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Abstract. In this paper a class of conformal field theories with nonabelian and discrete
group of symmetry is investigated. These theories are realized in terms of free scalar
fields starting from the simple b- c systems and scalar fields on algebraic curves. The
Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved.
Besides the fact that one obtains in this way an entire class of theories in which the
operators obey nonstandard statistics, these systems are interesting in exploring the
connection between statistics and curved space-times, at least in the two dimensional
case.

1. Introduction

In this paper we investigate the connections between conformal field theories on the
complex plane and field theories on algebraic curves. These connections were first
explored in [1] in the case of hyperelliptic curves and then in [2-4] in the more
general case of curves with an abelian group of monodromy. Other examples of these
techniques, in which the monodromy group is abelian, are given in [5,6].

Here we study the simplest class of curves with a nonabelian group of monodromy.
They can be viewed as multivalued mappings from the complex sphere to a Riemann
surface having a discrete group of automorphisms Dm. Alternatively they can be
viewed as cyclic coverings of hyperelliptic curves. The case ra = 3 was briefly
treated in [7].

In general, the construction of the amplitudes of a theory with nontrivial mon-
odromy properties requires the solution of a Riemann monodromy problem (RMP)
and of the related Schlesinger equations [8,9]. Even if we are able to solve the RMP,
the problem still remains of determining what combinations of the solutions enter in
the amplitudes, in such a way that the physical properties of locality, associativity
and so on are preserved [10]. In the case in which the monodromy group coincides
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with the monodromy group G of a known algebraic curve, there is the possibility of
simplifications, since the most general function exchanging its branches according to
G can be constructed using the techniques of algebraic geometry [11].

This is the case for example in which the monodromy group G describes the
class of algebraic curves with discrete group of symmetry Dm. For these curves we
can in fact construct a finite set of functions (and more in geneal λ-differentials)
Fk(z), k = 0 , . . . ,2m — 1, characterized by all possible monodromy properties that
are compatible with the monodromy group G. We show that the elements of this
set are rationally independent, i.e. the ratio of two of them is not a singlevalued
function and that all the other multivalued functions are linear combinations of the
Fk(z)'s. Moreover, our set of functions satisfies partial differential equations similar
to the equations of parallel transport for the conformal blocks of [12,13]. Finally,
following [8], we show that it is possible to express the multivalued functions Fk(z)
in terms of free fields and twist fields. Therefore, starting from the Fk(z)'s, we are
able to construct conformal blocks, whose monodromy properties correspond to the
monodromy group G.

It is difficult to associate a conformal field theory defined on the complex plane to
these conformal blocks. However they are surely tightly related to the b — c systems
on the algebraic curve Σg with Dm group of symmetry, as we will see.

The method presented here is interesting because it allows the construction of
conformal blocks with nontrivial monodromy properties, provided the underlying
monodromy group is that of a known algebraic curve. Moreover, the twist fields turn
out to be anyons, exchanged in the conformal blocks according to a non-abelian braid
group statistics. Unlike the usual anyons realized starting from a nonabelian Chern-
Simons field theory [14], the exchange relations between the twist fields become
nonabelian due to the presence of the group of automorphisms Dm of the algebraic
curve. The statistics of the twist fields has been studied in a separate publication [15].
Finally we provide a nice interpretation of the twist fields as electrostatic charges
induced by the topology of the algebraic curve.

The disadvantage of our approach is that we are not able to prove that the conformal
blocks satisfy a Riemann monodromy problem. However, they obey a simplified
system of equations given by Plemelj, which is strictly related to the Riemann
monodromy problem (see [15]). Moreover, our method can surely be extended to
the other classes of curves but not, we believe, to the most general cases where,
apparently, there seems to be obstructions in the construction of some of the functions
Fk(z) which satisfy the requirements given in Sect. 2.

The material contained in this paper is organized as follows. In Sect. 2 we find the
conditions for which a λ differential on a general algebraic curve can be represented
as a ratio of conformal blocks containing free fields and twist fields. The general
form of the twist fields is given. Starting from Sect. 3 we restrict ourselves to the
class of Dm symmetric curves. We construct a basis of λ differentials satisfying
the conditions of Sect. 2. They are rationally independent and exhibit all possible
monodromy behaviors at the branch points compatible with the monodromy group
of the algebraic curve. Moreover, all other meromorphic λ differentials are linear
combinations of them. In Sect. 4 the full n-point functions of the b - c systems
on the Dm symmetric curves are computed. The n-point functions turn out to be
superpositions of the solutions of the conformal blocks defined in Sect. 3. In Sect. 5
it is shown that the b — c systems on an algebraic curve with Dm group of symmetry
contain multivalued operators with fractional ghost charges. These twist fields simulate
the presence of the branch points in the amplitudes and are primary fields. The
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appearance of primary fields in the amplitudes of the 6 — c systems is explained
in terms of electrostatics in Sect. 6. In Sect. 7 the form of the twist fields is explicitly
given in terms of free fields using bosonization and the method introduced in Sect. 2.
We prove that, apart from zero modes, the two-point function of the b — c systems
on an algebraic curve can be seen as conformal field theories. Each conformal field
theory is characterized by particular monodromy properties at the branch points of
the algebraic curve. The conformal blocks satisfy differential equations of the kind of
the Knizhnik-Zamolodchikov equations [16, 12, 13]. Finally the exchange relations
between the twist fields are derived showing that they satisfy a nonabelian braid group
statistics [17,18].

2. Monodromy Properties and Twist Fields

Let us consider a classical field B(z)dzχ, X integer or half-integer, satisfying a Fermi
statistics, analytic in z and taking its values on an affine algebraic curve Σg defined
by the vanishing of a Weierstrass polynomial F(z, y):

F(z, y) = Pn(z)yn + ... + P0(z) = 0 . (2.1)

Each affine algebraic curve is equivalent, apart from conformal transformations, to a
closed and orientable Riemann surface. The genus g of the Riemann surface is given
by the Riemann-Hurwitz formula [19], which we will not discuss here. The P^(z)'s,
i = 0, . . . , n, are polynomials in the complex variable z G CPj, CPl denoting the
Riemann sphere. Here it is useful to regard the sphere as a compactified complex
plane C U {oo}, covered by the two open sets U{ and U2 which contain the points 0
and oo respectively, z is the local coordinate in Uγ and z' in ί72 At the intersections
of these two sets z' — \/z. Solving Eq. (2.1) in y, we get a multivalued function y(z)
with n branches, denoted here by y(l\z), Z = 0, . . . ,n — 1. As a consequence, the
complex field B(z)dzχ becomes multivalued when transported along a closed small
path encircling the branch points of y(z):

B(l\z)dzλ = B(z, y(l\z})dzχ . (2.2)

On an algebraic curve, dzχ represents a true λ differential with zero and poles [11].
The degree of its divisor is 2λ(#- 1). Therefore we can consider B(l\z) in Eq. (2.2) as
a function multiplied by the λ differential dzχ. Let us suppose that B(l\z) has zeros
zi and poles p , i,j = 1, . . . , TV of multiplicities ZΛ(/J and μ3(l3) respectively. The

zeros and poles occur only for certain values of the branch / of B^l\z) and therefore
the multiplicities v(lz) and μ3(l3) should also depend on the branch index. Now we

associate to B^l\z)dzx another 1 — λ differential defined as follows:

At this point we investigate the conditions under which the tensor

dzχdw[~χ

G(z,w)dzχdwl-χ = B(l\z)C(l'\w) -
z — w

in the two independent complex variables z and w can be written in terms of conformal
blocks. To this purpose, we introduce free fields b(z)dzχ anάc(z)dzl~χ on Σ , which
are however singlevalued in the variable z. Since they do not depend on y(z), their
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expansion is the usual Laurent series of the genus zero case. The fields b(z) and
c(z) are fermions or ghosts according to the values of λ. Moreover we introduce
multivalued "twist fields" V(zi) and V(PJ) with the following multivalued operator
product expansions (OPE):

(2.4)

y + .

Apart from zero modes, which we ignore for the moment, we express the tensor
G(z,w)dzχdwl~χ in the form:

ft V(zj fί (̂P, )

Z — W
„ „N N

Π *W Π
(2.5)

(0| being the usual vacuum at genus zero. For the twist fields V(zτ) and V(PJ) we
can try the simple ansatz of [7]:

= exp

exp

i (> dtdt \og[C(l\t)]φ(t)

dtdt\og[B(l\t)]φ(t)

(2.6)

after using bosonization:

b(z) - e~iφ(z), c(z) (2.7)

(2.8)

The multivaluedness of the twist fields, caused by the fact that the zeros and poles
of β(l\z) and C(l\z) occur only for certain values of the branches, implies that they
are nonlocal operators in the most general case, as Eq. (2.6) shows. Moreover, since
the OPE's with the free fields turns out to be multivalued, the right-hand side (rhs)
in (2.5) is also multivalued in z and w. Consistently with the left hand side (Ihs), the
branches in z and w of the rhs should be / and I' respectively. We remember here
another similar example in which the presence of nonabelian groups of symmetries
introduce nonlocal fields in the amplitudes, namely the solitonic sectors of scalar field
theories with discrete group of symmetries discussed in [17,20]. Exploiting Eq. (2.8),
we evaluate the OPE's between the twist fields and the free fields as in the genus
zero case. More OPE's are not needed to evaluate Eq. (2.5). Proceeding as in [7] we
can compute the rhs of (2.5) obtaining the following result:

B(l\z)C(l'\w) = exp 0tlogC(ί)log
t — w

t - z ,
. (2.9)
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Here we have used the fact that, by definition, logB(z) = — logC(z). Equation (2.9)
can be rewritten as follows:

B(l\z)C(l'\w)dzχ dwl~χ = exp (2.10)

C being a contour surrounding all the poles and zeros of C(z). Unfortunately it is
impossible to apply the theorem of residues in (2.10). The function in the integrand is
in fact multivalued inside the contour C and, in general, also on the contour itself. For
this reason we additionally require that all the branch points of B(l\z) are included
in the set of points zi and p^ . This is a reasonable request in view of our applications,
since in conformal field theories on an algebraic curve the physical zeros and poles
in the amplitudes are given by the branch points of the algebraic curve (see Sect. 4).
Under the above requirement the integrand in (2.10) becomes one-valued on the
contour C because it surrounds all the branch points of B(l\t) and C(l\t). Moreover,
since we are on the compact sphere CP1? we can deform the contour C in such a way
that only the other two singularities of the integrand are included, namely the points
t = z and t = w. The integration by parts in the exponent of Eq. (2.10) is then made
possible and yields:

(2.11)

I (*^ Z

t-w t-w

Cw + Cz describes a simple contour equivalent to C containing the points w and z.
The integrand of the Ihs of Eqs. (2.11) is now one-valued inside and on the contour
Cw + Cz, so that we can easily compute its residue:

— ΊJϋ
(2.12)

Substituting Eq. (2.12) in the rhs of Eq. (2.10) we obtain an identity, proving that
Eq. (2.5) makes sense if all the ramification points of B(l\z) are included in the set
zτ andp^ .

3. Conformal Blocks for the b — c Systems on an Algebraic Curve

At this point we specify a class of Riemann surfaces Σg of genus g associated to the
Weiers trass polynomial

- 2q(z)ym + q\z) - p(z) = 0 (3.1)

q(z) and p(z) are polynomials in the variable z. The genus g is given in Appendix A
in terms of the degrees πir and 2rf of q(z) and p(z) respectively. The algebraic curve
y(z) has 2m branches denoted by y(l\z), I — 0, . . . ,2m — 1, that are exchanged at
the branch points aτ and βj as shown in Appendix A. i and j label the number of
the independent roots of the equations

q2(z)-p(z) = 0, p(z) = 0 (3.2)

respectively. The first equation has Na = max(2mr, 2r') solutions ai while the second
equation has Nβ = 2rf solutions β3. The integers r and r' are fixed in such a way
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that the point at infinity is not a branch point. This is not an essential limitation and
it is introduced only in order to keep the notations as simple as possible.

Equation (3.1) is invariant under a Dm group of symmetry, generated by the
transformations:

(z,y)^(z,εy) and ym - q(z) -> -ym + q(z) , (3.3)

where εm = 1. The local monodromy group contains Dm as a subgroup. It is possible
to view Σg as a Zm cyclic of an hyperelliptic curve Hg of genus g' = r' + 1 and
branch points β . The multivaluedness at the branch points ai is then related to the
Zm branched covering of Hg.

We start constructing a basis Bk(z), 0 < k < 2m— 1, of 2m rationally independent
functions on Σg such that all other functions are linear combinations of them, the
coefficients entering the linear combination being at most singlevalued functions of z.
Two functions are said to be rationally independent if their ratio is not a singlevalued
function on CPj. A basis of that kind is for example given by Bk(z) = [y(z)]k,
0 < k < 2m — 1. However, the elements of this basis do not satisfy in general the
requirement to have all their ramification points included in their divisor. Therefore
we seek for a basis Bk (z) with the following leading order expansions at the branch
points:

4°(z) ~ (z - α,Γ9W° + . . . ,

^-(z-βf'^ + . .. (3*4)

Transporting the functions Bk\z) around a branch point on a closed path, one obtains
the phases exp(— 2πiqk a . ( l ) ) 9 exp(—2πίqk ^.(0) that depend on the initial branch / of

the function and on the index k characterizing the rationally independent functions.
The qk a.(l) and qk β.(ΐ) must be rational numbers for some values of /, otherwise

there is no multivaluedness at all. In principle, in order to find the Bk\z), one
needs to solve a Riemann monodromy problem and the related Schlesinger equations
[8-10]. However, this is not so simple and the boundary conditions of the Schlesinger
equations are not known. Fortunately we can rely on a theorem of algebraic geometry
stating that a general function on an algebraic curve, therefore also a function
satisfying Eqs. (3.4), should be a rational function in y(z) and z. The construction
of a function with a nontrivial behavior at the branch points of the kind (3.4) can be
done using techniques of algebraic geometry. The parameters qk (I) and qk β.(l),

however, are still defined only up to integers. For example one can multiply B(

k(z)
with singlevalued functions whose zeros lie at the branch points. This freedom is
fixed by the physical properties that the correlation functions of the conformal field
theories should satisfy, for example associativity, locality and statistics of the fields.

In this paper we choose a particularly simple conformal field theory, the b — c
systems [21] with spin λ and action:

= / (3.5)

b(z)dzx and c(z)dzl~z are now fields on Σg and consequently they are multivalued
fields in z in the sense of Eq. (2.2). For each value of λ, the physical requirements
mentioned above are dictated by the fermionic statistics of the b — c systems. In other
words, their correlation functions should have simple poles whenever the coordinates



Multivalued Fields on the Complex Plane and Conformal Field Theories 185

of one field b and one field c coincide and simple zeros in the case in which the
coordinates of two fields b or two fields c coincide [22,23]. It is easy to check that, as
a consequence, the parameters qkj0ί (I) and qk^.(ΐ) must depend also on λ. Therefore

it is convenient to introduce two different basis Bk(z) and Ck (z) for the fields b
and c respectively. Finally, the freedom of multiplying the basis with a singlevalued
function with zeros and poles at the branch points will be exploited in such a way that
the correlation functions of the b — c systems on Σg can be expanded in the simplest
way in the elements of the basis.

First of all we consider the case λ = 0. The following 2m functions Fk(z) are an
example of a basis satisfying the above requirements and those of Sect. 2:

Fk(z) = yk(z) 0 < & < m - 1,

m<k<2m-l.

It is easy to check that the functions Fk(z) are rationally independent and that they
have the behavior (3.4) at the branch points with nontrivial rational values of qk a . ( ΐ )
andqkίβi(l).

Now we will prove that any rational function R(z, y(z)) of z and y(z) is a linear
combination of the functions Fk(z) of the kind:

R(z, y(l\z)) = ]Γ ck(z)Ff(z), (3.7)
k

where the coefficients ck(z) are singlevalued in z. Equation (3.7) is certainly true if
R(z,y(z)) is a sum of monomials of z and y(z). In fact, from Eq. (3.1) we have
yrn(z) = q(z) ± \/p(z). Therefore monomials containing powers in y(z) greater than
m — 1 are still expressible in terms of the basis (3.7). At this point we have only to
consider the rational functions of the kind

™v" Σcfcω^ω
k

A simple consequence of Eq. (3.1) is the following equation:

ra-l

1 I / \ ^ „ f^\^klck(z)εklFk(z) [R(z, y(z))Γl = Q(z)^/^ + P(z) , (3.8)
1=0 \ k )

Q(z) and P(z) being singlevalued in z. Therefore

' n2/ ^ m/ ^ " 'Q2(z)p(z) - P\z)

which is again of the kind (3.7). Thus we have shown that the functions Fk(z) are
2m multivalued, rationally independent functions and that all other functions, the
solutions of the RMP included, are linear superpositions of them.

The case of general λ is solved as follows. As can be seen from the divisors
written in Appendix A, the λ-differential

dzχ

B0(z)dzχ = (3.10)
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has neither poles nor zeros at the branch points. Therefore, multiplying BQ(z)dzx

with the functions Fk(z) of Eq. (3.6), we get 2m λ-differentials Bk(z)dzχ with all
the possible independent behaviors at the branch points. The final result is:

dzl~x ,

(3.12)

dzx ,

))~q

where the "charges" qk and qk β . are defined by:

. « ill

and

- t ,= — ̂ — , fc = m, . . . , 2m - 1 .

The significance of charges of the parameters qkίQti and gfc ^ will be clarified below
(see also [7, 24]). It is easy to show that the elements in the basis (3.11) are rationally
independent and that the functions Bk(z), Ck(z) are linear combinations with rational

coefficients of the Fk(z)9s. The leading order behavior of B^k(z) and Ck^ at the
branch points is again of the form given in Eq. (3.4). The parameters qk a.(l) and
qkβ.(l) are given by:

= %,«., m < Z < 2 m - l ,

and
^ ^ " 0 < i < 2 m - l . (3.15)

4. The n-Point Functions of Free Field Theories
on a Dm Symmetric Algebraic Curve

In this section we derive the correlation functions of the b — c systems showing that
they are superpositions of the basis given in Eq. (3.11). The Nb = (2Λ — l)(g — 1)
zero modes Ωl^x(z)dzx,..., ΩNb^x(z)dzx are computed in Appendix A in terms of
the basis (3.11). In the Appendix we have however exploited a different notation to
number the zero modes introducing a double index ik, k. The index k labels the sector
of zero modes having the same behavior at the branch points of the λ-differential
Bk(z)dzx, while ik labels the zero modes inside a given sector. This notation stresses
the fact that the zero modes are constructed in terms of the basis (3.11). Here, however,
it complicates the expressions of the correlation functions and therefore will not be
used.

When A > 1, the following meromorphic tensor with a single pole in z = w will
be necessary:

K«l'\z,w)dzxdwl-χ = — dzXdwl'X2yB^(z)(^\w). (4.1)Λ 2m z -w ^-^ * *
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If λ = 1 we need instead a differential of the third kind ωab(z)dz with two simple
poles in z = α and z — b and with residue + 1 and — 1 respectively:

z = Kt\(z, α) dz - , b) dz . (4.2)

The pole in z = a is active only if / = /'. Analogously there is a divergence in z = b
only if / — I". The zero modes, the tensors (4.1) and the differentials of the third kind
(4.2) are derived using the formalism developed in [11]. At this point we are ready
to compute the n-point functions exploiting the method of fermionic construction
[25,26]. For λ > 1 the n-point functions are ratios of the following correlators [26]:

M N

t 5=1

= det

ί=l

(4.3)

where M - N = (2λ - 1) (g - 1) = Nb. The tensor Kf \z,w) has spurious poles in
the limit w —» oo. However one can show as in [11] and [26] that these poles do not
contribute to the determinant (4.3). For λ = 1 we have an analogous equation:

N M

, (4.4)

where N — M = g - I. In order to simplify the notations we have omitted in the
rhs of Eq. (4.4) the indices of the branches for the variables w^ ..., WM. In the next
section we will mainly use the two point functions of the b — c systems:

b(l\z)c(l'\w) Π b(ls\zs) Π c(wr)\
8=1 r=l /

Gf >(*,«» =

From Eq. (4.3) it turns out that the above propagator has the following form:

Gχ(z, w) dzχ dwl~χ = Kf'\z, w) dzχ dwl~χ + ^(-l)sK(f\z^w)
Λ ^ ' ' Λ Λ ^ " 7 / v v / Λ X S 7 /

(4.5)

5=1

where

(4.6)

(4.7)
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Equation (4.6) and the form of Kχ \z, w) given in Eq. (4.1) show that the propagator
(4.5) is just a superposition of the elements of the basis (3.11). An analogous equation
can be written when λ = 1.

Before concluding this section, we prove that also the correlation functions of the
scalar fields

S[X]= ί d2zdzXdzX (4.8)

Σg

can be expressed as linear combinations of the elements of the basis (3.11). The
correlator (dXX) is a differential of the third kind that coincides with the propagator
of the b — c systems with λ = 1 up to zero modes in z:

(dzX(z,z)[X(w,w)-X(w',w')})
9

(b(z)c(w) JJ b(zτ)c(w')} + zero modes + (w -> w'), (4.9)

where the symbol UK[T] means that the real part of the tensor Γ is taken. The
correlation function (ΘXdX) can be obtained deriving Eq. (4.9) in w and w. The
derivation in w of the correlation function of the b—c-systems (4.6) is quite simple. The

variable w appears only in the tensor Kχ^ \zs,w) and K*χ=\(z, w). The latter tensors
are linear comnbinations of the basis Ck(w)dwl~χ and can be easily differentiated
using eqs. (B.3), (B.4) of Appendix B.

5. Conformal Field Theories with Dm Group of Symmetry

In this section we prove that the b — c systems on an algebraic curve are, apart from
zero modes, a conformal field theory, in the sense that they contain primary fields
concentrated at the branch points. To this purpose we study the vacuum expectation
values (vev's) of the ghost current J(z) = :b(z)c(z): and of the energy momentum
tensor at the branch points. These vev's can be computed starting from the two point
functions (4.6). We start considering the vev of the ghost current, which is given by:

ww

From Eq. (4.6) it is clear that the divergences at the branch points are generated only

by the term Kχ1 \z,w)dzχ dwl~χ. The other terms forming the propagator are in
fact zero modes in z and the poles in the variable w occur only at the locations of
the zero modes zs or in z = oo. Therefore, inserting Eq. (4.1) in Eq. (5.1) we get:

2m- 1-

{ Jf (z))dz =—Σdz log Cf (z) dz . (5.2)
fc=0

It is possible to regard the differential

J«\z) dz = dz log[Cf (z)] dz (5.3)

as the vev of the current associated to the ghost number conservation in a given
sector /c, i.e. in the sector in which the fields have the same monodromy properties
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of Bk(z)dzx and Ck(z)dzl~x. The leading order of Eq. (5.2) at the branch points
confirms Eqs. (3.14)-(3.15):

{J ( l \z)) ~ reg. terms , 0 < / < ra - 1,

ι 2™-1 N<* Ol c5 4)
1 V^ V^ ^k,aτ / 7 / ^ Λ \J ^J

~ —- > > —L-L- , m < / < 2m - 1,2m ^ Z^ ^ _ Q, ' - -
fc=0 i=l *

and
2m-1 W0

/ r\ -t r^ 7k=0 j=l J

Now we compute also the vev of (T(z)} at the branch points in the first order approxi-

mation. As before, the only contribution comes from the tensor Kχl }(z, w) dzx dwl~x

as we will show immediately. The proof is a slight generalization of a simple argument
given in [2] in the case of the Zm symmetric curves.

On the algebraic curve Σg the fields b and c are singlevalued. Therefore, in the
proper system of coordinates, the energy momentum tensor must be regular. The
proper coordinate near a branch point ai is defined as follows:

t = z, 0 < / < ra- 1.
m _ " ~ (5 6)

At the points β the local uniformizer becomes instead:

t2 = z-βj, 0 < / < 2ra - 1. (5.7)

Since the vev of the energy momentum tensor is not a tensor, a change of coordinates
like that given in Eqs. (5.6) and (5.7) yields an extra term which is nothing but a
partial derivative:

where cx — (6λ2 — 6λ — 1). The Schwarzian derivative appearing in the rhs of
Eq. (5.8) gives poles of the second order at the branch points. In order to eliminate
these singularities from (T(t))9 the correlator (T(z)) in Eq. (5.8) should have the same
singularities but with opposite signs, i.e.:

(T(z)} = reg. terms 0 < I < m - 1,

= 1

 x 9 ^ f Λ ~ 0 0 < / < 2 r a - l . (5'9)

(z-aj2 12 \m2 ) ~ ~

and at the branch points β3:

(T(z)) = l-r-^ — , 0 < / < 2ra - 1. (5.10)

Now we compute the correlator (T(z)} explicitly. We apply the following formula
given in [25]:

> = lim - \dG(ll'\z,w) + (1 - X)dyG
(!l'\z,w) =• . (5.11)

' z-^™ W X Z X (Z-W)2\
l=l' L J
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After inserting in Eq. (5.11) the tensor K^χ \z,w) instead of the entire propagator
the result is:

In the first order approximation at the branch points Eq. (5.12) becomes:

(T(l\z)} ~ reg. terms 0 < / < ra - 1
ι 2m -1 r.

A, |9
k=0

ι 2m~1 Γ i / ι

Σ 2 ̂  + (λ - 2

(5.13)

Summing over k in Eqs. (5.13) and (5.14) we obtain exactly Eqs. (5.9) and (5.10).
Concluding, we have shown that the amplitudes of the b — c systems on an algebraic
curve with Dm group of symmetry contain primary fields with charges and conformal
dimensions given by Eqs. (5.4)-(5.5) and (5.11)-(5.12) respectively. In Sect. 6 we
interpret these primary fields as twist fields simulating the presence of the branch
points in the correlation functions.

6. On the Geometrical Meaning of the Twist Fields
and Their Electrostatic Interpretation

In this section we notice an important point coming from the previous analysis. The
b — c systems are singlevalued on Σg, so that the energy momentum tensor has no
singularities at the branch points in the proper coordinates (5.6) and (5.7). Instead,
the poles of the ghost current remain l. They can be explained as a topological effect
induced by the fact that we are considering a theory on a curved space-time. Already
Wheeler pointed out that topology is equivalent to charge on some manifolds. For
example in Fig. 1 the total effect of the potential lines is to simulate a positive charge
inside the left hole and a negative charge inside the right one. In our case, we have a
more complicated surface, similar to that of Fig. 1 but with many handles. Therefore
it is natural to interpret the poles of the ghost current at the branch points as virtual
(and factional) ghost charges generated by the nontrivial topology of the world-sheet.
On that point see also [7].

Now we explain this phenomenon in a somewhat heuristic way using electrostatic
considerations. We consider the b — c theory on Σg as a multivalued field theory on
CPI:

S(l\b,c)= d2zb(l\z)Bc(l\z) + c.c.. (6.1)

CP,

We thank J. Sobczyk for having pointed out this fact
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Fig. 1. Lines of force on a wormhole in absence of charge. The total effect of the lines is the
appearance of virtual charges in the two "mouths" of the wormhole

As we showed in Sect. 3, the fields b(l\z) and c(l\z) can be expanded in the basis
(3.11):

2m- 1

b(ί\z)= B

2m-1
(6.2)

> ω = Σ
where bk(z) and ck(z) are singlevalued fields on CP1? interacting only if k ~ k' as
the usual b — c systems on the sphere. This expansion is valid only locally, i.e. away
from the branch points and from the point at infinity. At these points one should use
the local uniformizer and the coordinate z' = l / z respectively. Equation (6.2) defines
an operator formalism on Σg and, substituting Eq. (6,2) in Eq. (6.1), we get:

2m-l 2m-1

/

Z.7/4—1 n έ,Ίli—1

d2z Σ bk(z)8ck(z) + I d2z Σ dlog(C(l\z))bk(z}ck(z). (6.3)

Cpi k=° CP}

 fc=°

Now the fields are considered as operators, so that everywhere a normal ordering
should be understood. In Eq. (6.3) the multivaluedness of the action is in the second
term of the rhs. At this point we can bosonize the action (6.3) using the formulas
(2.7) and (2.8) for each field bk(z) and ck(z). As a consequence, after an integration
by part, Eq. (6.3) becomes:

S(l\φk(z)) = I d2

CPi

2m-1

2m-1

Ψ k < (6.4)

CPi

The term in Rz^(z, z) comes from the usual bosonization of the b — c systems on the
sphere and it is given by the distribution:

Rz-z(z, z) = (l- 2X)δ(2\z, oo). (6.5)
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The third term in the rhs of Eq. (6.4) represents instead the additional curvature
requested by the fact that we are treating a b - c system on a Riemann surface. This
curvature corresponds to a distribution consisting in a sum of ^-functions concentrated
at the branch points. The classical equations of motions of the propagators G(z,w)
of the fields φk coming from the action (6.4) are:

dd(G(z aί,βJ) = (l~

Nt

G(z\ o^, /?•) turns out to be the Green function of electrostatics in the presence of a
charge 1 - 2λ at z — oo and fractional charges qk and qkβ. at the branch points.

Only the ^-function at the branch points ai is multivalued. The total charge of the
system is zero as it should be due to the presence of the zero modes, as we will see
in the next section.

7. Multivalued Complex Fields on the Punctured Complex Plane

In this section we construct the Green function Kx(z,w)dzχ dw~x of Eq. (4.1) in
terms of free fields using the techniques of Sect. 2. This tensor represents the two point
function of the b — c systems apart from zero mode contributions and gives the vev's
of the ghost currents and of the energy momentum tensor as we have already seen. We
show in this way that Kx(z,w)dzx dwl~χ is a superposition of ratios of conformal
blocks of the kind (2.5). Each conformal block corresponds to a conformal field theory
whose monodromy properties are characterized by Eqs. (3.4) and (3.14)-(3.15).

First of all we consider the tensors Gx^k(z,w) that play the role of G(z,w) in
(2.5). For each fixed value of fc, they can be inteφreted as the propagators of the
sector of the b — c fields having the same boundary conditions at the branch points
of Bk(z)dzx and Ck(z)dzl~x:

(7.1)
Z — W

Indeed, summing the partial propagators Gxk(z, w) of Eq. (7.1) over fc, we get exactly
the tensor Kx(z, w) which is, as we have previously seen, the total propagator of the
b — c systems up to zero modes.

As in Sect. 2 we express G(

xk(z, w) in terms of free b — c systems bk(z) dzx and

ck(z) dzl~x defined on the complex plane, 0 < k < 2m — 1. The effect of the branch
points is simulated by the twist fields Vk(aτ) and Vk(βj):

k(0\bk(z)ck(w) (z.m.)fc Π Vk(ai) Π Vk(βj) \0)k

A*1-* = - -' ^ - - (7.2)
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\0)k is the usual SL(2,C) invariant vacuum of the flat case and (z.m.)^ represents
an insertion of zero modes in Eq. (7.2). This will be necessary in order to set the
total ghost charge to zero in the correlators appearing in Eq. (7.2). To compute the
number of zero modes we need to insert, we look at the residues of the "current"
Jk(z) = dz logCk\z). From Eqs. (5.4)-(5.5) we know already the total ghost charge
introduced by the presence of the branch points in each sector k with independent
monodromy properties. The computation of the total charge qk ̂  at infinity is easy to
find and yields qk ̂  = I — 2λ. All the A -sectors have the same charge at infinity and
moreover qk^00 does not depend on I confirming Eq. (6.5). Summing all the charges
at the branch points and at infinity we get

Cfc '
(7.3)

where C and are closed infinitesimal paths on the complex plane

surrounding the points Oί^β3 and oo respectively. In Eq. (7.3) Nbk and NCk are

exactly the numbers of the zero modes Ωi k(z)dzχ computed in the Appendix and

having the same behavior at the branch points of Bk(z) dzχ and Ck(z) dzl~χ. In order
to get nonvanishing amplitudes in Eq. (7.2), we therefore have to add the following
insertion of zero modes:

(z.m.)fc = (7.4)

t=\

Still we need the explicit expression of the twist fields. These fields are derived in [7]
in the case of D3 symmetric curves using bosonization. In the general case we just
apply Eq. (2.6). Let us introduce a set of free scalar fields φk(z) with propagator

= ~δkk'

Then the final form of the twist fields reads:

Vk \θίτ) = exp i (f dtdt\og[C%\t)]φk(t)
j

caί

i j> dtdtlog[C«\t)]Ψk(t)

(7.5)

(7.6)

Equation (7.6) can be further simplified and becomes:

= e-^,/WpΛ (7.7)

The asymptotic form of the twist fields Vk(aJ at the branch points is in agreement
with Eqs. (5.4) and (3.4). Using the formulas given in Appendix B to compute the
residues at ai and β3 in Eq. (7.5) we get in fact:

m < I < 2m - 1. (7.8)
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Let us now show that the rhs of Eq. (7.2) is the desired subcorrelator (7.1) following
the formalism of Sect. 2. Inserting in Eq. (7.2) the multivalued OPE's:

= exp I dtdt log[C(

k\t)]
j

CΊ

x log : VJΊ)e-lψk(z)el^(w): (7.9)
\w-tj

with 7 = α ί? β and remembering the contribution of the charge at infinity, we have:

x exp I > φ at + > φ dt + φ dt \dtlog[Ck (t)]log I I . (7.10)

The contour C — Σ ^aτ + Σ £/? + ^Όo contains all the branch points as required
i l 3 3

in Sect. 2 and therefore we get: the final result:

dzχdwl-χ C(

k\w}

*π(^)π
Remembering that dzχ/C(

k\z) = B(

k\z)dzχ from Eq. (3.11), we conclude that
Eq. (7.11) is the wanted solution of the Riemann monodromy problem. The only
difference from Eq. (7.1) consists in the products involving the cordinates of the zero
modes. This is not a problem, since these terms coming from the zero modes are
rational functions of z and do not modify the monodromy of the tensor (7.11).

Now we investigate the possibility of writing first order differential equations for
the Green function defined in Eq. (7.2). In doing this we regard the correlators (7.2)
as the correlators of a conformal field theory with multivalued primary fields V^a^.

Since Eq. (7.2) is equivalent to Eq. (7.11), we need only to study the differential
equations satisfied by the Bk(z)'s for any value of λ e Z. It turns out that the functions
Bk(z) satisfy a differential equation of the following kind:

i Γ-tdΛ, ^

^ytea^β^B^z). (7.12)
k'

The elements of the matrix Akk/(z',ai^βJ) are one forms in Σg. They are computed
in Appendix B and we simply report that result:

Akk/(z',ai,βj)dz = (rn(lk,aιy~l ~j—\~Qk,β Z^/ ~^~}^kkfdz' (7.13)
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The explicit dependence of y~l |̂ on aτ and β can be found in Eqs. (B.1-2).

Equation (7.13) represents a one form with simple poles at the branch points. Deriving
the Bk(z)9s with respect to ai we get:

d^B(

k\z) = A^zia^β^B^z). (7.14)

One can check that also Akk,(zm

9 Oίτ,β ) is a one form in the variable ai with simple
poles in ai = z and ai = α^ , i ^ j. The residue at these points are exactly opposite
to those of the matrix Akk/(z\ α^, /?p and the two matrices differ only by zero modes.

Analogous conclusions can be drawn deriving Bk\z) with respect to the branch points
βj. If we interpret Eqs. (7.12) as a parallel transport [17, 13, and 12], then Eqs. (7.13)
and (7.14) provide the connection in the variables z and al respectively. Using the
above equations and the decomposition (4.6) one can find differential equations for
all n-point functions of the b — c systems on Σg.

The matrices Akk/(z\ai^βJ) and Άkk,(z\aτ,β3) are not so simple as the usual
Knizhnik-Zamolodchikov equations. In fact on a Riemann surface the two dimensional
Poincare group of world-sheet symmetries is explicitly broken and the connections
Akk,(z\al,β3) and Akk,(z\ai,β3) cannot be translational invariant as it happens in
the flat case. Therefore they also have a multivalued dependence on the variable z.
Eventually this is a consequence of Eqs. (3.4).

The twist fields (7.5) and (7.6) represent particles with nonabelian braid group
statistics inside the amplitudes (7.2). To conclude this section, we derive the exchange
algebras of these operators. The most difficult case occurs when two twist fields V(ai)
and V(aiι) are considered:

Vk

 z\aτ)Vk

 τ> (aif) = exp

x
/C7<V

τA'V \τλli)f \ in 1*\x Vk ( a i f ) V k ( a r l ) . (7.15)

To see how the twist fields are locally exchanged when az is very near to ai9 we have
to compute two residues at the branch points aτ and α^, in Eq. (7.15). To do this it is

sufficient to insert in the definition of Jk\z) given by Eq. (5.3) the form of p(z) and
q(z) in terms of the branch points provided by Eqs. (B.I) and (B.2). The remaining
task is a simple calculation of residues and the final result is:

\βj), (7.18)

where qk^a (lτ) and qkβ.(lj) are defined in Eqs. (3.12) and (3.13).
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8. Conclusions

One of the results obtained here is that the b — c fields on an algebraic curve with Dm

group of symmetry can be decomposed into 2m sectors propagating with different
boundary conditions at the branch points. Each /c-sector, 0 < k < 2m — 1, has
a well defined propagator, given by Eq. (7.2) and containing the multivalued twist
fields V^oίj). The multivalued twist fields are primary fields and therefore to each
^-sector corresponds a multivalued conformal block. We hope that with the formalism
developed here one can treat also more physical theories on algebraic curves than the
b—c systems. However, the basic requirements are that the theory should be conformal
and have a lagrangian. This is not for example the case of theories based on free scalar
fields. The scalar fields, in fact, are not entirely conformal as their propagator, with a
logarithmic singularity, shows. As a consequence an attempt to write an expansion of
the kind (6.2) for the scalar fields is difficult, since they depend also on the complex
conjugate variable z. The free fermions, instead, are very interesting for superstring
theory, but unfortunately it is not so easy to treat the spin structures on algebraic
curves and therefore to construct analogues of the basis (3.11).

Another result obtained is that we have shown the presence of particles with non-
standard statistics in the amplitudes of the b — c systems and therefore of string theory.
Following the procedure of Sect. 5 and using Eq. (4.9), it is possible to show that also
the amplitudes of the free scalar fields contain multivalued twist fields. The only
problem is that there is no way to obtain an explicit expression of these twist fields
because bosonization does not work in the case of the scalar fields.

It is natural to ask at this point if the twist fields have some observable effect or if
they are just an artifact of our way of representing the Riemann surfaces as algebraic
curves. First of all we remember that also in the case of the conformal field theories
there is a multivaluedness in the conformal blocks that disappears in the physical
correlation functions. Despite this fact, this multivaluedness is crucial in showing the
quantum group structure of conformal field theories. In our case the multivaluedness
on CPj of the amplitudes is allowed and therefore also the presence of the twist fields.
The problem is however complicated by the fact that the space-time geometry is not
flat. Surely a local observer, located in a system of reference in which the metric
on the Riemann surface is induced by the mapping y(z):CPl —> Σg9 experiences the
presence of the twist fields. The existence of these operators is in fact proved in Sect. 5
using Eqs. (4.3) and (4.4), that represent the two point functions obtained from the
method of the fermionic construction of [25]. Probably an observer in another system
of reference would not confirm the existence of the twist fields. Unfortunately the
calculations of the n-point functions in the case of an arbitrary metric make use of
the formalism of the theta functions together with bosonization and the final results
are not very explicit. Therefore it is not easy to do a comparison of the observations
performed in the two different frames.

The method presented here shows that a curved background can influence the
statistics inside the correlation functions of free field theories. In Sect. 6 we have
explained it in terms of electrostratics. Finally we have realized in Sect. 7 examples
of theories with nontrivial braid group statistics [17,27]. The problem remains to
classify these theories. To this purpose we only note that the twist fields have nontrivial
exchange relations but obviously they form an associative algebra when more than
two branch points are permuted in the correlators of Eq. (7.2). Therefore we can
construct the Yang-Baxter matrices corresponding to the exchange algebra (7.16)-
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(7.18) and look if there are other integrable models yielding the same solutions of the
Yang-Baxter equations. This has been done in [15].

Appendix A

The 2m branches of the solution of Eq. (3.1) can be written as follows:

= e m ^q(z) - λ/^χ7) , m < I < 2m - 5

The branches are exchanged in the following way:

N ,y(l\z) -> /+m)(z), 0 < I < 2m - I in ft , . . . , β

(y™(z),...,yV™-l\z) (A.2)

-+ (y(2rn~l\z\ y(πι\z\ . . . , y(2m-2)(z)) in α1 ? . . . , aNa .

We can rewrite Eq. (A.2) in a matrix form:

y(m\z) = (MΊ)mtly
(l\z) , 7 - α , ̂  . (A.3)

The only nonvanishing elements of the monodromy matrices Mβ . are (M^ . )i+rn t .

MQ, has instead the following block form: Ma. = diag(/m,5m), where ίm is a
m m unit matrix and 5m generates the Zm group of permutations. The monodromy
matrices M^ and Mβ provide a representation of the group Dm.

The genus of the curve Σg is given by the Riemann-Hurwitz formula:

2g - 2 = 2m((m - l)r - 2) + 2mr' , mr>r', (A.4)

2g -2 = 2r'(m - 1) + 2mrx - 4m , rar < r' , (A.5)

The behavior of a multivalued tensor near the branch points αί and /^ is studied
performing the following change of variables:

tm = z - a - , t'2 = z-β3. (A.6)

£ and t7 are the so-called local uniformizers in ai,β3 respectively. For example the
behaviors of y(z) and p(z) at the branch points is:

{ const 0 < / < ?n — 1
±

(z-aτ)
m m<l<2m-l

V/pW ~(z- βjΫ/2> 0 < / < 2m - 1 . (A.7)

Using Eq. (A.7) we are able to write the behaviors at the branch points of the λ-
differentials Bk(z)dzχ.

It is possible to choose a basis of zero modes Ωlk^k(z)dzx in such a way that

each element of the basis has the same monodromy properties of Bk(z) dzx given in
Eq.(3.11):

Ωiktk dzx = z*~lBk(z)dzx , 1 < ik < Nbk . (A.8)
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In order to determine the number of zero modes Nbk we can use the following
divisors. We denote with α^ a zero of multiplicity v and with —ofa a pole of order v
occurring in the branch I of a meromorphic λ-differential. When mr < r' we have:

2mr m-1 2r' 2m- 1

Σ -
1=0 3 = 1 i=Q

2πιr 2m- 1

Σ α* - Σ °°(i)
i=l i=Q

When mr < r', Eqs. (A.9a) and (A.9b) become:

2r' m-1 2r' 2m- 1

Σ Σ<0Λ»> - Σ °°(i) '
/=0 j=l i=0

2r 2m— 1 r

1>< - ̂  oo™ . (A.lO.b)
i=l i=0

In order to eliminate possible branches at infinity, r' should be a multiple of m.
Studying the divisor of Ωi k(z}dzλ it is also possible to prove that the total number

of zero modes Nbk with the same behavior at the branch points of Bk(z) dzλ is given
by (here we suppose λ > 0):

2m- 1 Na

 Nβ
NO* = l - 2λ - Σ Σ ̂  «*,α,(o - Σ^ ' (A n)

l=Q i=\ 3=1

where qkθί.(ΐ) is defined in Eqs. (3.14) and (3.15). Summing over k in Eq. (A. 11) and
using Eqs. (A.4)-(A.5) we get the total number of zero modes Nb = (2λ — 1) (g — 1).
The 1 - λ differentials have just a zero mode occurring when λ = 1 :

. (A. 12)

Therefore
NCk=διχ. (A. 13)

Appendix B

In this appendix we prove that the basis (3.11) satisfies Eq. (7.12). We consider only
the tensors Bk(z) dzχ because the proof for the 1 - λ differentials can be performed
in a completely analogous way. First of all from Eq. (3.2) we have:

q\z) - p(z} = (z - a,} , p(z) = (z - βά) . (B.I)
τ=l j=l

Solving Eq. (B.I) we get:

/Na

 Nβ3 \ l / 2

- «i) + Π (z - fyn - (B 2)
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Equation (B.2) is useful because we can express in this way the polynomials q(z) and
p(z) appearing in Eq. (3.1) in terms of the branch points. Of course not all the branch
points al can be independent. From Eq. (B.I) they turn out to be functions of the other
branch points βj and of the zeros of q(z). This dependence of the ai on the other

Na

 N?j
branch points is necessary because otherwise the polynomial Π(z~~α^)+ Π (z~βΊ)

i=l j = l

has not quadratic zeros. This would be in contradiction with the fact that, from
Eq. (B.2), this polynomial should be equal to q2(z). The fact that on the curves
with nonabelian monodromy group the branch points are not completely independent,
makes it difficult to study the properties of the twist fields and their OPE's under
modular transformations [26]. For the same reason it is not possible to compute
explicitly the matrix Άkkt(z\ aτ, βτ) of Eq. (7.14) apart from its pole structure.

Now we consider the analytic tensor Bk\z) dzχ of Eq. (2.9) as a function B(

k(z)

multiplied by the λ differential dzχ. For the functions Bk (z) we compute the ratio

(B(

k\z)Γl(dB(£(z)/dz). The result is:

J_
More explicitly, from Eq. (3.1) we have y(z) — (q + ^/p)m, and therefore

dz • ' - * " ' (B.4)
dz mq + ^/p\ 2 ^

The above differential has a simple pole in z = oc which does not depend on the
branches of y(z). Moreover, with the aid of the divisors of Appendix A, it is clear

that there are no poles when z —» β3 in Eq. (B.4) despite of the fact that | -£=

diverges in z = βj. However, in order to show that, we have to perform a change of
coordinates in Eq. (B.4) switching to the local uniformizer (5.7). The reason is that the
differential dz has exactly a zero in βj which cancels this singularity. Unfortunately
the differential equation (7.12) is not covariant under transformations of coordinate
when λ-differentials are involved. Motivated by these difficulties in the approach of
[12,18] we have introduced an alternative procedure as explained in Sect. 2. Finally,
exploiting Eqs. (B.I) and (B.2), it is possible to see that when z —> aτ, the rhs of
Eq. (7.13) has only a simple pole provided the branch / of y(z) is in the interval
m < I < 2m — 1. No other singularities are possible. Therefore Eq. (B.3) describes a
system of linear partial differential equations in which the 1-form matrix is

Akk,(z) = mqkta.y-1 J + qktβ. Σ ^r . (7.13)
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