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Abstract. We study hyperbolic maps depending on a parameter ε. Each of them has
an invariant Cantor set. As ε tends to zero, the map approaches the boundary of
hyperbolicity. We analyze the asymptotics of scaling function of the invariant Cantor
set as ε goes to zero. We show that there is a limiting scaling function of the limiting
map and this scaling function has dense jump discontinuities because the limiting map
is not expanding. Removing these discontinuities by continuous extension, we show
that we obtain the scaling function of the limiting map with respect to a Ulam-von
Neumann type metric.

0. Introduction

A differentiable structure on the topological Cantor set determined by the intrinsic
scaling function of a geometric Cantor set on the line has been introduced by Sullivan
[4]. Consider a family of geometric Cantor sets on the line. What will happen to such
differentiable structures if all gaps of geometric Cantor sets finally close to form an
interval (a one dimensional differentiable manifold)? It is the question we will discuss
in this paper. The main results (Theorems 1 and 2) say that for a family of geometric
Cantor sets on the line generated by a family of nonlinear folding maps, the scaling
functions tend to the scaling function of a sequence of partitions on the interval
[2] as all gaps finally close. And moreover, the scaling function of the sequence of
partitions on the interval has countably many jump discontinuities, and is uniformly
continuous at the rest of the points on the dual Cantor set. If we replace all the
discontinuities by the continuous extension of the values on the rest of the points,
we get a Holder continuous function on the dual Cantor set. This function is the
scaling function of a sequence of partitions with respect to a Ulam-von Neumann
type metric [6] (we call this metric an orbifold metric (with respect to the Lebesgue
metric)). In the other words, if we consider the interval with this Ulam-von Neumann
type metric as a Riemannian manifold (an orbifold, compare to [5]), the limit of
differentiable structures on the topological Cantor set is the differentiable structure of
this Riemannian manifold.
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This paper is organized as follows: in Sect. 1, we recall a short definition of a
scaling function for both the geometric Cantor set on the line and a sequence of
partitions on the line. Following the definitions we state the main results (Theorem 1
and 2). In Sect. 2, we show two uniform estimates of the nonlinearities of long
compositions of any map in a family (Lemma 2 and 3) and the proofs of the main
results.

1. Statements of Main Results

Suppose / is the interval [—1,1] and / is a C 1 folding map from / to the real line
with a unique critical point 0. We say 0 is a power law critical point if there is a
number 7 > 1 such that the limits of f'(x)/\x\Ί~ι exist and equal nonzero numbers
as x tends to zero from above and below. The number 7 is called an exponent of /.
Henceforth, we will assume that / is increasing on [—1,0] and decreasing on [0,1],
and /(0) > 1, / ( - I ) = /(I) = - 1 , and that 0 is the power law critical point of /.

Let g0 from / to [—1,0] and gλ from / to [0,1] be the left and right inverse
branches of /. For a sequence w = i0 ... in of symbols {0,1}, let gw—giQ°" °9in

be the composition of gi to gin and I2 = gw(I) be the image of / under gw. We use ηn

to denote the collection of intervals Iw for all w of length n + 1 and λ n = max \IW\
to denote the maximum of the lengths of the intervals in ηn. iweηn

Definition 1. We say / is in J&, the space of hyperbolic maps, if (a) /(0) > 1, (b) /
is Cι+a for some 0 < a < 1, and (c) there are constants K > 0 and 0 < μ < 1 such
that λ n < Kμn for all integers n > 0.

+00
Suppose / is a map in 3$. Then Cf = f] f~n(I), the maximal invariant set of /,

π=0

is a geometric Cantor set on the line (the proof is to use the naive distortion lemma).
The scaling function of this geometric Cantor set has been defined in [4] as follows:
suppose wn = in ... i j i 0 is a finite sequence of 0 and 1. Take vn_ι = in..Λx and
define s(wn) = \IWv\l\IVn_x\> where IWn = gWn(I), IVn__χ = 9Vn_χ{I) and | | is the
Lebesgue measure. Suppose

is the dual Cantor set. If lim s(wn) exists for every α* = . . . wn in C*, we define

a function s(α*) = lim s(uO on C*. This function is the scaling function of Cf.
ΠH+ + OO J

It is a C1-invariant (in other words, it is the same for both / and hofoh~ι whenever
h is a C^diffeomorphism of /).

Theorem A (Sullivan [4]). Suppose f is a map in 3$. The scaling function s of C^
exists and is Holder {see [1] for the definition of a Holder continuous function on a
symbolic space).

Now we consider a map / with /(0) = 1, which maps / into itself. In this case,
the interval / is the maximal invariant set of / and we define an orbifold metric on
/ (associated with /) as

, dx
ay = .

(1 - x1) 7
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Remark 1. The orbifold metric dy can be thought of as a singular metric with
respect to the Lebesgue metric dx and the corresponding change of coordinate is

t

hη(x) = —1 + 6 / dt/{\ - t2p-Vh, where b is determined by h(l) = 1.
- 1

Lemma 1. Suppose f — hy o / o h~λ {it is f: (/, dy) ι—» (/, dy)). Then f is continuous

and / | [-1,0] and /|[0,1] are Cι -embeddings.

Proof. It is clearly that / is continuous and f'(x) φ 0 for x in (0,1). By the definition
of the power law critical point in this paper, it is easy to check that the one-sided
derivatives of f(x) at 0, —1 and 1 are not zero either, and that f(x) is continuous
on [-1,0] and [0,1].

Definition 2. We say / is on JBH, the boundary of hyperbolicity, if (1) /(0) = 1,
(2) / | [ - l , 0 ] and /|[0,1] are C 1 + α embeddings for some 0 < a < 1, and (3) there
are constants K > 0 and 0 < μ < I such that Λn < Kμn for all integers n > 0.

Remark!. Let r__{x) and r+(x) be f'(x)/\x\Ί~x on [—1,0] and [0,1], respectively.

Then (2) is equivalent to say that /, r_ and r + are Cι+a for some 0 < oί < 1. Some
examples of maps on JSH can be found in [3].

Although the maximal invariant set of / on J$H is the interval /, we can still

define the scaling function of the sequence of partitions of / similarly: suppose

V — ί^nlnS) i s m e sequence of partitions of / determined by /. For every

finite sequence wn — fcn Vo °f ^ an<^ 1' t a ^ e v

n~\ ~ ^n' -h a n (^ define

s&n) - KJ/KJ, where IWn = gWn{I), Iv^ =9^(1) and | | is the
Lebesgue measure. If lim s(wn) exists for every α* = . . . wn in C*, we define a

function s(a*) = lim s(w ) on C*. This function is the scaling function of η. It
nt—t+oo

is again a C 1 -invariant.

Let I* = {a* = ...in...i0\e C*, in f c = 1 for infinitely many &} and O* be the

complement of I* in C*. The set O* is countable.
Theorem 1. Suppose f is a map on MB. and η — {ηn}^0 is the sequence of
partitions of I determined by f. The scaling function s of η exists, and is continuous
at every point α* in I* and discontinuous at every point α* in O*. Moreover, every
α* in O* is a jump discontinuity of s and the restriction s\I* is uniformly continuous
(see Fig. 1).

0.4

0 0.2 0.4 0.6 0.8 1
0.2

Fig. 1. The graphs of the scaling functions for fc(x) = - x2 + 2 + cx2(4 - x2)
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Suppose / is on J9H and η = {ηn}^0 is the sequence of partitions of /
determined by /. Let s(wn) = | | / W n | | / | | / ^ _ 1 | | , where wn = vn_xiQ and || || is

the measure on / induced by the orbifold metric dy. If s(α*) = lim s(w ) exists

for every α* = . . . wn in C*, then s is defined as the scaling function of η under dy.

Corollary 1. Suppose f is on J8H. The scaling function s of η under the orbifold
metric dy exists and is Holder, and moreover, it is the continuous extension of s\I* to
C* (see Fig. 1).

A family {/ε}0<ε<i in 3% U JBE with /ε(0) = 1 + ε is said to be regular if
(i) F(x,ε) = fε(x) is a C 1 function of [-1,1] x [0,1] and fε(x) are uniformly

α-Hόlder continuous functions of x,
(ii) fε has the same exponent 7 at 0 for every ε in [0,1] and r_(x, ε) — f'ε(x)/\x\Ί~ι

on [—1,0] x [0,1] and r+{x,έ) = f'ε(x)/\x\Ί~ι on [0,1] x [0,1] are continuous and
r+(x, ε) and r_(x,ε) are uniformly α-Holder continuous functions of x, and
(iii) there are two constants K > 0 and 0 < μ < 1 such that λnε < Kμn for all
n > 0 and 0 < ε < 1.

Theorem 2. Suppose {/ε}0<ε<i in 3@ U ̂ ^ is regular and {<sε}o<ε<i ^ the family
of corresponding scaling functions. Then

(I) for ε0 £ (0,1], s ε converges to sεQ uniformly on C* as ε tends to ε0,

(II) /or ^vβrj α* G C*, s ε(α*) ίβnώ to so(α*) αs ε ^6>^ to zero, and
| * 5 0 | *

j ε

(III) 5 e | /* converges to 5 0 |/* .̂s ε goes to zero.

2. The Proofs of the Main Results

Suppose {/ε}0<ε<i in 3$ U J$H with f£(0) — 1 + ε is a regular family. Let C/ε be
the interval bounded by f~ι(0) and Vε be the closure of the complement of Uε in /
for every ε in [0,1] (see Fig. 2).

'oo.ε 'oi,ε 'n,ε 'io,ε

-1

Fig. 2 Vt,

Lemma 2. 77zere 15: α constant K > 0 swc/i that for every ε in [0,1], if f°z(x) and
fε

ι(y) are in the same connected component ofVεfor i = 0,1, . . . , n — 1,

f It is the naive distortion lemma since fε(x) φ 0 for x in Vε.

Lemma 3. There is a constant K > 0 such that for every ε in [0,1], every pair x and
y in an interval ofητn ε and every 0 < n < m, if fε

n(x) and fε

n(y) are in Uε, then

' " ° n V " ' < exp(K|/Γ(x) - fΓivT).
\(f°n)'(y)\
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Proof. Let x% and y% be the images of x and y under /°\ Then xi and yi lie in a
same interval of r]^ra_ϊ) ε. For every positive integer n < ra,

σe)(y) f j
This product can be factored into two products,

TT A> a n d π ίM.
11 f/> \ 11 /•/(> ^

Since (i) and (iii) in the definition of a regular family, there is a constant Kx > 0
such that

Π l/ε(

*t,yτeve

 ίJε{

To estimate the second product, let

hε{x) = -l+bε ί
_i ((1 + ε) - t2) i

be the family of changes of coordinates on 7 (where h0 is the orbifold metric we
mentioned in Sect. 1). Let

Then we can factor the second product into three factors,

Jk KW Jk h<™ Jk &h&2> Jk
Further, the last one can be factored into

n {l+ίεiy'))t -d π (1 - ίM))t •
xt,vi€Ue (l + fe(Xi))y χi,yieuε (i _ / e(^)) V

Since h'ε(x) and f'ε(x) are uniformly a'-Holder continuous functions on each of
J01 and Inε(Uε = I0lε U In ), there is a constant K2 > 0 so that

Π j ^ l < ^ and ^ ^

It is clearly that there is a constant K2 > 0 such that

π ( l + Λ ( y i ) ) ^ ! < g 3

To finish the proof we write

- /e(arf
= 1
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From the facts that / ε ( l) = / ε ( - l ) = - 1 and foj(%i) is in Uε for some i < j <n
(which is assured by the assumption of the lemma), we can find a constant K4 > 0
such that

Π
(1-/,(%)) V

Then K — KγK^K^K^ is a constant which satisfies the lemma.
A straightforward calculation from Lemma 2 and 3 to the cases that α* = . . . wn

is in O* and is in /*, respectively, implies that there are constants K = K(a*) > 0
and 0 < a < 1 and a subsequence { n j of the integers such that for all m > k > ni9

and ε and ε' in [0,1],

\sε{wk) - sε,(wm)\ < K{\I
WnJ

Proof of Theorem 1. The existence of the scaling function s of the sequence of
partition η follows from the inequality (*) as ε — ε' — 0.

The scaling function s is continuous at every point α* in 7* and the restriction
s |I* is uniformly continuous follow from the inequality (*) and the fact that

sup K(a*) < oo too.

Suppose α* = (... OOwi) is in O*. Let 0 n be the finite string of zeroes of length
n. Then the interval IOnW is eventually in the left interval 7

00

We use bn and an to
n

denote the lengths of ζnW and IOnWi, respectively (where IOnU)i C IOnW). Let cn be
the distance from IOnW to - 1 (see Fig. 3).

- 1
I I I

quasilmear

Fig. 3

quasilinear

Using the naive distortion lemma, we can show

τΛa*) = lim — > τ2(a*) = lim —
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exist. These implies that the limit of the sequence {s(j 10 nwi)}^L{ (where j is either
0 or 1) exists and equals

I( i + T i ( α * ) ) 7 _

For a point 6* = (... j»10nκ;i) in C*, because Ij\onW is in C/ε we can use Lemma 3
to show that the error of s(J10ni) to s(6*) can be estimated by \IjiOnWl\

a, that is,
there is a positive constant Kλ such that

Further,
lim 5(6*)= lim s(J10nwi).

Since s(a*) = τ2(a*)/τι(a*), we get

lim 5(6*) 5(6*) ^ s(α*),

in the other words, s has jump discontinuity at α*.

Proof of Corollary 1. It follows from the naive distortion lemma and the fact that

Proof of Theorem 2. (I) is also from the naive distortion lemma. (II) follows from
the inequality (*). (Ill) follows from the inequality (*) and that 0 < max K(a*)
< +00. α * e l *
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