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Abstract. The Yamada polynomial for embeddings of graphs is widely generalized
by using knit semigroups and polytangles. To construct and investigate them, we use
a diagrammatic method combined with the theory of algebras HN M ( α , g), which are
quotients of knit semigroups and are generalizations of Iwahori-Hecke algebras Hn(q).
Our invariants are versions of Turaev-Reshetikhin's invariants for ribbon graphs, but
our construction is more specific and computable.

1. Introduction

In [Y], Yamada introduced an invariant Y of embeddings of a spacial graph in S3,
which we call the Yamada polynomial. It is also an invariant of embeddings of a
trivalent graph in S3. It is one of the simplest cases of the invariants for ribbon
graphs in [R-T], which are constructed by using a triangular Hopf algebra. Here,
we generalize the Yamada polynomial from a different point of view. We first give
a two-variable extension Zs of the Yamada polynomial Y by a naive way. Our
invariant is related to the HOMFLY polynomial while the Yamada polynomial is
related to the Jones polynomial. This extension Zs has further generalizations. We
define them by using representation theory of knit semigroups, which is an extension
of the braid groups. The edges are colored by irreducible representations of knit
semigroups and the vertices are colored by diagrams on polyhedrons. These extensions
are closely related to the invariants in [R-T]. For those invariants, vertices are colored
by elements of certain vector spaces and our coloring corresponds to specify such
elements actually. We mainly discuss invariants related to the HOMFLY polynomial,
but we may apply our method to other link invariants.

By using Kauffman's bracket polynomial (•), we can reconstruct the invariant Y.
The bracket polynomial is a version of the Jones polynomial [Jo], and is a regular
isotopy invariant of non-oriented link diagrams defined by a relation

(Lx)=A(L0)+A-ι{Loo), (1.1)
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where A is a non-zero complex parameter and LX,LO, L^ are link diagrams that are
identical except within a ball as in Fig. 1. We assume that (O) = 1 for the trivial
knot O

Fig. 1

and WΓ denote the set of its verticesFor a non-oriented spacial graph Γ, let f
and edges respectively. Let 2Γ be the sets of all spacial graphs obtained by removing
some (or no) edges from Γ. Let G be a diagram of an embedding of Γ. As in Fig. 2,
we get a link diagram G ( 2 ) from G. For Γ' G 2 Γ , let GΓ, be the subdiagram of G
corresponding to Γ'. Then Y(G) is given by

Y(G) = -
A2 + A~2

A4 + 1 + A-4 (1.2)

where |^ Γ / | and \&Γ\ denote the numbers of elements of WΓ, and WΓ. It is an invariant
of embeddings of Γ up to multiples of monomials in A. We can generalize the above
construction in the cases of the Kauffman and HOMFLY polynomials. Jaeger did the
Kauffman polynomial case in [Ja] and we do the HOMFLY polynomial case in this
paper.

Fig. 2 edge vertex

Let P be the HOMFLY polynomial in [FY-H-LM-O]. It is an invariant of
equivalence of oriented links and is a two-variable extension of the Jones polynomial.
It is defined by the skein relation

a~ιP(L+) - aP(L_) = (q - q~l)P(L0), (1.3)

where a and q are non-zero complex parameters not equal to 0 nor ± 1 , and L+,L_,L0

are link diagrams that are identical except within a ball as in Fig. 3. We assume that
P(Q) = 1 for the trivial knot Q.

Fig. 3

Let G be a diagram of an embedding of a non-oriented spacial graph Γ and s be
a mapping from <&£ to {±1}. Replacing the vertices and the edges as in Fig. 4, we



Yamada Polynomial of Spacial Graphs and Knit Algebras 513

get a linear combination of 2P29 link diagrams, where p and q are the numbers of
edges and vertices of Γ respectively. Let ZS(G) be the HOMFLY polynomial of the
above linear combination of diagrams. Then ZS(G) is an invariant of equivalence of
embeddings of the graph Γ up to a sign and multiplication by an integer power of a
(Theorem 2.3).

,q-vg U
a- I/a Π

at an edge e

Fig. 4 at a vertex v

On the other hand, Turaev-Reshetikhin introduced invariants of embeddings of a
ribbon graph in [R-T] parametrized as follows. Let y& be a triangular Hopf algebra.
Fix a simple Λ> module Ve for each edge e of Γ. For v £ 9£, let e1 ? e 2 , . . . , er be
the edges with end point v, End^ = End^V^ 0 Vei 0 . . . 0 V^, Fo), where Vo is
the trivial ^ module, V̂  = V̂  if υ is the starting point of ei and V̂  = V* (the
contragradient module of Ve.) if v is the end point of e{. Fix an element Tυ G Endυ for
every v G ^£. Then ( ^ Veχ, V^,... IVχ, 1^,...) parametrizes Reshetikhin-Turaev's
invariants, where {e1? e 2 , . . •} = ^ Γ and {uj,i72,...} = 9^. The Yamada polynomial
corresponds to the case Λ> = %q(sl2) and Ve = y ( 3 ) for any edge e, where V(3) is the
3-dimensional simple ί^(?(5/2)-module. in this case, V^ = (F ( 3 ) )* , and Iv is unique

up to a scalar multiple since dim(End/^(Vr(3) 0 F ( 3 ) 0 V(3), VQ)) = 1. In this case, Fo

is the one-dimensional representation of %όq(sl2). One problem remained in the work
of [R-T]. They do not give a method to describe the element Iv. If dim(End^) = 1
then Iv is unique up to a scalar multiple and so there is no problem. However, if
dim(End^) > 1, we have to specify Iυ.

In this paper, we construct similar invariants by using knit semigroups and we
give colors of vertices by using a "polytangle," which is something like a tangle on a
polyhedron. Our invariants are ambient isotopy invariant up to some scalar multiples.
In the case of trivalent graphs, the category of embeddings of spacial graphs and that
of abstract graphs are equivalent. Therefore, ours are invariants for embeddings of
abstract trivalent graphs.

In Sect. 1, we investigate the two-variable extension Zs of the Yamada polynomial.
In Sect. 2, we generalize Zs by using a polytangle, semigroup BN M and an algebra
HN M ( α , q). This algebra is a quotient of CBN M by the skein relation (1.3) and so
a generalization of the Iwahori-Hecke algebra HN(q). In Sect. 3, we discuss some
special cases, including the invariant in Sect. 1. To do this, we use representation
theory of HNM(a, q) developed in [Ko-Ml].

2. A Two-Variable Extension of the Yamada Polynomial

2.1. Embeddings of a Spacial Graph. A spacial graph Γ is an oriented or non-oriented
graph with additional information. For each vertex v e 9£9 we associate a disk Dυ
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and give an injective mapping from edges with end point υ to radii of Dv. For
example, the graphs Γ and Γ' in Fig. 5 are equivalent as abstract graphs, but are not
equivalent as spacial graphs. If Γ is oriented (resp. non-oriented) as a graph, then
we call it an oriented (resp. non-oriented) spacial graph. Let Γ be a spacial graph.
An embedding of Γ in S3 is a set of mappings / e, fv, and fD , where fe:e —> S3

for an edge e, fυ: υ —• £ 3 and / D v :Dυ -+ S3 for a vertex υ. We assume that these
mappings are compatible with the additional information. Let e be an edge with an
end point at a vertex υ. Then fe maps a neighborhood of v in e to / D (r), where r is
the corresponding radius of e. Let Gj and G2 be two embeddings of a spacial graph
Γ. We say that Gλ and G2 are equivalent if there is an isotopy of ί>3 deforming Gx

t o G 2 .

Fig. 5

As in the case of links, we define a diagram of a regular projection of an embedding
G of Γ. Regularity means that the projection has no triple point, and no double point
at any vertex. Two diagrams G1 and G2 present equivalent embeddings if and only if
there is a sequence of moves (RI)-(RV) in Fig. 6. Two diagrams Gλ and G 2 are called
regular isotopic if there is a sequence of moves (RII), R(IΠ), and (RIV) in Fig. 6.

(Ri)
\

(RII)

(RΠD

Fig. 6

(WV1 //\\~ A "

" -rΓΊ
(RV)

22. A Two-Variable Extension. Let G be a diagram of an embedding of a non-oriented
spacial graph Γ and s be a mapping from TΓ to {±1}. We show that Zs in the
introduction is an invariant of embeddings of Γ. By the definition of Zs, it is a
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regular isotopy invariant of embeddings and it satisfies the following relations:par

(ZI) ) = Zs( ) = a 2

(ZV) s(v)aK7( )=ZS( -kr) = s(v)a Zs(

k-strings

The diagrams of each relation are identical except within a ball. These relations are
a consequence of the following relation, which comes from the skein relation (1.3):

•8

(ίl.»δ)-> (ll
The relations (ZI) and (ZV) imply the following.

q-l/q
a-I/a

υ (2.1)

2.3. Theorem. The regular isotopy invariant Zs is an invariant of euivalence of
embeddings up to a sign and multiplication by an integer power of a.

2.4. Another Two-Variable Extension. The Kauffman polynomial in [Ka2] of links is
another two-variable extension of the Jones polynomial. Let D b e a regular isotopy
invariant of non-oriented link diagrams defined by the following relations,

D(L+) - D(L_) = (q- q-ι)(D(L0) -

...), (2-2)

where a and q are complex parameters with a ^ ±1, q ^ ±1, a ^ ±q and the
link diagrams L + , L_,. . . are given in Fig. 7. The link diagrams in each relation are
identical except within a ball. We assume that D(Q) = 1 for the trivial knot O We
call D the D-polynomial. For an oriented link diagram L, let F(L) = α~™(L)D(|L|),
where |L| is the diagram L without orientation and w(L) is the writhe (sum of
signatures of all the crossing points of L). Then F is an invariant of link equivalence.

Fig. 7
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In [Ja], Jaeger defined an invariant of embeddings of non-oriented spacial graphs by
using the invariant D. We naturally extend the D-polynomial to a linear combination
of link diagrams. Let G be a diagram of a non-oriented spacial graph Γ and s a.
mapping from the set of edges of Γ to {±1}. Replacing the vertices and the edges
as in Fig. 8, we get a linear combination of 3 e link diagrams, where e is the number
of edges of Γ. Let J(G) be the D-polynomial of the above linear combination of
diagrams. By its definition, J is a regular isotopy invariant and it satisfies the following
relations:

(JI) )=
2 2

) = a q J (

(JV) a" kq k j( = J( = a kq k j

k-strings

Therefore J is an invariant of equivalence of embeddings up to a sign and
multiplication by integer powers of αq.

μ(q'

at an edge where μ=l

Fig. 8 at a vertex

2.5. Relation among Invariants. Since the D-polynomial and the HOMFLY polyno-
mial are both two-variable extensions of the Jones polynomial, the invariants Zs and
J are a two-variable extension of the Yamada polynomial Y.

2.6. Theorem. For an embedding G of a non-oriented spacial graph Γ, we have the
following:
(1) Y(G) = Π 2(1 + s(v) (-A3)^rιZs(G)\a=_A-4iq=A2, where nυ is the degree
Ofv. vt^Γ
(2) Y(G) =

3. Invariants of Embeddings of a Spacial Graph

In this section, we assume that the parameters a and q in the definition of the HOMFLY
polynomial is generic

3.1. Knit Semigroup. We first generalize the braid groups. Let Bf

N M be the free semi-

group generated by ( σ + ) ± 1 , ( σ + ) ± 1 , . . . , ( σ + _ 1 ) ± 1 , (σf ) ± 1 , ( σ 2 - ) ± 1 , . . . A*M-I)±1,
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r, and e. These are corresponding to the diagrams in Fig. 9. As in the case of braids,
the product of two elements bλ and b2 corresponds to the join of their diagrams. Two
elements in B'N^M are called equivalent if the corresponding diagrams are regular
isotopic. The product structure of Bf

N M is compatible with this equivalence and this
product induces a semigroup structure in the set of equivalence classes of B'N^M.
We denote this semigroup by BN M. An element of BN M is called a knit and the
semigroup BN M is called a knit semigroup.

Fig. 9

U
Π J

1/
,Ό

M ... I I ... M M ... I + i i ... I 1 ... H

i... n M ... i+i i ... i i ... V\

M ... I I . . . i l + i ...VI

I 1-

I X • ( »

3.2. Algebra HN M(a,q). The HOMFLY polynomial P of links are defined recur-
sively by the skein relation (1.3). The quotient of the group ring CBN by the skein
relation is the Iwahori-Hecke algebra and P is given by a trace of it. Similarly, the
quotient of the semigroup ring CBN^M by the skein relation is the algebra HN M ( α , q)
introduced in [Ko-Ml, Ko-M2]. It is defined by the following generators and relations.

HNM(a, q) = <T+,..., T+_,, T~,..., T^_

TfTf = ΊfΊf{\i -j\> 2), TfTf = ΊfΊf,

ETf- = T±E (i > 2), E(T+Γ1T~ET+ = E(Γ+)-1Γf ET',

a — a
-1

q-q-1 E,

(3.1)

The invariant P of a link is expressed in terms of the Markov trace of this algebra.
Let pNjM be an homomorphism from CBN M to HNM(a, q) defined by

(3.2)

Let b G BN M. By making a closure of b as in the case of a braid, we get an oriented

link diagram b. Let PN Mφ) = PQ>) for b e BN^M. Then PN M is a composition of
the mapping pNtM and a trace on HN M(a, q).

3.3. Polytangle Diagram. Let Q be a n-sided polygon. Let s(1) = (s^\ s^\..-),
s ( 2 ),..., s ( n ) be finite sequences of ± 1 . We assume that the total number of elements
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of -hi in s ( 1 ),s ( 2 ),...,s ( n ) is equal to that of - 1 in them. An (s ( 1 ),s ( 2 ),... ,s ( n ))-
polytangle T is something like an oriented link diagram in Q. Some strings are
non-closed and their end points are on the sides of Q. We give numbers to the sides
of Q anti-clockwise. Let |s ( ΐ ) | be the numbers of elements in s(ϊ). The ith side has
s^ | end points and the string intersecting with the j t h point on the edge is oriented

inwards if s^ = 1 and is oriented outwards if sj = — 1.

The skin relation (1.3) reduces every polytangle to a linear combination of some
simple ones. A polytangle T is called basic if it satisfies the following:
(1) There is no closed curve in T.
(2) Every string of T has no self intersection.
(3) Any two strings of T has at most one positive intersection.

The number of basic polytangles is equal to r\, where r = Σ |s ( ϊ ) |/2.
i

3.4. Proposition. By using the skein relation (1.3), every polytangle is reduced to a
linear combination of basic polytangles.

3.5. Colors of Edges and Vertices. Let Γ be an oriented spacial graph. In what follows
in this paper, a spacial graph means an oriented spacial graph. For υ G 9f, let <SV

be the set of edges with end point v. For e G ^ Γ , we associate a pair (JVe, Me) of
non-negative integers. We assume that

(3.3)

for every v G &£, where ε(e) = 1 if e starts at v, ε(e) = —1 if e ends at υ, and
ε(e) = 0 if e is a loop from υ to υ.

Let HN M(a, q) be the set of isomoφhism classes of irreducible representations

of HNM(a,q). For an edge e G <^Γ, let φ(e) G HNEME(a,q). We call φ(e) the

color of e. Let se be a sequence ( 1 , 1 , . . . , 1, — 1,.. ., — 1). For υ G 9£, let nv be the

Ne Me

number of radii in Dυ associated to edges with an end point at υ. Such radii in Dυ

are denoted orderly by r[ , r^\ , r^l a n c* m e corresponding edges are denoted by

e^\ e^\ , e ^ respectively. Let Qυ denote the set of basic polytangles of an nυ-

sided polygon with sequences s (V), s („>,..., s (V). Now we define colors of vertices.
e l e 2 β n υ

Let ^ be a mapping from 9f io Qv. For a vertex υ e &£, we call ^ (ι ) the c6>/or
of v.

3.6. Invariant of Embeddings. We define a regular isotopy invariant of embeddings

of a special graph Γ colored by φ and ψ as above. For £> G î ŷ M(α ' ̂ ) ' ^e t £ρ
be the ccorresponding central idempotent in HN M(a,q). Let ζρ be an element of
CBN^M such that p ^ M(C ρ) = ξρ- Note that Cρ is presented by a linear combination
of diagrams. Let G be a diagram of an embedding of Γ. Let G ^ be the linear
combination of oriented link diagrams obtained by replacing edges and vertices of G
as in Fig. 10. The above replacing rule for a vertex v is depend on the order of the
edges e ^ , . . . , e<£ around υ in G. Let Pφ<φ{G) = P{Gφ<φ).
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Fig. 10

Dv

where

if the edges around v
are ordered anti-clockwise,

if the edges around v
are ordered clockwise,

M N

3.7. Theorem. Pψ^(G) is an invariant of regular isotopy.

Proof. The link represented by G^ψ is invariant under the moves (RΠ), (RΠI), and
(RIV) in Fig. 6. Therefore, Pφ^(G) is also invariant under these moves. D

3.8. Full Twist. Let £ ( i V ' M ) be a full twist given in Fig. 11. It is an element of the knit

semigroup BN^M and commutes with all the elements of BN M. Therefore, irreducible

representation ρ sends VN,M^{NM)) t 0 a scalar matrix.

1 t-t

Fig. 11

3.9. Lemma.

(2) The scalar

t(Nt

xe( is a monomial in a± and qq
±ι

Proof Part (1) is obvious because ρ(pN^M(t(N^M))) is a scalar matrix. The determinant

°f Q(PN,M(^N'M^ ^s a l s o a monomial in a and q since the eigenvalues of ρ(E)
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and ρ{Tf) are monomials in a and q. On the other hand, ρ(pN)M(t^N'M))) can be
represented by a matrix whose entries are rational functions on a and q (Theorem 4.12
of [Ko-Ml]). These facts imply the part (2). D

This lemma implies the following.

3.10. Lemma. The regular isotopy invariant satisfies the following relations:

(PI)
XΦ(e,(D

(PV) s (v ) Π

The following theorem is an immediate consequence of the above two lemmas.

3.11. Theorem. The regular isotopy invariant Pφ ψ is an invariant of equivalence of

embeddings of Γ up to a multiple of a monomial in α

4. Some Special Cases

Let Γ be a spacial graph and φ, ψ be colors of edges and vertices of Γ. We consider
some special cases of coloring φ and φ. Before doing it, we review the structure of
the algebra HN M(a,q), which is investigated (Theorem 4.12 of [Ko-Ml]).

4.1. Structure ofHNM(a, q). The irreducible representations of HN M ( α , q) is param-

etrized by the set ΛN^M = {λ, μ)|λ G AN_k,μ G ΛM_k(k > 0)}, where Λk is the set

of partitions of size k. For (λ, μ) G ΛN M , let ρλ ' be the irreducible representation

of HN M(a,q) parametrized by (λ,μ) and χ (/^M ) be its character. The construction
of representations of HN M ( α , q) in [Ko-Ml] implies the following.

4.2. Lemma. Let H^ M(a,q) be the two-sided ideal of HN M(a,q) spanned by the

simple components corresponding to χλ ' with |λ| -h |μ| < N + M.

(1) The subalgebra H^ M ( α , q) is equal to the two-sided ideal generated by E.

4.3. Colored by Primitive Characters. An pair (λ, μ) G ΛN M is called primitive if

|λ| + \μ\ = N + M. The above lemma implies the following.

4.4. Lemma. Let ξ (N,M) be the central idempotent corresponding to ρλ ' as in 3.5.

Then, for primitive (λ,μ) G ΛN M, we have ξ {N,M)E = Eξ (N,M) — 0.
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The coloring φ is called primitive if φ(e) is primitive for every edge e. A basic
polytangle T is called primitive if it has no string whose terminal points are both on
the same side of the polyhedron. The coloring φ is called primitive if φ(v) is basic
and primitive for every vertex v. Then the above lemma implies the following.

4.5. Proposition. The invariant Pφ^ is zero for all embeddings of Γ if φ is primitive
and φ is not primitive.

4.6. Colored by Linear Characters. A character of HN M(a^q) is called a linear
character if the degree of the corresponding representation is 1. The coloring φ
of edges of Γ is called linear if φ(e) is a linear character for every edge e. One
dimensional representation sends every element of HN M(a,q) to a scalar. Moreover,
if the corresponding character is primitive, this representation sends T^~ to q or — q~ι,
T~ to q or — q~ι and E to 0. This fact leads us to the following proposition.

4.7. Proposition. Let φ and φ are primitive colorings of edges and vertices of a spacial
graph Γ. Assume that φ is linear. Let φ'(v) be the tangle obtained by smoothing
crossing points of φ(υ) with two strings having the same starting side or the same
ending side. Then Pφ ψ is a multiple of Pφ ̂ , by a monomial in q.

4.8. Orientation Free Case. Let Γ be a spacial graph and 0, φ be colorings of edges
and vertices of it. Let e be an edge of Γ and φ(e) = (Λ, μ) e ΛNe M . The invariant
Pφ^φ is called orientation free at the edge e if Ne = Me and λ = μ, since Pφ ψ does
not depend on the orientation of e. The invariant Pφ^ is called orientation free if it
is orientation free at all the edges. In this case, Pφ^ is an invariant of embeddings
of a non-oriented spacial graph.

4.9. Symmetric Case. Let φ and φ be primitive colorings of edges and vertices of a
spacial graph Γ. Assume that φ is orientation free and a constant mapping. Let nυ

be the degree of a vertex υ. Let &2nv ^ e m e dihedral group with 2nv elements. For
9 e ^inυ>

 w e define g - φ(v) as follows. If g is a rotation, g - φ(υ) is a rotation of
φ(v). If g is a reflection, g φ(υ) is a flip of φ(v) added by half twist as in Fig. 12.
Let CDV denote the set of formal linear combinations of elements in Dv. We extend
linearly the definition of Pφ ψ in case that φ is a mapping with values in CDV. The
coloring φ is called symmetric at a vertex υ if g φ(v) is a scalar multiple of φ(v).
The coloring φ is called symmetric if φ is symmetric at all the vertices.

g (rotation)

N M

Ψ(v) g.ψ(v)

, r. N M

g (reflection)

where _____ =

M N

Fig. 12 ψ(v) g ψ(v)
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The invariant Zs in Sect. 1 is equal to Pφ ψ with colorings φ and ψ, where
Ne = Me = 1, φ(e) = ((1),(1)) e Axι for each edge e and ψ(υ) is the linear
combination of polytangles in Fig. 4 for each vertex υ.

4.10. Proposition. The invariant Zs is primitive, linear, and symmetric.

4.11. Trivalent Case. Let Γ be a trivalent spacial graph, i.e. the degree of every vertex
is equal to three. Let Ws be the category of embeddings of Γ as a spacial graph and
let Wa be that as an abstract graph. Then there is a natural isomorphism between Ws

and Wa. Therefore, Theorem 3.11 implies the following.

4.12. Corollary. Pφ^ is an ambient isotopy invariant of embeddings of a trivalent

graph colored by φ and ψ up to a multiple of a monomial in a±ι/2 and q±ι/2.

5. Discussion

Our invariant Pφφ has two parameters a and q. If we specialize a = q~n for
an integer n > 2, this invariant is essentially equal to that in [R-T] in the case
J& = ?Sq(gln) with coloring corresponding to φ and ψ. While they associate a
simple ^(gZn)-module to an edge in [R-T], we associate a simple HN M(a,q)-
module to an edge. These two simple modules are related as follows. Let V denote
the vector representation of %6q(gln) and F * be its contra-gradient representation.
Then simple HN M(a, g)-modules parametrize simple components of the mixed tensor
representation V®N®(V*)®M if n is sufficiently large. Therefore, our parametrization
corresponds to that in [R-T]. However, our method does not depend on n. As for
vertices, we give a specific method to determine the coloring of vertices by using
polytangles.

We can replace HN M(a, q) by a braided version of a rigid category generated by
a single object. The results of this paper may hold in this generalized case.
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