution of the
amplitude |x | fixed, one can reduce the estimation of log\ZL\/L to the correspond-
ing problem in two simpler, well-understood cases: a system with positive bond
weights in phase II ([2]) and a system in phase I arbitrarily close to the I-II phase
boundary (see previous sections).

Let us first recall the known possible phases for the model we are considering in
the case in which the bond weights are positive random variables [2, 10]:

Theorem 7.1. Suppose that the bond weight x is positive. Then:

(a) / / α m i n > 1 then log ZJL is self averaging to the value fι = log(d<x>);
(b) / / α m i n ^ 1 then log ZJL is self averaging to the value /„ = G(αm i n).

It is easy to check that the conclusions of Theorem 7.1 are special cases of our
general results summarized in Sect. 2. For when x > 0, (2.7) can never be satisfied,
since it implies that G(2) > G(l) and αm i n > 2, which is inconsistent with the fact
that αm i n is the unique minimum of G(α), and hence the system cannot be in phase
III. Moreover, the conditions (2.5) and (2.6) for phases I and II reduce respectively
to αm i n > 1 and αm i n < 1, and the I-II phase boundary is the point αm i n = 1. Thus
part (a) of the theorem follows from Theorem 6.5. For completeness we will sketch
briefly a proof of part (b); for a full discussion see [2] (the conclusion there is in fact
stronger, since it is proved that log ZL/L converges to/ϊ or/π in phase I or phase II
almost surely, not just in probability).

Proof sketch, Theorem 7.1 (b): We suppose that αm i n ^ 1 and consider the extension
of the given model, which has (positive) bond weights xb9 to the family of models
indexed by a positive parameter Γ, the temperature, with bond weights xllτ. For
this family of models, the partition function ZL(T) is given by

Σ(χw)llτ, (7.1)
w
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and we define gL(T) by

gL(T) = TlogZL(T)/L.

239

(7.2)

This quantity is (up to a sign) the usual thermodynamic free energy per step.
A direct calculation of the first two derivatives of gL(T) shows that gL(T)9 as
a function of T, is increasing (thermodynamically, this corresponds to positivity of
entropy) and convex (it is easy to see that d2g/dT2 is positive; thermodynamically,
this corresponds to the positivity of the specific heat). To prove Theorem 7.1(b), we
must calculate gL(\).

For this family of models, the convex function Gτ(oc) used in the criteria
(2.5)-(2.7) and the formulae (2.10)-(2.12) is

GΓ(α) = ^ (7.3)

which takes its minimum (with respect to α) at T(xmin. Let To = l/αm i n. The
behavior of the function gL(T) is shown schematically in Fig. 3, and may be
summarized as follows.

(i) T> To: For T> To the model with parameter Γis in phase I, so that Theorem
7.1 (a) implies that gL(T) is self averaging to Tlog(d(xί/T}) = G(l/Γ).
(ii) T^T0: Since (i) implies that for T > To and L large, gL(T) ~ G(l/T) with high
probability, and since G(l/Γ) has a minimum at Tθ9 it follows that for T^ Tθ9

gL(T) < G(l/Γ0) + ε (because gL(T) is increasing) and gL(T) > G(l/Γ0) - s
— η(T0 — T) (because gL is convex and therefore lies above any of its tangents).
Here ε and η may be taken arbitrarily small, so that for L sufficiently large, gL{T)
for all T ^ To (and in particular gL{\\ since αm i n ^ 1) is with high probability
arbitrarily close to G(l/Γ0) = G(αm i n) = / π . •

We now turn to the main results of this section. Let us consider then a specific
directed polymer model, with partition function Z L , for which the distribution p of
the bond weights xb is such that the model is in phase II, that is, satisfies (2.6). It will
be convenient to associate to the given model a family of models indexed by
a parameter ίe[0,1] , the ί-models; we will denote the partition function of the

Fig, 3. Schematic representation of typical behavior of gL(T) = T\ogZL(T)/L in the positive
weight case, for L large. For T> TQ, gL{T) ~ G(l/T) with high probability; for T < Tθ9 gL{T) is
with high probability trapped between straight lines G(l/Γ0) + ε and G(l/Γ0) - ε - η(T0 - T),
with ε, η small
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ί-model by ZL(ί). By definition the ί-model has amplitudes |x6 | with the distribu-
tion of those in the original model and has phase variable sb(t) distributed
according to

_ f + 1 , with probability (1 + ί)/2 ,
Sb " j - 1 , with probability (1 - ί)/2 . ( * }

We introduce also the quantity YL(t)9 defined for 0 ^ ί g 1 by

ΣΣw2\tι<w' w > \ (7.5)

where the sum is over pairs of walks of length L and /(Wu W2) is the number of
bonds visited by exactly one of the two walks. It is clear that for all ί,

«\ZL(t)\2}) = YL(t) , (7.6)

and that

« | Z L | 2 » = 7 L ( | < S > | ) . (7.7)

It is also clear that YL(t) is an increasing function of ί (this will be needed in the
proof of Lemma 7.3). Moreover, we can determine the asymptotic behavior of
YL(t) for certain values of ί:

Lemma 7.2. (a) log YL(0)/2L is self averaging to the value fu;
(bl) if αm i n ^ 1, then log YL(ΐ)/2L is self averaging to the value fu;
(b2) if 1 < αm i n ^ 2, then for any ε < 0 there exists ί0, with |<s>| < t0 < 1, such
that log YL(t0)/2L is self averaging to a value f0 satisfying f0 < / π + ε.

Proof (a) When t = 0 the only terms which contribute to (7.5) are those with
W1 = W29 so that

= Z'L, (7.8)
w

where Z'L is the partition function for directed polymers on the tree with positive
bond weight x'h = \xb\

2. The phase of this latter system is determined by the
function G'(α) = 2G(2α), which has its minimum at α în = ^min/2 ύ 1. Thus the
primed system is in phase II or on the I—II phase boundary and by Theorem 7.1(b)
the free energy \og\Z'L\/L = log YL(0)/L is self averaging to the value
/ίi = G'^min) = 2G(αmin) = 2/π.
(b) We wish to determine in what phase the ί-model lies as t is increased from
t = |<s>| (relevant because of (7.6), (7.7)) to t = 1. Now because the ί-model has the
same distribution of amplitudes as the original model, the function Gt(α) (see (2.4)),
used to define the phases in the ί-model, is in fact independent of ί and identical to
G(α). From this observation, the criteria (2.5)-(2.7) of Sect. 2, and the hypothesis
αmin ^ 2 of the lemma, we see that:

(i) if αm i n < 1 then the ί-model will be in phase II for all ί;
(ii) if αm i n = 1 then the ί-model will be in phase II for |<s>| ^ ί < 1 and on the I—II

phase boundary for ί = 1;
(iii) if αm i n > 1 then the ί-model will be in phase I whenever t>tu where

logίχ = G(αm i n) - log(d<|x |», and in phase II whenever t <tx; moreover,
ti ^ l<s>| because the original model is in phase II and therefore the ί-model
with ί = |<s>| is also in phase II.
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Suppose now that αm i n ^ 1, so that the t = 1 model is in phase II or on I—II
phase boundary. For t = 1 the ί-model has positive weights, and it follows from
Theorem 7.1(b) that log|ZL(l)|/L is self averaging to/ π , and from Theorem 6.6 that
log YL(1)/2L = l o g « | Z L ( l ) | 2 » / 2 L is self averaging to the same value. This veri-
fies part (bl) of Lemma 7.2.

On the other hand, if αm i n > 1, then (iii) above and Theorem 6.5 imply that for
t>tl9 log|ZL(ί) |/L is self averaging to the value fλ(t) = log(d| <x(ί)>|) =
log(d<|x|>) + logί. As t \ tί9 fι(t) \ G(αm i n) = / π , so that for any ε > 0 we may
find t0 with ίx < ί0 < 1 for which f0 =/i(ί 0 ) </n + ε Again, Theorem 6.6 implies
that log YL(t0)/2L is also self averaging to f0, completing the proof of part (b2) of
Lemma 7.4. •

The next lemma is the critical result for our discussion of phase II.

Lemma 7.3. Suppose that αm i n ^ 2 and that G(α) ^ log(d|<x>|) for all α e ] l , 2[.
Then log« |Z£|))/2L is self averaging to the value fu.

Proof The result follows immediately from Lemma 7.2, since given ε, η > 0 we have
from « | Z L | 2 » = 7 L ( | < 5 > | ) ^ 7L(0) and Lemma 7.2(a) that for sufficiently
large L,

while if Lemma 7.2(bl) applies we have from « | Z L | 2 » = ΓL( |<s>|) ^ YL(1) that
for sufficiently large L,

and if Lemma 7.2(b2) applies we have (with ί0 as in that lemma) from
« | 2 t | 2 » = YL{(s}) ^ F t ( ί 0 ) that for sufficiently large L,

The systems which satisfy the hypotheses of Lemma 7.3 are precisely those in
phase II, on the I—II and II—III phase boundaries, and at the triple point. Thus, this
lemma and Theorem 6.4 immediately imply the main result of this section:

Theorem 7.4. Suppose that the system is in phase II, on the I—II or II—III phase
boundaries, or at the triple point. Then log|ZL |/L is self averaging to the value /π .

Remark 7.5. In this paper, we have treated phase I and phase III in very similar
ways, but for phase II have used the quite different arguments presented in this
section. It is worth noticing that we could have limited the disucssion in Sects. 4-6
to phase I only, and then used the arguments of Sect. 7 to treat phases II and III in
parallel. This is primarily because the free energy in both phase II and phase III
does not depend on the distribution of the phase variable s, even through its
mean <s>.
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8. Conclusion

In this paper we have determined completely the asymptotic behavior of the
partition function for the problem of directed polymers with complex random
weights on the Cayley tree. In particular, we have shown that only the three phases
determined by (2.5), (2.6) and (2.7) are possible, and that in these phases, log]ZL\/L
is self averaging to the value given by the expressions (2.10), (2.11) and (2.12),
respectively. The main tools used to prove these results are an extension of
a method based on the estimate of noninteger moments of the partition function
[2,11], which leads to the computation of the correct limiting value of the free
energy per step and implies partial self averaging to it, and an argument suggested
by the treatment of [6], which improves the probabilistic lower bound on the free
energy per step and thus yields full self averaging.

These results were obtained only under the hypotheses HI, H2 and H3 on the
distribution of the bond weights xb. Each of these conditions is probably too
restrictive. In particular, the hypothesis H3 that the moments <|x|α> are finite for
all a > 0 can certainly be relaxed. It suffices to assume, for example, that these
moments are finite in some interval 0 < α < α0 and that the function G(α) of (2.4)
attains a minimum at some point αm i n of this interval; the proofs of our results are
essentially unchanged in this case. The hypothesis HI that the distribution of |x | is
continuous was only used in the proof that the partial self averaging property
implies full self averaging (Lemma 6.3 and Theorem 6.4). It seems likely that this
result holds more generally: in the case of positive weights log ZL/L has been shown
to be self averaging [2, 6] with no similar restriction on the weight distribution.

The most serious restriction that we consider is H2, the independence of the
phase s and of the amplitude |x|. We used this condition repeatedly - in fact,
whenever we averaged over phase variables in the estimates of Sect. 4 or in the
discussion of phase II in Sect. 7. On the other hand, an example where the phase
and amplitude are correlated has been studied, at least numerically (see example
1 of [5]), and the expression for log\ZL\/L seems to remain valid. A method of
proof which overcomes this restriction would be of interest because it would make
possible the consideration of the case of real energies with a complex temperature
(i.e., the case xb = exp(— βεb), where the energies εb are real random variables and
the inverse temperature β is complex).

Beyond the possibility of weakening these hypotheses, there are two natural
ways of extending the results of the present work to other models. First, one could
try to use the same approach to study the Random Energy Models, REM [7]. In
these models the partition function Z L may be written as in (2.2),

ZL= Σ \Xw\Sw, (8.1)

where as before the amplitude \XW\ and the phase Sw are products of random
weights:

\Xw\= Π \*w,b\ and Sw= Π *w.b , (8.2)

but where, in contrast with the directed polymer problem, the variables \xWtb\ and
sWtb associated to distinct walks are independent. Most of what is said in the
present paper remains valid in this case (some of the calculations of Sect. 4 can even
be greatly simplified). To reproduce our results fully, however, would require that
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the proof of Theorem 6.4, which is based on the recursion relation (2.3) for Z L , be
modified in order to show that in the REM, too, partial self averaging implies full
self averaging. In the REM, as in the directed polymer model, we do not know at
the moment how to generalize our approach to situations where the phase Sw and
the amplitude Xw of a given walk W are correlated, although in the case of the
REM, too, recent work [9,23] indicates the validity of the results in cases where the
hypothesis H2 is not fulfilled. A full discussion of the REM, including the case of
correlated Xw and Sw, would be useful to confirm some recent predictions on the
location of the zeroes of the partition function of the REM in the complex plane of
the temperature [9, 23].

The other possible generalization of our work is to the directed polymer
problem with random complex weights in finite dimension d. In that case, known
methods for the positive weight case ([1,4,11,16]) suffice to establish the existence
of a phase I in dimension d > 3, in which log\ ZL\/L is still self averaging to/^ This
is because ([4, 11, 16]) one may obtain a bound for the ratio < | Z L | 2 > / | < Z L > | 2 as
long as the probability that two directed walks never meet is nonzero (in the model
in which all bonds have weight 1). The calculation of the boundary of phase I, and
of log|ZL |/L outside this phase, seems to be a much more difficult problem.

At the moment we do not know whether in high dimension the phase diagram
is similar to that of the tree problem, with only 3 phases, or if there exist two
additional phases (phases IV and V) as predicted by a recent replica calculation
[12]. Some progress might be made through attempting to give bounds on moment
ratios (of integer or noninteger moments) in parts of the phase plane for which the
two theories disagree. One expects, however, that this method will at best give
bounds on the positions of the phase boundaries and of the asymptotic value of
log|ZL |/L, rather than exact expressions as given in the tree problem. If this is the
case, there will remain some regions in the phase diagrams where the approach will
be insufficient and where it would be hard to exclude the existence of new phases.
Another possible way of checking the replica approach would be to apply the same
replica scheme used in [12] directly to the tree problem, to see whether it still
predicts the existence of the two extra phases IV and V. An affirmative answer
would show that the method is incorrect at least for the tree and would suggest that
other replica schemes be investigated.
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