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Abstract. We describe the skew tensor-product structure inherent to Yang-Mills
procedures pertaining to non-commutative spaces obtained by (skew) tensorization.

0. Introduction

In the fall of 1991 Alain Connes introduced [2] the differential algebra of quantum
differential forms (non-commutative generalization of the classical De Rham complex)
and used this concept to obtain an improved form of his non-commutative Yang-Mills
scheme, in particular as applied to the standard model of elementary particles. The
improvement resides in the removal of the cumbersome adynamical fields which
plagued the previous formalism (a price to be paid for the use of formal differential
forms instead of the genuine quantum differential forms). We refer our reader to ref.
[2] versus ref. [1] - or, for more details, to [3] III versus [3] I and II, for a comparison
of the two methods.

Let A be a (generally non-commutative, possibly Z/2-graded) associative
*-algebra endowed with the (non-commutative) riemannian geometry specified by
a D-summable if-cycle (H,D) [2]. The generalized De Rham complex (or set of
D-quantum forms) ΩDA of A if the differential algebra, with differential δ, quotient
of the unital differential envelope (4?A, δ) of A (cf. e.g. [4]) by the graded ideal
if* + δK*, if* = 0 Ker πD Π ΩAn, homogenized kernel of the representation πD

nGN

of ΩA specified by D (cf. [2]).
In the application to the standard model, the (electro-weak side of) the algebra is

the tensor product A = C°°(M) ® (C Θ H) of the algebra of smooth functions on
the space-time spinc riemannian manifold M by the algebra C θ H embodying the
£7(1) x SU(2) (innerspace-) degrees of freedom. The if-cycle D is the tensor product
(see below (16)) of the Dirac if-cycle of C°°(M) by an inner-space if-cycle (Hj, Dj)
specified by the mass matrix of the fermions. This tensor product structure raises the
question of how the differential algebra ΩD A of electro-weak quantum forms relates
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to the sets ΩDC°°(M) = Ω(M) and ΩD (C <g> H) of usual differential forms and of
"inner-space quantum forms". In this note we will partially answer this question by
exhibiting skew tensor-product structures which shed light on the computation of the
non-commutative Yand-Mills action (cf. [3] III).

Placing ourselves in the general context (useful in supersymmetric theories) of Z/2-
graded real (or complex) algebras, we more generally look at the non-commutative
De Rham complex ΩDA for a *-algebra skew tensor product A = A'® A" of
two *-algebras A' and A" respectively equipped with if-cycles (H',D',χ') and
( # " , £>", χ") , the if-cycle over A being the tensor-product (H, D, x) = H', D1, χf)0
Cff",jD',χ") (see below (16)).

At the level of unital differential envelopes, treated in Sect. I, the situation
is quite simple: the unital differential envelope of the skew tensor-product maps
homomoφhically onto the skew tensor product of the differential envelopes of the
factor algebras. At the level of the representation, we have the skew tensor-product
πD = 7ΓD/<^>πD// a s s n o w n m Sect. II. The state of affairs is less transparent at the
level of the non-commutative De Rham complex ΩDA, since the tensor products
ΩAfr <§> ΩA"S and ΩA/p <§) ΩA"q for r + s = p + q mod 2 intersect each other non-
trivially in the πD representation. In lack of general statements, we discuss the levels
relevant to the Yang-Mills calculations, where a tensor-product structure still holds
for the set πD(δKι) by which one has to divide πD(ΩA2) in order to get the module
ΩDA2 of two-quantum-forms.

I. Differential Envelopes of Tensors Products

Let A = A0 0 A1 be a unital Z/2-graded real (or complex) *-algebra. We recall that
the unital differential envelope ΩA of A (a bigraded differential algebra) \ whose
Z/2-grading proceeds from its total grading, with differential <5, containing A as a
Z/2-graded subalgebra, and linearly generated by elements of the form:

aoδaλ...δan, α o ,α l 5 . . . , α n G A , (1)

can be specified by the following universality property: given a unital real (or
complex) Z/2-graded differential algebra (Ξ = Ξ° Θ Ξι,Δ) and a zero-grade
unital homomoφhism φ:A —> Ξ of Z/2-graded algebras, φ extends uniquely to a
homomorphism φ:ΩA —» Ξ of bigraded differential algebras:

ΩA

(2)

A

(specifically given by:

δaι... δan) = (φa0) (Δφax)... (Δφan), α0, a{, . . . , an G A). (2a)

1.1 Proposition. Let A! = A^ΘA' 1 and A" = A ^ θ A " 1 be unital Z/'2-graded (real
or complex) ^-algebras, with respective unital differential envelopes (ΩA\ δf) and

1 For homogeneous elements α0, α1 } . . . , an G A, the element (1) of ΩA has N-grade n and total
grade n + daλ + . . . + dan, denoting by da the grade of the homogeneous element a G A. We denote
by ΩAn the set of elements 17A of N-grade n
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(ΩA", δ"). Let A = A ; 0 A" be the skew tensor product of A' and A" with differential
envelope (4?A, δ). Set ΩA^ — ΩA' <§§ΩA", with differential δ^,for the skew product
of(ΩA',δ') and Ω"δ"

Σ
p+q=n (3)

! 0 a") = δ'a'®a" + (-\)da'a'®δ"a" , a' G A', a" G A" .

Then ΩA maps homomorphically onto ΩA^ as bigraded differential algebras.

Specifically the homomorphism i : ΩA —>• ΩA^ is obtained as follows by univer-
sality of ΩA:

ΩA

1 (4)

i.e. one has, for αό, a[. ..., a!n G A, of respective grades d'a^ d'a\, . . . . d1 afn, and
' 2

(αί, ® α£) [5'α'j ® α',' + (-1 fa'< a\ ® δa'{]

... [6'a'n&aZ + (~\)d<a'n®δa'^ . (4a)

This map i is linear, multiplicative, preserves the intrinsic grade and the N-grade,
intertwines the differentials 3 δ and δ^:

ί o δ — δ^ o i (5)

and has a right inverse J given as follows: one has for ω' G ΩA' and ω" G ΩA":

'&"=j'(ω')j"(ω"), (6)

where the maps j ' : ΩA' —> ΩA and j " : ΩA" —» ΩA are associated by the universality
diagrams

ΩA'

(7)

resp.:

A1

ΩA"

A'&l C ΩA

(8)

c ΩA

2 Tensor products §) of normal forms are just ordinary tensor products <g>: the notation <g> recalls
the skew multiplication rule of ΩAf <§) ΩA"
3 6 and 6^ are both graded derivations of intrinsic grade zero and iV-grade one with vanishing
square
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to the respective canonical injections j 1 : A' —» A 7®1 C ΩA and j " : A" —» l(g)A77 C
i?A; in other terms one has for a^a[^ ..., α^ G A7

j W α ί . . . 6'a'n) = ( α ^ l ) ^ ^ l ) . . . ««<§>1), (7a)

andfora'^a'l, . . . , < G A77,

j"(a%δ"a'{ . . . <57 7<) = (1 <§>α^7)(5(10α7/)... <5(1 Θ < ) . (8a)

In fact one has:

(ιoj'(ω') = ω'&l, ωf eΩA',

\ i o j"(α/') = l®ω" , α;" G J7A77. l }

As a consequence the kernel kofi is a bigraded differential ideal of ΩA, with

ΩA^ = ί?An/kn , (10)

where kn = ΩAn Π k.

Proof All claims obviously follow from the definitions but the relations (9) and the
right inverse property of J.

Check of (9): The maps i, j 7 , and j 7 7 are homomorphisms of N-graded differential
algebras by construction. We have, from (4a) and (6a), for ω1 = a'oδ'a[ ... δraι

n:

i o ] V ) = z[(αo <§> 1)δ(a[ (§) 1 ) . . . δ(a'n (§) 1)]

= (a'Q®l)(δ'a\®l)...{δ'a'n®l) = ω'&l. (11)

and, analogously, from (4a) and (7a), for ω" = CLQ&'CL'I ... δ"a'^\

ϊ o ]"{ω") = Ί[(l <§> a'J) δ(l (§) α 7/).. . (5(1 Θ α7^)

= (lΘα^) ( l Θ ^ α 7 / ) . . . (lΘ<577<) = \®ω" . (12)

Check of i o J = idβA/ ^ βA//: we have, owing to (9):

i o J(ωf ®ω") = ι\j'(ω')j"(ω")] = ϊ o j7(u;7) ϊ o ~j"{ω")

II. Study of πD(ΩA)

II.0 Assumptions and Notation. In what follows we give ourselves two Z/2-graded
unital real (or complex) *-algebras A7 = A70 0 A71 and A77 = A770 Θ A771 with
respective grading involutions θf and θf\ and respective unital differential envelopes
J?A7 and i?A77. A7 and A77 are equipped with respective even if-cycles (H'\D'\χf)
and (i777, .D77, χ 7 7 ). 4 We consider the skew tensor-product

A-A7(g)A7 / (13)

4 A K-cycle (H,D,χ) of a Z/2-graded algebra A = A0 Θ A1 is a Z/2-graded Hubert space
H = H° 0 Hι with graded involution χ carrying a grade-preserving *-representation π of A
into (B(H); ad χ), and an odd self-adjoint operator D such that all graded commutators [D, π(α)],
α G A, are compact. Practically we are interested in the case where A/ is equipped with an even
<i+-summable K-cycle (H' ,D',χ'), d' = 2m', m' G N, and A" has finite dimension and is equipped
with an even X-cycle (H", Ό", χΠ) for which the Hubert space H" is finite-dimensional
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equipped with the (skew) tensor-product î -cycle

(H, D, x) = (H1, D', χ')®(H", D", χ"). (14)

We recall that the skew tensor-product A'® A" is the Z/2-graded algebra obtained by
equipping the vector space A' <g> A" (algebraic skew tensor product) with the grading
θ' ® θ", and the (associative) algebraic product:5

= (-\f-t-dh\alb'®a"b"), a ^ ' G A ^ U A ' ^ ' ^ ^ A ^ U A " 1 . (15)

We recall the definition of the (skew) tensor-product if-cycle: with the symbols 0,
resp. 0, indicating ordinary, resp. skew tensor-products, (over R (or C)) one has:6

r H = H' ®H" ,
π = π 0π , i.e. π(o 0α ) = π (α )χ

c 'EA^^A^UA" 1 ,

X = χ; 0 χ/;.

(16)

D"

We shall write in the sequel πD = π, πD, = π' and πDn = π" for the respective
representations of the *-algebras ΩA, ΩA' and ΩA" induced by D, D' and D"
on H, H' and H". We recall, with [.,. ] denoting the graded commutator, and
α0, α,, . . . , an € A, <XQ, α'1; . . . , a'n £ A', CL'Q, a", ..., a'ή e A", that one has:

πia^δaγ .. -δan)

= ( - O n π ( α o ) [D, πίαj)] [D, τr(α2)] . . . [£>, π ( α n ) ]

π'ίαJtf'αΊ ... δ'a'J
= (-ί)nπ'(a'o) [D1, π'(α',)] [D', π'(α^)]... [D1, π ' « ) ]

(17)

II.l Lemma, (i) Γ/ze representation π of ΩA factors through the homomorphism i:
one has:

τr = π Θ o ί (18)

with π^ the representation of Ω^A given by:

...[D, π(a'n

(ii) One has, with K = Ker π and K^ = Ker π

(19)

(20)

5 As above, one has ar ®aff = a' ® a", the symbol 0 reminding us of the multiplication rule (15)
6 Let H be a Z/2-graded vector space with grading involution χ\ we recall that EndH is canonically

a Z/2-graded algebra under the grading involution a d χ . Let H' and H" be Z/2-graded vector spaces

with respective grading involutions χf and x". We recall that one then gets a homomorphism of

Z/2-graded algebras: End H' <g> End H" —> End(H r ® i f " ) by representating the skew tensor product

E n d i f ; 0 EnάH" as follows: ^ ^ A " -> ^ ; χ / a Λ / / ® Λ", A' G End if;, Λ7/ G End H"
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from which follows by surjectivity of i:

K^ = ?(K). (20a)

(iii) One has:

(π(ΩAn) = πΛΩ-A")

Proof, (i) π^ as given by (19) is a representation of Ω^A because of the graded
derivation property of [D,.].

Check of (18): With ω = (a'o 0 α ^ K 0 α'/)... δ(a'n 0 < ) G ί?A the left-hand
side of (19) is π ^ o i(ω) whilst its right-hand side equals τr(u ). (ii) follows from the
equivalences ω eK <=> π(ω) = 0 ΦΦ> π^ O z(α ) = 0 <£> ϊ(ω) G K 0 . (iii) The first line
in (21) is obvious. For the second assertion, we have by (5), (18) and (20a):

o i) ( Γ - 1 ) = π Θ ( ^ K - - ! ) . (22)

II.2 Lemma, (i) With the assumptions II.O w^ Λαvβ ί/z«ί ί/zβ representation TΓ^ W ί/ẑ
5^w tensor product of the representations πf and TΪ" in the following sense: one has,
for ωf G ΩA/p, ω" G ΩA"q:

(ω)χ 0 π (ω ), q odd,

where 0 denotes ordinary, and 0 .y^w tensor products. In other terms one has a
homomorphism π^: i?A7 0 J?A;/ —->• End ΐ ί 7 0 End ίf;/ of skew tensor products of Z/2-
graded algebras 6

(ii) O«^ /zα̂ s1 accordingly:

π(ΩAn) = π^(ΩΘAn) = ^ π ' ίβA'^^π^ίβA" 9 ) . (24)
p+q=n

Proof. It is enough to check (23) for ωf = af

oδ
fa[ ... δ'a'p and ω" = a^δf/af{ ... δ"a!'q

with α'1? . . . , af

p G A/0 U A'1 and α#, α'/, . . . , ol'q G A//0 U A"1, p, g G N. However,

since the product 0 is associative, and we have ω' (&ω" — {ω' (&V)(\®ω") with

= (af

0®l)(δfa[®l).. .(δ'a^l)

/)

it suffices to check (23) for each type of factors occurring in (25). For the types
(α00l) and ( l0αo), this follows from the second line (16). For the type l&δ"a",
a" G A//0 U A;/1, we have by I and by the definitions of π Θ and D:

a") = - i[D, π ( l 0 α " ) ] = - ^ [ ^ 0 1 + X 0 ^ ; / , 1 0 7r"(α")]

= - i{Df 0 π/7(α/;) + χ7 Θ D"π"(μ")

- {-l)da"{{-\)da"Df 0 τr"(α") + X; ® ^(α 7 7)!?^}}

- - i{χ7 0 W V ) - (-1ΛV 0 ̂ (α77)^^}
= - i{χ; Θ [^, ^(α77)]} = χ7 0 π ^ ^ α 7 7 ) . (26)
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We have, analogously, for the type δ'α'&l, a! e A/0 U A'1:

π(g)((5/α/t§)l) = — i[D, iτ(af ® 1)] = — i[Df 0 1 + x' 0 Df\ πf(a!) (8) 1]

= - i{D;π'(af) <8> 1 + (-l)da'χfπ'(a') <8> £>"

- - i{[χ\ π'ia')] 0 L>7/ + [D'\ π7(α7)]} 0 1}

= Ήf(δfaf) (8) 1 . (27)

As a consequence of what precedes, we now describe a result useful for the
computation of the module ΩDA? of quantum two-forms in the tensor-product case,
which we recall to be given by [2]:

We have:

II.3 Proposition. Let A = A70A", (H',D\χf), (H",D",χ"), π,π', and π " be as
in II.O α/ίJ assume in addition πf and π" faithful. We have tensorial decompositions:

π(ΩAι) = π'(ΩAn)®π"(A/f) Θ π/(A/)(§)π//(i?A//1), (29)

i.e.
ΩDAι = (ΩD,An®A/f) Θ (A'&ΩD,,A'n), (29a)

π(J7A2) = π /(βA / 2)(8)/(A / /) + π ' ί β A ' 1 ) ® ^ ] ? ^ 1 ) + π/(A/)<§>7Γ//(βA//2), (30)

and, for the respective kernels K^, Kι, i ί " ofπ^, πf, and πΠ:

K^ = Kn(g)Af/ + Af<g)K'n , (31)

. = π'(δ'Kn)®π"(A") + π'tA'^π'Vir" 1 ) . (32)

Proof Equations (29) and (30) are special cases of (24) and (29a) follows from the
faithfulness of the representations π ; , and π". Proof of (31): the inclusion D is obvious
from (23). Proof of the reverse inclusion: by (29) the most general element of i?Θ A1

is of the type ω= £ ω[® ft + Σ fί ® < > ω't G ΩAn, ft e A/;, /t

7 G A;,
i—I, ..., n z = l , ..., n

ω" e ΩAni, with the /', resp. the ft, linearly independent: by (23) ω belongs to K^
iff one has:

0= Σ ^(^)®^"(Λ")+ £ π'(/,')χ'®π"(α;,"), (33)
1 = 1 , ..., n ι = l 5 ••-, Ή.

which7 amounts to

0 = J2 τ'(ωί)®π"(/;')= 5 ] 7r'(/;)®τr"(u/') (34)

7 In fact intertwining θ' 0 id with adχ ; and id 00" with adχ", where θ' and 0" are the respective
total-grading involutions of ΩAf and ΩA": one has πf^^idXu ^ l ) ] = (χ ; 01)π(ωr 01) (χr 01),
α/ G ί2A'; and τr[(id 0 ^ ) (1 0 ω")} = (1 0 χx/) τr(l 0 ω") (1 0 χ"), ^ r / G i?A"
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To conclude from this the vanishing of all πf(ω[) and all π"(ω"), we notice that, by the
faithfulness of π' and π", the π'(fί), resp. the 7r"(/"), are linearly independent, and
we invoke the following result, special case of the statement in Exercise 6, Chapitre 1,
Paragraphe 2, of [5]: given two Hubert spaces H and H', and operators Ti G B(H),
T[ <G B(H'), i = 1, . . . , n, such that the Ti are linearly independent and such that

£ T <g> T/ - 0, it follows that all T/ vanish: we proved (31) from which (32)
i=l, ...,n

now follows by the fact that

®/,"+ ΣΣ

whence, for ω[ e Kn and ω'( e K"u.

I r / \ r / ell \ ^

-=1, ..., n τ=l, ...,

(35)

(36)
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