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Abstract. We prove in this paper that the von Neumann algebras associated to the
free non-commutative groups are stably isomorphic, i.e. that they are isomorphic
when tensorized by the algebra of all linear bounded operators on a separable,
infinite dimensional Hubert space. This gives positive evidence for an old question,
due to R.V. Kadison (see also S. Sakai's book on W*-algebras), whether the von
Neumann algebras associated to free groups are isomorphic or not.

In this paper we show that the algebras &(FN) = (C(FJV)W, the weak closures of the
group algebras associated to free (nonabelian) groups FN, N ^ 2, N finite, are all
stably isomorphic, i.e. that the isomorphism class of &(FN) ® B(H) doesn't depend
on N e N, N ^ 2. (Here B(H) is the algebra of bounded operators on an infinite
dimensional, separable, Hubert space //).

This may serve as evidence for an old problem of R.V. Kadison in the early
'60's, on the isomorphism of the algebras ^(FN\ N ^ 2 ([2], see also [9] problem
4.4.44 and [3]).

The first remarkable breakthrough to this end, was the theorem of D.
Voiculescu stating that

is isomorphic to <$P(FN\ fc, N e N, N ^ 2. (This implies in particular that
and J2?(F(JV_1)/C2 + 1) are stably isomorphic for each fc, TV e N, N ^ 2, but it doesn't
imply, for example that JSf(F2) and <&(F3) are stably isomorphic).

Our main tools will be the matrix representation for free families obtained by D.
Voiculescu in the setting of noncommutative probability theory ([6,7]), and
the iterative technique of finding generators for reduced free algebras that we used
in [4].

In terms of isomorphism classes of reduced algebras, the result of D. Voiculescu
was stated as
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Here <&(FN)t is the isomorphism class of the algebra e^(FN) e, where e is any

selfadjoint idempotent in J£? (FN) = <C(FN)W, of trace τ(e) = t (τ is the weakly con-
tinuous linear functional on &(FN) defined by τ(λg) = 0 if g φ e, τ(λe) = 1, where
e is the identity, while λg, g e FN is the left convolution operator on C(FN)).

The proof of our result will come (by usual techniques, see e.g. [1, 5]) from the
following isomorphism result (which extends Voiculescu's isomorphism theorem):

which in particular (taking N = 2), implies that JS?(F2) and &(Fk + 1 ) are stably
isomorphic, k e N, i.e.

In particular our result shows that the following invariant (the fundamental
group ([3]) ^(^(FN)) = {t> 0| JS?(Fjy)f ^ &(FN)} cannot distinguish between the
algebras &(FN\ N ^ 2, N a positive integer.

To prove the isomorphism relation, we will introduce an extrapolation, with
algebras, "JSf (Fr)" r e Q, r ^ 2 for the series of the algebras J£(FN)N e N?N ^ 2 (such
algebras were also considered by K. Dykema (personal communication to the
author)). This will be done by the matrix representations for these algebras given
by the theorem of D. Voiculescu. The proof will then consist of taking r to the limit,
which will be done by the techniques in [4].

In a forthcoming paper ([9]) we will give a meaning to "«Sf (Fr)" for real r ^ 2
and prove that the formula "JS?(Fr)f ^ JSf(F ( r_1 ) f-2 + 1)" and JSf(Fr)* &(FT'} =
«Sf(F(r +,.'))" are also valid for positive real ί and r.

I am greatly indebted to G. Skandalis for suggesting this problem. I am also
indebted to S. Popa and M. Takesaki for useful comments. I am also indebted to
the referee, who pointed out to me a number of minor errors.

This paper has been circulated as an I.H.E.S. preprint, December '91.

2. Definitions and Outline of the Proof

Let H be a Hubert space, B(H) the space of all bounded linear operators acting on
H. A weakly closed subalgebra M of B(H) is called a von Neumann algebra (or
when no reference to H is made, a W* -algebra). If S is a subset of M, then the von
Neumann subalgebra generated in M by S will be denoted by S". A von Neumann
algebra with no minimal idempotents will be called diffuse.

M is a type II1 factor if it has no center, it is diffuse and there exists a weakly
continuous faithful functional τ on M such that τ(xy) = τ(yx\ x,yeM. In general
we will assume that τ is normalized, i.e. that τ(l) = 1. In this case the strong
operator topology on M, will be given by the norm || ||t, defined by | |x| |? =
τ(x*x). This last is a norm since τ is faithful (i.e. τ(x*x) = 0 => x = 0).

For t > 0, the isomorphism class of the von Neumann algebra eMe, where e is
a selfadjoint idempotent in M with τ(e) = ί, depends only on ί and is denoted by
Mt. When t > 1, we replace in this construction M by M(χ)Mn(C), where n is
a natural number, strictly greater than the integer part of t.

A matrix unit (coij)ϊj=1 in M is a family such that ωίι7 ωsfc = δjsωik (where
δis stands for the Kronecker symbol), ij, 5, k e {1, 2, . . ., r}. Usually Mn(C), n e M
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comes with a canonical normalized trace τn and a canonical matrix unit. (We refer
to the books [1, 5] for an exposition of all the facts recalled before.)

We also recall now some definitions and results from [7]. Let (M, φ) be a type
Hi factor with trace φ.

A family of unital subalgebras

(Ai)iel £ M

is called a free family if
φ(a1a2 ... an) = 0

whenever φ(α/) = 0, α,- e Aij9j = 1, 2, . . . , n, with i1 =M2> > i w _ ι Φ /„. A family
(fόίei °f elements in M will be free if the algebras {fh l}"e/ ^ M are a free family.

The family (/)ιe/ is semicircular if it is free and if in addition the trace of the
spectral distribution of each element/- is given by the semicircular law:

2 1

φ(J*) = - f ίk(l - f 2) 1/ 2 dt, fc 6 N, i 6 / .
π _\

A family {#/}je</ in M will be circular if the family {x7 5 .y/}j6j is semicircular,
0. + 0* gf j + g*

where x,- = J , yj = •
/2 V2 '

Finally we recall the following matrix representation (Proposition 2.8 in [7]) of
a semicircular family, given by D. Voiculescu.

Let n e N be an integer, S a nonempty set and let

be a free semicircular family in M, let

be a circular family in M and let a be a semicircular selfadjoint element of M.
Moreover assume that ω^ u ω2 u {a} is a free family.

Consider the following elements in the von Neumann algebra M ® MΛ(C)
endowed with the canonical trace φ ® τn, where Mn(C) has the matrix unit

Σ /ft 5) ® ̂  + Σ
ί = l 1 g i < 7

for 5 e 5. Moreover let Xσ be any semicircular element in M (x) Mn(C) generating
the same von Neumann algebra as {a ® ea\i = 1, 2, . . . , n}.

The Theorem of D. Voiculescu asserts that the family (Xs)seS u (Xσ)
CΞ M ® Mn((C) is also a free semicircular family. This was the essential step in its

proof that

and this will also be the basic fact in our proofs.
Recall that ^(G) is the weak closure of the left convolution algebra of G, and

that if G is FN9 N ^ 2 (in fact if G has infinitely many conjugacy classes) then ^(G)
is a type II ! factor [5].

We now introduce some new definitions on free algebras that we will be using in
the proof of our results.
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The matrix representation ([7]) of a free semicircular family, makes it natural
to introduce an interpolation with rational numbers of the family 3?(FN\N ^ 2,N e N,
by defining "JS?(Fβ)" for rational q ̂  2, (although Fq has no meaning).

The construction of such an algebra runs as follows: let (X°9 X1, . . . , XN) be
a free semicircular family in M (x) MΠ((C), where we use the matrix picture described

k
before with S = (1, . . . , N} and σ = 0. Assume that q = N + -j, where A; is an

integer in the set (0, 1, . . . , n2 - 1} and N ̂  2.
We remove from XN, k' diagonal entries of the form/(z, N)®eii9 and k" upper

diagonal entries of the form f ( i , j, N) (x) etj together with their adjoints. In this way,
by removing k' + 2k" = n2 — k entries from XN we obtain a new selfadjoint
element in X'N in M (x) Mn(€).

We will take as a definition for the algebra &(Fq), the isomorphism class of the
von Neumann algebra s/ generated in Mn(C) ® M, by X°, X1, . . . , XN~1, X'N.

The arguments in the proof of Theorem 3.3 in [7], obviously extend to give that

where M = (q — l)n2 + 1 is an integer.
This is in particular shows that the isomorphism class of 3? (Fq) depends neither

k
on the representation q = (N — 1) + —^ (i.e. on the choice of the denominator), nor

on the choice of the place of the entries that are removed from XN.
A more formalized version of the description before is given by the following

definition:

Definition 1. Let A be a W*-algebra with faithful trace τ; let (X°, X1, . . . , Xn) be an
(ordered) family of selfadjoint element in A, n ̂  2.

The family (X°, X1, . . . , Xn) will be incomplete semicircular, if there exists
a larger W*-algebra A with trace τ, τ\A = τ, and a family (X°, X1,..., Xn~\ Xn)
which is (free) semicircular in A and such that there exists a partition of the unity

(0i)i = 1 in (X0)" with projections of trace -, such that Xn = Xn - £* eia X
n ejs

where (ίs,js)*=ι are distinct elements in {1,2, . . . ,r}2. We assume that for each
s = 1, 2, . . . , /c, there exists sf with is =JSΊJS = is'

k
The number -^ will be called the total area of the holes of the incomplete

semicircular family (X*,X1,..., Xn\

In particular this definition and the considerations before make clear the
following definition.

k
Definition 2. Let q ^ 2 be a rational number and assume that q = N + -̂  where

k 6 {0, 1, . . . , r2 - 1}, r e IN, r ^ 2. Let (X°, X1 , . . . , XN) be an incomplete
r2 — k

semicircular family, in a type II \ factor A, with total area of the holes — ̂  — Then the

von Neumann algebra generated by (X°, . . . , XN) will be a type II 1 factor, denoted
by &(Fq) and whose isomorphism class doesn't depend on the choice of the incomplete
semicircular family (X°, X1 , . . . , XN).



Stable Equivalence of Weak Closures of Free Groups Convolution Algebras 21

The process of iterating the reduction procedure by rational projections in [4]
will let us consider the following ordering relation on incomplete semicircular
families.

Definition 3. Let (XQ, X1, . . . , Xn\ (7°, 71, . . . , 7N) be two incomplete semicircu-
lar families in a type II\ factor A. The family (7°, 71, , YN) covers holes of the

family (X°, X1, . . . , XN) if 7° = X°, . . . , YN~l = XN~l and there exists a parti-

tion of the unity fe)[=1 with projections of trace - in (X0)", and distinct elements

(is>Js)s=ι m {X 2, . . . , r}2, such that no one of the entries eisY
NeJs, s = 1, 2, . . . , k

contains a hole of YN, and XN = YN — ̂ s eisY
Nejs. (We again assume that for each

s = 1, 2, . . . , k there exists sf in (1, 2, . . . , k} with is =JS'JS = is>.)

Moreover in our iterative reduction process, we will have to reduce the algebras
with projections that have a special position with respect to the holes of XN. This is
shown by the following definition.

Definition 4. A projection e covers the holes of the incomplete semicircular family
2(X°, X1

9 . . . , XN) if (with the notations introduced in Definition 1),

e ^ eis9 e ̂  ejs9 s = 1, 2, . . . , k .

With these definitions, we can now outline the proof of our theorem.

Choose p/q close enough to —F, p/q ̂  —/=, so that the integer part of
'U

q2

(N -1)^+1

is n = (N — ΐ)u. Then the algebra ^(FN)p/q will be described by an incomplete
semicircular family (7°, 71, . . . , Yn] in el ^/el (where j/ = J£(FN) is generated by
the semicircular family (J^1, . . . , XN}, e1 e(X1)" and τ(eι) = p/q, where τ is the
trace on jtf).

Moreover choosing p/q close enough to —;=, the area of the holes will be of

order Θ(p\ so if we start with a fixed projection e in e1(X^ )"eί = (7°)" of trace

τ(e) = —=, then we will be able to find Yn so that there exists a projection e0 in

(7°)", e ̂  e0, which covers the holes of (7°, 71, . . . , 7Π).
We choose afterwards a decreasing sequence (ek) in (Y0)" of rational projec-

tions, ek, which converges strongly to e and show recursively that the algebra ek£/ek

admits a system of generators (7°, Yk, . . . , Yk) that cover holes of the incomplete
semicircular family (ek Y^-vek, . . . ,ekYk-1 ek).

The fact that the total area of the holes of (7°, . . . , 7£) tends to zero ί which is
consequence of the fact that ^

and that τ(ek) = pk/qk ->— -/= implies that the strong operator topology limit
/u
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F1 = limk eYn

ke exits and that the family (τ(e)~1/2 eY° e, , φ)~1/2 eT^) is
(free) semicircular. .

Moreover choosing τ(efc) to decrease sufficiently fast to —/=, we will be able to

prove that elements in any finite set F c ej/e are very close to the algebra
generated by (ek Ykek, . . . , ek Yn

k ek). This will imply that the limit family
(e Y° e, . . . , e Yn e) generates the reduced algebra.

In finding a family of generators for the reduced algebra, the following lemma
(from [4] ) will be essential. We restate it in a little more precise form, referring for
proof to [4].

Lemma 1. ([4], see also Lemma 3.1 in [7]). Let stf be a JF*-algebra, generated by
a system of selfadjoint elements Σ"and (w0-)i>7-=1 a matrix unit. Let k be an integer in
(1, 2, . . . , r} and e be the projection wn + + wfcfc. Then a system of generators
for estfe is eΣe, (wu)f j=1 and the set

Σ' = U {Wp(i,J,

Λ + 1

where p(i,7, α), g(z,7, α) are arbitrary functions on i,j, α with values in {1, 2, . . . , k}.

Remark 1.2. In addition if l ^ / c _ ^ / c ^ k + , and e± = Σk± Wii, then
e_ :g e ίg e+ , and if/= (1 — e+ ) + e_ , let Bf the von Neumann algebra generated
in/j//by the setfΣf= {/α/|α e J£} and the matrix unit

^o - {wy|U e (1, 2, . . . , k- } u {k+ + 1, . . . , r}} .

If the functions p, g are assumed to take values less than or equal to fc_ , whenever
i ^ k+ + 1, then β-Σβ- u e-Z1^- u (wί7 )?~j=ι contains a system of generators for
e-Bfe-.

Proof. This is a corollary of the foregoing lemma applied to the PF* -algebra &f

generated by fΣf and the matrix unit if0. Q.E.D.

3. Properties of Incomplete Semicircular Families

In this paragraph we will state and prove some elementary properties on incom-
plete semicircular families.

First we will show that the distance in the norm || ||τ (given by the trace),
between two incomplete semicircular families, one of them covering holes of the
other, is an expression of the difference in the total area of the holes. This will be
a direct consequence of the normalization conditions imposed on the entries of
a semicircular family, and of the fact that these entries are orthogonal with respect
to the scalar product given by the trace.

Secondly we will state in a formal way the fact that whenever the total area of
the holes of an incomplete semicircular family tends to zero, the family tends to
obey the relations governing a (free) semicircular family.

Both these properties will be essential in the limit procedure, when showing
that the limit of the sequence of (iterative) incomplete semicircular families is
semicircular.
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The last property that we will prove in this paragraph, which is a little bit
technical, will concern the way in which, starting from an incomplete semicircular
family and a family of entries, one may glue them into another incomplete
semicircular family, covering holes of the initial one.

We now state these remarks precisely.

Remark L Let (X°, X1, . . . , Xn\ (7°, 71, . . . , F1) be incomplete semicircular
families in the type II x factor $0 with trace τ, with total area of the holes α and
respectively β. If ((7°, 71, . . . , F1) covers holes of (X°9 X1, . . . , X") then
|| 7" - Xn || τ

2 - α - β.

Proof. Using the representation (Definition 3), of incomplete semicircular families
k (

given at the beginning of Sect. 2, we have that this last norm is -̂  ( each term of the

ι\ . . . r ^
sum being -̂  1. But obviously this is exactly the difference in the total area of the

holes. Q.E.D.

As we mentioned before, the next remark will show that in an incomplete
semicircular family, the value of the traces of the monomials in the family is
sufficiently close to the value of the traces of similar monomials in a free semicircu-
lar family, if the total area of the holes is small enough.

Remark 2. Let (Zn)^=1 be a free semicircular family in a W* algebra with trace τ.
Let J* be a finite set of monomials in the variables (Zn)n = i. Then for any ε > 0
there exists <5ε, such that for any incomplete semicircular family (X1, . . . , XN)9 with
total area of the holes less than <5ε, for each m in ̂ , if φ(m) is the corresponding
monomial in the variables (X1, . . . ,XN), then |τ(m) — φ(φ(m}}\ ^ ε, for any
m e 3F. Here φ is the (normalized) trace on the II l factor generated by
(X1, . . . , XN).

Proof. By the unicity (up to isomorphism) of a free semicircular family, we may
assume that (Z1, . . . , ZN) is exactly the free semicircular family X1, . . . , XN~1,
XN covering the holes of X1, . . . , XN (Definition 1). The proof then follows from
the preceding remark, with a trivial limit argument. Q.E.D.

By Voiculescu's theorem, any incomplete semicircular family (X°, . . . , Xn)
appears as follows: take D be a type 111 factor with trace τ, let (eij)

r

ίj=1 be the matrix
unit of M,(C) and consider in D ® Mr(C),

Xs = r~1/2 ( Σ /(*> s) ® ea + Σ 9(i>J>
\ i = 1 1 g i < 7 g r

where s = 1, 2, . . . , n, and where for s = rc some of the/(i, n) or g(ί,;', rc) might be
zero.

Further let α be a selfadjoint semicircular element in D, let A be the abelian von
Neumann subalgebra of D (x) Mr(C) generated by {a ® e^} [= i. Assume further that
the family ω± of nonnull entries of the form

{ f ( i , s ) \ s = 1,2, . . . , n , i = 1, . . . ,r}

is semicircular in D, and that the family ω2 of the nonzero elements

{ g ( i , j , s ) \ l ^ i <j ^ r,s= 1,2, . . . , n}
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is circular.
Moreover assume that ω1 u ω2 u {a} is a free family of elements in D. If X° is

any semicircular element generating A, then by Voiculescu's theorem (2.8, [7]) the
family (X°, X1, . . . , Xn) is incomplete semicircular, and conversely, any incom-
plete semicircular family appears in this way.

In the next lemma, starting from a von Neumann algebra «$/ generated by both
an incomplete semicircular family as before and a number k of entries of the form
f® epp or g ® epq, which still obey the freeness conditions together with the entries
of (X5)s=ι, (k is less than the number of holes of (Xs)"=1)9 we construct an
incomplete semicircular family covering holes of (X°, . . . , Xn)%=1.

Lemma 3. Assume that X°9 X
1, . . . , Xn, n^2is an incomplete semicircular family,

described as before in D ® Mr(C) and suppose that in addition we are given families

Cs = {/; ® eM I t - 1, 2, . . . , d] c= D ® Mr(C)

and

Cc = { g', ® ePsPs s = 1, 2, . . . , b} <Ξ D <g> MΓ(C) ,

ps φ gs, ps, qs, p't e (1, 2, . . . , r}, t = 1, . . . , d; s = 1, . . . , b. Let

Cc = {^|5 = 1,2, . . . , & } .

Assume that the family Ω^ = ωx u Cs is semicircular; that the family Ω2 = co2 u Cc is
circular and that the family Ω1 u Ώ2

 u {̂ } is free in D. Moreover ifk is the number of
holes of the family (X°9 X1, . . . , Xn) in this description (or what is the same, if the
total area of holes is k/r2\ we assume that d + 2b ^ k and that d is even.

Then we may find an incomplete semicircular family (X°, . . . , Xn~ί, F1), which
covers holes of the initial family (X°9 X1, . . . , Xn) and such that the von Neumann
algebra s/ generated by (X°9 X1

9 . . . , Xn) u Cs u Cc coincides with the one gener-
ated by (X0,. . . ,A r f I ~ 1 , 7").

Proof. Let (u(l, p9 1) ® el)(blp® epp) (as in Theorem 3.3 [7]) be the polar de-
composition (in D) of 0(1, p9 1) (x) βlp, p = 2, . . . , r.

Let (wί<7 )f _ / = ! be the matrix unit in j/, obtained from the partial isometries
(in D).

wtj = [ϋ(l, i, 1)* ϋ(l, j, 1)] (x) eij9 i, 7 = 1, 2, . . . , r ,

where ι;(l, 1, 1) = 1. The following changes labeled from 1) to 4) in the structure of
the sets CC9 Cs and Ω1,Ω2, will give new sets, C'C9 C'S9 Ω'l9 Ω'2, with the same
properties as those of the initial ones: Ω\ is semicircular, Ω'2 is circular with
ΩI u Ω'2 u {a} free and j/ is generated by (Xs)"=0 and C'C9 C's.

1) Removing from Cs two elements/; (x) e p ' t P > t , f s ® ^p^p^ ί, 5 e {1, 2, . . . , d}9 1 φ 5,
with p't = p's, and adding the element

to the set CC9 where p0 Φ p{, p0 e {1, 2, . . . , r}.
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2) Removing an element g's ® ePsqs, s = 1, 2, . . . , b from the set Cc, and adding to
Cs the real and imaginary part of

3) Take an element f's (x) epsqs from Cs and replace it, in Cs, by

where /?; φ p, p 6 (1, 2, . . . ,r}.
4) Take g's ® epsqs in Cc and replace it in Cc by

where p φ g , p , q E {1, 2, . . . , r}.
It is clear that a repeated application of the steps before will enable us to assume

that the elements in the new sets C's, C'c are in one to one correspondence with some
of the vanishing entries of Xn (since d + 2b ^ k). Hence we may take

r = *»+ Σ 4+ Σ
αeCs y/r /?eCc

Since the hypothesis on the families of the entries in Ω\, Ω'2 are still fulfilled (by
the next lemma), it follows that (X°, X1, . . . , X"'1, 7") is the required family.

Q.E.D.

The next lemma gives the reasons for which the elements in the new family Q\,
Ω'2 have the property that Ω\ is semicircular, Ω'2 is circular, while Ω\ u Ω'2 u [a] is
free.

Lemma 4. Suppose that D is a W*-algebra with trace τ and that ω± = {/;}ie/ is
a free semicircular family, ω2 — {#/}7 e j U {g'k}k<=κ ί5 a free circular family and that
ω1 u ω2 is free.

Let {vk}keκ be the unitaries from the polar decomposition of the elements in
{g'k}keκ Then each of the following changes in ω1? ω2 will let us obtain new sets ω\,
c/2 in D, such that ω\ is still semicircular, ω'2 is circular, while ω\ u ω'2 is free:

a) Remove distinct (/ι,/2)/rom ωl and add —^= H—^= at ω2;
^J λ ^Jλ

b) Remove g from ωx and add v/2Re^r, ^/2Img to ω1',
c) Replace f in ω^ by w/w*, where ω is a product in the elements {vj}jeKι
d) Replace g in ω2 by w^gw2 where w±, w2 are products (eventually void) in the

elements {vk}keK.

Proof. By Proposition 2.6 in [7], an element g is circular if and only if the elements
coming from its polar decomposition g = vb, are a free family (ι;, b}, and τ(vk) is
δkQ (the Kronecker symbol) for k ε 7L, while

τ(6*) = -Jί*(l-ί 2) 1 / 2Λ, fceN.

For each such a positive element b = b(g), let B(g) be an assignment of an
unitary in D such that B(g)" = (b(g)}" and τ((B(g))k) = δk0, k e TL, (the Lebesgue
distribution).
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In these terms g = v(g) b (g) is circular if and only if the family [v(g\ B(g)} is free,
while υ(g) and B(g) have the Lebesgue distribution.

Likewise for a semicircular element /, we assign an unitary F = F (/) with the
Lebesgue distribution, so that (F(f))" = {/}". In particular a family Cs in D is
semicircular if and only if { F ( f ) \ f e Cs} is free.

Moreover note that if g is any element in D, and w l 9 w2 are unitaries in D, then
the polar decomposition of \v1vw2 is (w!0w2) (wf bw2), if # = ft, so that we may
assume that

Also we may assume that F(w/w*) = wF(/)w* for /in Cs, w unitary.
Hence to prove the validity of steps, c, d we have to prove that the families

{wF(/0) w*} u {F(/)}/eωι/{/o} u {%;), B(gj)}JeJ u

and
{F(f)}feωί u {w1ι;(fe)w2} u {w

U

are free if w, wί9 w2 are products in the elements {ϋfeί) | k e
Here we know that the family

is free. The freeness of the two families comes from the following elementary fact
concerning free groups: If {x, yί9 . . . ,3;^} are the generators of a free group
FN+ί then so are

This proves the steps c) and d). The steps a), b) are simply the definition of a circular
element. Q.E.D.

4. Technical Result

In this paragraph we prove a technical result which is an adaptation of the
technical Lemma 2 in [4]. In that paper we proved that whenever (Xs)seS is a free
semicircular family, generating the von Neumann algebra jtf ~ Sf (F^) and e is any
projection in the von Neumann algebra {Xσ}" of one of the generators Xσ, then the
family {eXse}seS is contained in a larger semicircular family (Yt)teT that still
generates eAe.

As in the proof of that lemma, the main point is to prove this result first for e of
rational trace, but to add in this case certain requirements that make a limit
procedure possible. In our case we will start with an incomplete semicircular family
Jf°, X1, . . . , X" that generates ^ = &(Fr) (where r e Q n [2, oo), n = [r]). We
assume that the total area of the holes of this family is small enough so that there
exists a non-trivial projection e0 in {X0}" covering the holes of the family (see
Definition 3).

Then we start with a projection e^ ^ eθ9 of rational trace p/q, which is close
enough to the identity so that the integer part of the numbers of generators that are
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needed for the reduced algebra

does not increase (i.e. is equal to n).
Applying the lemma at the end of Sect. 2 that describes the form of the

generators for the reduced algebra, and then gluing these generators together, by
the procedure described in Lemma 3, we will be able to find a family
(0ι X° el9 . . . ,elX

n~^el,Y
n\ that covers holes of the family (e^e^^ and

generates the reduced algebra e^stfe^. Thus the new pieces of generators coming
from the band determined by the projection (1 — e±) in j/ are filling the holes of

The precise statement of the procedure described before is the following.

Lemma 5. Let (X°, X1 , . . . , Xn\ n ^2 be an incomplete semicircular family with
total area of the holes α e (0, 1) n Q, generating the von Neumann algebra

with trace τ. / \ ι/2

For any projection e in (XQ)" of rational t = τ(e) ̂  ( 1 -- I , which covers the

holes ofXn, (see Definition 4), there exists a semicircular incomplete family

(τ(eΓ1/2eX°e, . . . , τ(eΓ1'2 eXn~l e, τ(β)"1/2 F1)

which covers holes o f ( τ ( e ) ~ 1 / 2 eXle)ϊ=0 and generates estfe.
In addition the total area of the holes of this new family (with respect to the

induced trace τe on e<$/e) is n — (n — α) τ (e) ~ 2 , while estfe is isomorphic to

&(F(n-a)t-2+\\

Out of the proof of Lemma 5, the following corollary will come immediately.

Corollary 6. In addition ifβ- ^ e is any other projection in {X0}", of rational trace
and covering the holes of(X°, X1, . . . , X") then

where B = Bf is the von Neumann algebra generated in fstff by the elements
{fXlf\ i = Q9...,n} withf= (l-e) + e..

k p
Proof of Lemma 5. Assume that 1 — α = -̂  τ(e) = -, where p, k, r e N, fc ̂  r2 — 1

and that X°, X1 , . . . , Xn has the representation below, in D ® Mr(C), where D is
a type II 1 factor with trace φ, containing an infinite free family.

Assume that (e^Oi.j^i is the matrix unit of Mr(C) and let

and

Xs = r-112 ( Σ f(i, s) ® ett + Σ teO'»Λ s)) ® eu + ffftΛ «)
\ i = l I g K j ^ r

s = 1, 2, . . . , n.
When s = n,kf of the diagonal entries /(z, n) are vanishing, while /c/r of the

elements { g ( i , j , n ) \ l ^i <j ^n} are null and k' + 2k" = r2 — k.
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In addition the collection of all nonzero elements

ω2 = {0ft 7, s) 1 1 ̂  i <j ^ r,s = 1, 2, . . . , n}

form a free circular family, while

ωι - {/ft s) 1 1 ̂  ί ̂  r, s = 1, 2, . . . , njft s) Φ 0}

is a free circular family. Moreover ω1 u ω2 u {α} is a free family in D.
Moreover such a representation is possible with the supplementary condition

e = Σ i <g j ί ^ p 1 ® en. Since e covers the holes of Xn it follows that for j ^ p + 1, no
0ft./, n\ 1 ̂  i <7 rg r, or/(j, n) vanishes.

We take as generator for the algebra {Jf °}" the element £'= 1 (α + 2ί) ® eff and
we apply Lemma 1 to obtain a system of generators for the reduced algebra
Here ̂  is generated by (X°, X\ . . . , JΓ").

To get a matrix unit we take as in [7], the polar decomposition

0(1, ί, 1) ® β l t - [t?(l, ί) ® e lt] (h(l, ί)

f = 2, . . . , r, let ϋ(l, 1) = 1 and

Hence by Lemma 1, we have that a system of generators for estfe is (eXle)1=Q9

(Wij®eij)?j=i (which is already contained in {(^ίe)?=0}
//) and the following sets

of elements:

A = {wΛίαwίΛ ® βWA p + 1 ̂  i ̂  r} ,

B = {w^i, s ) f ί/ft 5)wίtl,(ί>s) ® ^(i.sj.pα.s) |p + 1 ̂  ί ̂  r,s, s = 1, . . . , n} ,

C = wβ(ί,j fS) ii0ft7> s)Wf,p(i, ι/,s) ® ^(i,j,S),p(i,j,5) I s = 2, . . . , n; 1 ̂  i <; g r, 7 ̂  p + 1} ,

,/),n(i./) 1 2 ̂  i <7 ^ r,7 ^ p + 1} ,

(i) I P + 1 ̂  ϊ ^ r} .

Note that in the sets B and D, none of the listed elements vanishes since by
hypothesis the holes of Xn are covered by the projection e. Here

pt; pft s); p(i,7, s) Φ q(i,j, s); p(i,j) Φ q(i,j), p(ί) (1)

are arbitrary functions on the variables 1,7, s taking values into the set (1, 2, . . . , p}.
The next lemma (Lemma 7) shows that the family ω\ of the diagonal entries of
(eXse}n

s=Q union with the sets A, B, E and {a} is free semicircular, while the family of
the upper diagonal entries of (eXse)n

s=Q union with the sets in C, D is circular, while
the family ω\ u ω'2 is free. Hence the conditions in Lemma 3 are fulfilled if we can
show that

card(,4 u B u E) + 2card(C u D) < r2 - k .

Here r2 — k is the number of holes of the incomplete semicircular family

in its representation in D ® Mr(C) (as I -^ 1 = 1 — α, where α is the total area of the

holes). Moreover, we may always assume that r — p is even; this will insure that
card(^4 u B u E) is even, which is one of the conditions in Lemma 4.
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Indeed it is obvious that

d = card (A u B u E) = (n + 2)(r - p) ,

while

and

card D = - [(r2 - r) - (p2 - p) - (r - p)] ,

so that

2b = 2card(C u D) = [(r2 - r) - (p2 - p)] - 2(r - p) ,

and hence
d + 2b = n(r2 - p2) .

( α\1/2 k p
But by hypothesis τ(e) > I 1 -- and α = 1 -- ~, τ(e) = - so that we get

\ nj r r

r n

which is equivalent to

In this way we get that d + 2b < r2 — k and hence, by Lemma 3, we get
an incomplete semicircular family (in D ® MP((C)), (c~1/2eX°e, . . . ,
c" 1/2eJΓ"- * e, c~ 1/2 7") that covers holes of the reduced family (c~ 1/2£?J^)f=o, and

that generates ej/^. (Here c = τ(e).)
Moreover out of this representation we get that the number of holes (in the

representation in D ® Mr(C)) is

(r2-k)-n(r2-p2),

so that the total area of the holes of the new family is

_L[(Γ2 _ k) _ n(r2 _ p2}] = J_[r2α _ n(r2 _ p2)]

= τ(β)~2(α — n) + n = n — (n — a)τ(e)~2 .

In particular, with t = τ(e) the new family (eX°e, . . . , eXn~1e, 7") generates
a von Neumann algebra which is isomorphic to &(Fr) with

r = (n + 1) - n + (n - α)ί~2 = !+(«- α)ί"2 .

Hence ej/e ^ ̂ (F(π_α)ί-2 + 1) while <$/ ^ £*(Fn + 1-a). This ends the proofs of
Lemma 5. Q.E.D.

Proof of Corollary 6. We may assume, taking r big enough, that in the representa-
tion described in the proof
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and that

e_ = \®elΛ + + l®ep_tp_ .

Moreover in this case the holes of (X°, X1, . . . , Xn) are also covered by the
projection β- ^ e. Hence if we assume that the functions in formula (1) take values
in the set {1, 2, . . . , p_), then it will follow by the remark after Lemma 1 (with
e+ = e) that the elements (e-Xse-)"=o (which already contain (w lV)f~.= 1 together
with the sets A, B, C, D, E (which are thus unchanged when they are multiplied with
e-) are still generators for the reduced algebra e-Bfβ-.

The moves in Lemma 3, do not alter this generating property and hence
Corollary 6 follows. Q.E.D.

The following lemma, which appeared in the proof of Lemma 5, states that the
entries which appear in the reduction process (the sets A, . . . , E) give free semicir-
cular (respectively circular) families. These families are also free with the remaining
entries of (e-Xse-Ys=Q. The set (gj)jeK corresponds to { g ( l , j , 1) 1 1 ^j ^ p}, the set
(gj)jeL corresponds to [ g ( l 9 j , l ) \ r ^j ^ p + 1} and (gj)jej corresponds to the
remaining { g ( i , j , s ) } .

Lemma 7. Let D be a type II 1 factor with trace τ, ω± = {/ΐ}/ e /u{0} a free
semicircular family, ω2 = {gj}jejuKuL- Assume that ω1 uω2{α} is free. Let

and

Here (Wj) i e /, {w'j}jeL {w}', wfjr}jej^κare (eventually void) products in the elements
{vj}jeKvL> while v'jj e L is such a product that contains the element Vj.

Then ωΊ is a semicircular family, ω'2 is a circular family, while ω\ u ω'2 is free
in D.

Proof. In the setting of the proof of Lemma 4, we have to show that the union of
the families

v j a υ j e L u a u

and
{wy vteW; KT B(gjW \ j e J u K]

is a free family of unitaries with the Lebesgue distribution, if the family

l u F(a) u %

is a free family of unitaries having the Lebesgue distribution. But this is a conse-
quence of the following two facts concerning free groups:

(i) If {*!, x2, . . . , xΛ9 yί9 . . . , yk,a} are the generates of Fn+k + 1 then

are free generators of a free group.
(ii) If (xl9 . . . , xπ, y} is a free system of generators of Fn + 1, then so is

This ends the proof of Lemma 7. Q.E.D.
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Corollary 8. Let q ^ 2 be a rational number, t a rational number in (0, 1). Then with
the notations of Definition 2,

Proof. Let (X°9 . . . , XN) be an incomplete semicircular family generating
s0 = &(Fq) (with N = the integer part of q) and let e be a projection in (X0)" with
trace value t. Also let M be the integer part of (q — l)ί~2 + 1. If M = N then there
exists an incomplete semicircular family (cZ°, . . . , cZM) in e<$/e with Zl = eJf'e,
i = 0, 1, . . . , N — 1, c = ί~1/2 that generates ej/e and that covers holes of
(eX°e, . . . , eJSTM

If M > N then there exists an incomplete semicircular family (cZ°, . . . , cZM) in
ej/e that also generates ejtfe. Moreover if e0 is a projection in e(X°)"Q = (Z°)", of
rational normalized trace (relative to es4e\ greater than the square root of the total
area of the holes (cZ°, . . . , cZM) (which is M - (q - l)ί~2), then we may find the
incomplete semicircular family (cZ°, . . . , cZM) so that its holes are covered by e0.

The case M > N is simply a consequence of Lemma 1 and Lemma 7. The case
M = N is simply Lemma 5.

5. Proof of the Main Results

In this paragraph we will prove that &(FN)^_ ^ &(F(N- 1)k+1), fc, ΛΓ e N, N ̂  2. As

a consequence we will obtain the stable isomorphism of the von Neumann algebras
associated to free groups.

The idea to prove the isomorphism before, is to start with a sequence of rational

numbers — decreasing to —7=, where — is close enough to —7= so that the first
Ik r,

reduction process &(FN)pl/rι gives an algebra isomorphic to J&(Fr)9 r e Q, where
the integer part of r is (N — ί)k.

For this reason the next reduction processes will not increase the number of
elements of the incomplete semicircular family generating the reduced algebra
^(FN)pj/qj so that we will obtain by induction incomplete semicircular families,
each comprising holes of the (reduced part of the) preceding one.

Easy estimations will give us that the total area of the holes of these incomplete
semicircular families tends to zero, and hence by the remarks in the second
paragraph, we will obtain at the limit, a free semicircular family.

To show that this family is also a system of generators for the reduced algebra,
we will choose, from the beginning, an increasing family of finite sets exhausting the
reduced algebra, and we will impose conditions so that the generators of the
iterated reduced algebras almost contain these finite sets, always with a better order
of approximation.

The induction step that will make possible such a choice of the generators is
contained in the following lemma, which is a consequence of Corollary 6.

Lemma 9. Let (XΌ, X1, . . . 9X
n) be an incomplete semicircular family generating

the algebra jtf (which is a type II1 factor with trace τ).
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Let e be any projection in (X0)", such that τ(e) ^ I 1 -- ]1/2, where α is the total
\ nJ

area of the holes of the family. Assume that there exists a projection e0 E (X0)" of
rational trace value, e0 ^ e that also covers the holes of the family.

Then for any ε > 0, and any finite set F c ej/e, there exists δε > 0 such that for
each projection e1e(XQ)", of rational trace value, QI ^ e and τ(ev — e) ̂  δε, we can
find an incomplete semicircular family

-1/2 yO --1/2^ Yn~le r~ί/2 γn\i )

in e1^e1(where c1 = τ(el)\ covering holes of(cϊll2elX
lel)^=Qt and such that F is

s-almost contained in

{(eX°e, . . . iβX^^e^e)}"

with respect to norm \\ \\τ.

Proof. The algebra es/e is generated by elements of the form eXil . . .Xirne,
m ^ 1, i'1? . . . , im E {1, 2, . . . , n}. By taking the linear span we may assume that all
elements in F are of this form.

A trivial continuity argument shows that for every ε > 0, there exists δ = δε,
such that for any projection g in (X0)" with τ(l — g) < δε the elements in the set Fg,
obtained by replacing in F a monomial eX11 . . . Xlrne by egXίl . . . gXlmge, are at
distance (with respect to || ||τ) less than ε to the corresponding elements in F.

We choose projections e± of rational trace value in (X0)" such that
e+ ^ e ̂  e- ^ eQ, τ(e+ — e-) ^ δε and let g = (1 — e+) + e-.

By Corollary 6 of Lemma 5, we obtain that there exists an incomplete semicir-
cular family (c+1/2e+X°e+, . . . ,c-+

ll2e+Xn~le+,c-+

ll2Yn) in e+^e+ covering
holes of (c+1/2e+ Xle + )i=0 (c+ = τ(e + )) and generating e + £/e+.

Moreover the algebra Bg = {{gXsg)s=o}" has the property that

e-Bge- ^{(^_Z^_)Γ= 0

1 u{β_7^_}} ' / .

On the other hand, we obviously have that Fg c e-Bge-, and hence we get

Fg c {(e-Xie-tf-j u {e-Ύ»β-}}" e {(eXle)^ u {eY"e}}"

the last inclusion is consequent to the fact that e- ^ e, and e- , e e (X0)". Since the
elements in F were at distance less than ε, with respect to the corresponding
elements in Fg, the conclusion follows, by choosing e^ = e+. Q.E.D.

We can now prove our main theorem.

Theorem 10. &(FN)± ^ JSf(F ( Λ Γ_1 ) f c + 1), /c, N e N, N ^ 2.

Proof. Let (Z1, Z2, . . . , ZN) be a free semicircular family generating st =

Take a rational approximation — of Jk, such that
Pi

—
1

Pi
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We will have that

Pi/ \ Pi/ \ Pi

1

Pi '

Choosing — so that p1 is big enough, it will follow that we may assume that
Pi

We will also choose — sufficiently close to -Jk, so that the integer part n of
2 Pi

(N - 1) Y-\ + 1 be (TV - l)k. By Corollary 8 it will follows that, whenever e1 e (Z1)"

is a projection of trace τ ( e l ) = — , the algebra e^stfe^ is generated by an incomplete
rι

semicircular family (X°9X{9 . . . , X") ^ e^^e^ with total area of the holes

(N-l}(k-τ(e,Γ2\
Because of the assumption on pl9 we may choose this incomplete semicircular

family so that there exists a projection e0 in (X^)" = e1(Z1)ff e1 of relative trace

(in e l ts/eΛ τe ι(e0) = , ° = -, and such that eQ covers the holes of
2

(Xι9 X{9 . . . , Jfϊ). The property of PI used here was that

Such a selection is possible due to the freedom in choosing the places of the holes
of an incomplete semicircular family generating the reduced algebra, which in
turn is due to the freedom of the choice of the functions p(i9j9 α), q(i9j9 α) in Lemma
1. One may also use here the procedure described in Lemma 5, or one may
use the uniqueness up to isomorphism of the algebra e^stfe^ ^ J2?(FMl),
M! = (N — 1) (rl/pl) + 1, to find a family of generators of e1 j/e1 with the required

properties, or one can use directly Corollary 8. Moreover since —=τ(e1)~1 =
\A

— j=— > - — τeι(e0) it follows that we are also able to choose a projection e in
V f c / ? 1

 1

pf°)" of absolute trace τ(e) = —γ=9 e0 ^ e ̂  e±.
V f c

Having made these choices, we choose a decreasing family of projections (es)seN

in (Xι)"9 es I e, of rational trace τ(es) = — , 5 e N, where ^s = τ(es — e) will be

chosen small enough.
We also start with an increasing family of finite sets Fλ c F2 ^ Fs ^

and a sequence (εs)se]N of positive real numbers, εs J, 0.
We will show by induction that it is possible to find the projection es, and an

incomplete semicircular family (c~1/2 X%9 . . . , c~1/2 X") in es^es, covering holes
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of the preceding family.

(cr1/2es^_ ies)?=0

with total area of the holes

and such that Fs is εs-almost contained in the algebra {(eXl

se)ϊ=Q}". Here cs = τ(es\
while Xl

s = esX
l

s- 1 es, for i = 0, 1, . . . , n — 1.
Indeed if we found such a family for s, we may find the corresponding family for

the next index s -f 1, as follows:
τ(e)

Since τβs(e) = — ) = (1 - αs/n)1/2 (as this is equivalent to t 2 / k =

1 - (N - l)(/c - ί2)n-1 which is true since n = (N - l)fc, if f = rs/ps -
and since e ̂  e0? e0 covers the holes of (c~ 1/2 ^s)"=0 ^ es^es, it follows by Lemma
9, at the beginning of this paragraph, that if es + 1 ^ e is close enough toe(es+1 ^ es)
(i.e. τ(es+l — e) ̂  δs+1 is sufficiently small) then there exists a family (^j+1) in
es+1<s/es+1 with the required properties.

The only thing that one has to check is the formula for the total area of the
holes α s+1 of this new family.

But by Lemma 5 we have

αs + 1 =n-(n- αs)[τJes+1)Γ2 = n - [_n - (N -

where t = - = τ(es)~l\ a = — - τ(ea+lΓ
l

Ps Ps+1
Since n = k(N - 1) we get that

αs+1 = (N - l)[/c - (k - (k - t2))α2/t2! = (N - \}\_k - α2] ,

which is exactly the formula we were looking for.
Hence the induction step works, and we want to prove that the sequence

is Cauchy in the norm || . ||τ. , ^
But if α ̂  b, α, b e N and τα is the relative trace on eα£/eα, τα(x) = - - , for x in

τ(eα)
eαjtfeα, then, since the difference between the elements eαX

n

beα and X" is concen-
trated within the projection e, it follows (using also Remark 1 and the formulas for
the total area of the holes αα, αb) that

\\eX"αe-eX*be\\l£\\X"α-eαX
n

beα\\l

- (rb/pb)
2 -k- (rα/pα)

2)

Since all the norms || ||tβ, α e N are uniformly equivalent (as (τ(eα) -> τ(e) ή= 0)
and since (rfl/pfl)α6]N converges to ^/fc, it follows that the sequence (eXn

ae)a^ is
Cauchy in the norm || ||τ.
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We have {(*A>)?=0}" F ((**Uι)?=o}" since (τ(ea + lΓ
1/2 Xa + ι)ΐ=* covers

holes of(τ(ea + ί ) 1/2 ea + 1X
l

aea + ί)
n

i = 0. In fact

z
£« + 1 Xa ea + 1 = X a + 1 ~~ ^ A "̂ + I/A- '

r= 1

is the formula for recovering the holes of ea + 1 Xn

a ea + ^ from X" + ι, where /v,/jV for
r = 1, . . . , / a r e projections in e0(X°)"e0. The construction of the sequence

shows that this formula (under e) remains valid for any fc, i.e. for b ^ a + 1, we have

eXn

ae = eXn

be- Σ firX
n

bfjr ,
r = l

so that when fe tends to infinity we get

eXn

ae = X»- f i X n f ,
r=l

where ft ,/7 are projections in e0(Xa)" e0 ^ (X°)"9 where Xn is the limit, after a, of
eXn

ae.
Therefore (Js Fs, is contained in {(eXl e)"=0}"> where X1 — eXl

a + 1 e = eXl

a e, for
any a e N, f = 0, . . . , n — 1.

Hence <^e = {(e^e^o}". Finally, the family (τ(eΓ1/2Jf%o is free and
semicircular, as the total area of the holes of the family ( τ ( e a ) ~ 1 / 2 ea Xaea)ϊ=0 in
eajtfea tends to zero, so that by Remark 2, the limit family (τ(e)~1/2 Xl)1=o is
semicircular. This ends the proof of the theorem. Q.E.D.

As we mentioned in the introduction, the well known elementary technique in
type II factors, [1,5] give (out of this theorem) the following corollaries.

Corolary 11. ^(F2) ® B(H) is isomorphic to ^(Fk+1)® B(H)for each k e N.

Since the isomorphism class of the algebra £P(FN) ® B(H) for finite positive
integer (or even rational) N is thus independent of N, it then follows that the
fundamental group ^(^(FN)) cannot distinguish between the algebras &(FN\ for
finite N.

Corollary 12. The multiplicative subgroup o/(IR + \{0}), ̂ (^ (FN)) is independent of
N, ( J V e N , N finite, N^2).

Proof. This comes from the definition of ([!]) of the fundamental group of a ^(M)
type II ! factor M, with normalized trace τ, as the set

&(M) = {t > 0 1 (3) θ G Aut(M ® B(H}\ θ scales the trace by t } .

Here H is a separable Hubert space, φ is the canonical trace on B(H\ M ® B(H) is
endowed with the canonical tensor product trace T = τ ® φ, while θ scales trace by
ί i f f

Γ(θ(x)) = ίΓ(x), for x in (M ® B(H))+ . Q.E.D.

The following corollary to Theorem 10 was pointed out by G. Skandalis.
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Corollary. Let α, fc, c, d positive integers with α, b, c, d ̂  2 (where a and c may be
infinite) and so that

Proo/. This a consequence of the following well known isomorphism

Mt®N1/t^M®N, ίeR, ί > 0 .

Here M, JV are type //! factors.

Note added in proof. After this paper has been widely circulated as an I.H.E.S Preprint, December
1991, further progress has been made to the subject of this paper.

A series of type II \ factors £P(Fr) for real r > 1 has been introduced with the properties that
(&(Fr))r>1 is consistent with our definition for r e Q, r > 1, (&(Fr}\ £ JS?(F(r_1)t-2 + 1) and
j^(Fr) * j^(Fp) £ &(Fr+p), t, r, p e R, r, p > 1, ί > 0. This was independently discovered by K.
Dykema (in [8]) and the author (in [10]).
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