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Abstract. The g-deformed vertex operators of Frenkel and Reshetikhin are studied in
the framework of Kashiwara's crystal base theory. It is shown that the vertex operators
preserve the crystal structure, and are naturally labeled by the global crystal base. As
an application the one point functions are calculated for the associated elliptic RSOS
models, following the scheme of Kang et al. developed for the trigonometric vertex
models.

1. Introduction

The integrable RSOS models of Andrews-Baxter-Forrester (ABF) [1] and their
generalizations [2-4] are built upon elliptic solutions of the Yang-Baxter equation
(YBE) in the interaction-round-a-face (IRF) formulation [5]. The one point functions
in these models are known to be given in terms of branching functions for some
coset pair of affine Lie algebras. (To be precise, this is so in one region of the
parameter space of the model, called "regime III.") Similar results hold also for the
vertex models corresponding to trigonometric solutions of YBE. As shown by Kang
et al. [6,7], the theory of crystal base [8,9] offers in the latter case a powerful and
systematic method for computing one point functions on the combinatorial level (i.e.
assuming the validity of the corner transfer matrix method [5]).

In a recent work [10] Frenkel and Reshetikhin studied the (/-deformation of the
vertex operators a la Tsuchiya-Kanie [11] in conformal field theory. They showed that
the correlation functions satisfy a g-difference analog of the Knizhnik-Zamolodchikov
equation, and that the resulting connection matrices give rise to elliptic solutions of
YBE of IRF type. It seems quite likely that the previously known models mentioned
above are special cases of their construction. This has been confirmed in [10] in the
simplest case including the ABF model.

The purpose of the present article is to study the ^-vertex operators of [10] in
the framework of the crystal base theory [6, 8]. As an application we show that the
computation of the one point functions in the elliptic RSOS models can be treated in
much the same way as is done in [6].
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Throughout this paper we follow the formulations in [6]. In Sect. 2 we recall some
basic facts about the crystal base theory following Kashiwara [8,9]. The discussions
about the vertex operators begin with Sect. 3. The vertex operators we consider are of
the form Φ: V(λ) —* V(μ) (g) V, where V(λ) is an integrable highest weight module,
V(μ) is a completion of V(μ), and V is a finite dimensional module of the quantized
enveloping algebra ί7 (q). This is an equivalent of the vertex operators Φ(z) in the
formulation of [10]. Unlike Frenkel and Reshetikhin who treat general highest weights,
we restrict ourselves to the case of dominant integral weights since the crystal base
theory is specific to the latter situation. Our basic observation is that, provided V
has a crystal base, the vertex operators preserve the crystal structure (Theorem 3.4).
Assuming that V has a global crystal base [9,12] we are led to a natural basis of
the space of vertex operators labeled by "admissible triples" (Proposition 3.3). In
Sect. 4 we consider compositions of vertex operators. We prove in particular that the
composition Φ(zι)oψ(z2) with another vertex operator Ψ{z) is well defined at z{ = z2

(Lemma 4.1). Section 5 is devoted to the description of the connection (or braiding)
matrices relating the compositions of vertex operators in different order. As shown in
[10] these connection matrices provide elliptic solutions of the Yang-Baxter equation
in the face formulation. From the observation above it follows that these solutions
share the same energy function with the corresponding trigonometric R matrix [Sect.
5.3, Eq. (5.11)]. We shall prove the second inversion relation (Proposition 5.2) for the
connection matrices, which is necessary in order to apply the corner transfer matrix
method. In Sect. 6 we show that the highest weight vectors in the tensor product
module V(ξ) 0 V(η) are labeled by "restricted paths" (cf. [13]). Finally we relate
these facts to the one point functions of the lattice model defined by the connection
matrices.

2. Preliminaries

i

2.1. Notations. We fix an affine Lie algebra g. Let Λi,hι = a^,ai,δ= ]P &A> and d
2 = 0

have the same meaning as in [14], except that for the type A^ί w e reverse the ordering
of vertices from [14]. Thus we have α0 = 1 in all cases. The canonical central element

i

will be denoted by c = £ α z

v /ι r Set / = { 0 , 1 , . . . ,Z}, P = ZΛ0 Θ . . . Θ ZΛZ Θ Zδ,
2 = 0

P * = Zft0 Θ . . . Θ Z/ιz Θ Zd, and Q + = Z > o α o Θ . . . Θ Z > o α^. We normalize the
invariant form on P so that (α i ? α^) = 1 for a short simple root a{. It is related with
the normalized form ( | ) in [14] via (λ,μ) = r(λ|μ)/2, where the number r is such
that the dual algebra g v (the one obtained by reversing arrows of the Dynkin diagram

of 0) is of type X\r\ Setting ρ= ^ i z we have 2(ρ,δ) = rhv, hv = J2 a( being
the dual Coxeter number. i = ° * = °

Throughout this paper we shall mostly follow the notations of [6] unless oth-

erwise stated. In particular we use qi — q(at>at\ [k]i = (q^ — q^k)/(qτ — q^1), and
i

[A:].! = [k]{[k- 1] . . . [1] . Set Pcl = P/Zδ, (Pclf = 0 Zht C P * , and let cl:P->

Pcl denote the canonical map. We fix af:Pcl —> P by af{cl{ai)) — ai (i ^ io = O)
and af(cl(Λ0)) = Λo so that cl o af = id and af(cl(a0)) = a0 — δ. With the data
g,P, / above is associated the quantized affine algebra U=Uq(g;P,I) defined over
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Q(g) (q an indeterminate). Its presentation is those given in (2.1.7)—(2.1.12) in [6].
The subalgebra of U generated by ei. ft (i £ /) and qh (h £ (Pc /)*) is denoted by
U' — U'q(g; P r / , /). We shall use the coproduct Δ — Δ+ and the antipode a = a^ given
by

4 + ( e t ) = ez ® ( + *, ® e,, ^+(/ 1 ) = Λ ® ίt"' + J ® Λ. ^+(9 / ι) = <?'' €5 g". (2.1)

α+(eι) = -ίΓ 1e ί, a4fi) = -fiti, a+{qh) = cfh. (2.2)

This differs from the Hopf algebra structure adopted in [61

^ _ ( e ? ) = e ι (g)ίΓ 1 + l Θ e ι , ΔMΰ = Λ ® 1 + ** ® Λ> ^_(g / ι ) = (//ι ^ ί ' 1 , (2.3)

The formulations based on these two structures will be compared in Sect. 2.6.
As in [6] we put

A = {/ € Q0?)|/ n a s n o P°te at g = 0} .

2.2. [/- α/?J Uf-modules. For a positive integer fc we set (P+)k = {λ £ P | (/ i r λ) £
Z > 0 Vz G /,(c,λ) = fc},(P°)A. = {λ £ (P+)k\(d, λ ) = 0 } , and likewise for (P d +) f c . As
in [6J F(λ) denotes the irreducible highest weight [/-module with highest weight λ.
We fix a nonzero highest weight vector uλ of V(λ) throughout. In general a weight
space of a [/-module M is denoted by Mv (v £ P), and likewise for [/'-modules.
We write \N\V = V for υ £ M^. Let y(λ) = 0 V(λ);y be the weight space
decomposition. We set ve\-Q+

V(λ)= Y[ V{\)u. (2.5)

Let Mod^ denote the set of finite dimensional Ur-modules V such that

i

wt(!0 C λ o + ^ Zd(α 2) for some λ0 £ P d , (c. α/(λ0)) - 0 . (2.6)

For V £ Mod^ we shall identify the affinization Aϊί{V) ([61, Sect. 3.2) with the
[/-module structure on V[z, z~ι) =Q(q) [z, z~ι] (&V defined as follows:

et(z11 0 v) = zδ*+n 0 etv , j\{zn Θ v) = z~b*+n Θ / ^ , ?

wt(2n 0 t1) = n<5 H- af(wίv),

where n £ Z, t? £ K is a weight vector and wt?; signifies its weight. We shall often
write zn & v as vzn.

Analogously, for an invertible element x £ Q(<?), let T/, denote the [/'-module
whose underlying space is V, equipped with the structure map πx'.U' —> End(V)

πx(β%) = ^ ° π ( e | . ) , π x (/ z ) = x~^°π(/2), π:L,(g/ι) = π(qh).

where π signifies the original structure map. (The notation Vx conflicts with that of
weight spaces, but the meaning will be clear from the context.)

2.3. Crystal base. We recall from [8,91 some basic notions concerning the crystal
base.
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Let M be an integrable /7-module. For each i G /, any weight vector u G M can
be uniquely decomposed as

iV

fc=0

where f[k} = ff/[k]i\. Using (2.8) one defines the linear maps ef, j ^ p , e*ow, f\ow G
End(M) as follows [9]:

N N

k=\ k=0
N

P V^ l\h

u = > —

iV

The notions of upper (resp. lower) crystal, crystal lattice and crystal base at q = 0 are
defined in [8,9] using e^p, /^p (resp. e^ow, / | o w ) . Those at ^ = oo are defined similarly
replacing A by A = {/ G Q(ςO|/ has no pole at g = oo}.

It is known [8] that an integrable highest weight module V(λ) has the standard
crystal base at q = 0 described as follows ([9], (3.3.1-2), (4.2.9)):

L^(λ) = ΣAfl™...f%*ux, (2.9)

£ l o w (λ) = {ft™ . . fl™ux mod gLlow(λ)}\{0} , (2.10)

L^(X)V = q&'V-^L^iλ),,, Bu?(λ)u = ^ ' ^ - ^ ' " ^ ^ ( Λ ) ^ . (2.11)

Let <£> denote the anti-automoφhism of U given by

φ(et) = Λ , ^(/ t) = e,, ^ ) = qh .

Then V(λ) carries a unique symmetric bilinear form (,) such that

(u\>uλ)φ = ι ' (χu> v \ = (̂ ' ̂ ( ^ ) ^ f o r a 1 1 w e V(X) mάxeU . (2.12)

The upper crystal lattice can also be characterized as ([9], (4.2.7))

Lu?(λ) = {ue V(λ)\(u,Ll0W(λ))x c A} . (2.13)

Crystal lattice/base can be formulated also for [/'-modules, but for finite dimen-
sional modules the existence of a crystal base is not guaranteed in general. A family
of finite dimensional modules having "pseudo-crystal base" have been studied exten-
sively in [7],

2.4. Dual modules. In general, let H be a Hopf algebra, φ an anti-automorphism of
H, and M an iί-module. We shall regard the linear dual M* = HomQ ( g )(M, Q(g))
as equipped with an i7-module structure via φ:

(xv*, v) = {υ*, φ(x)v) υ* e M*, υ 6 M, x G H , (2.14)
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where (,) denotes the canonical pairing of M* and M. This module structure is

denoted by M * 0 . If M is finite dimensional then M = (M*φ)*φ~l (canonically).
Taking φ to be the antipode a we have the canonical identification

HomH(L, M®N) = Hom H (M* α <g> L, i\Γ), (2.15a)

HomH(L ®N,M) = Hom#(L, M®iV* f l ) , (2.15b)

We remark that the dual of (2.5),

y*α(λ) = (V(λ)fa = 0

is a lowest weight module with lowest weight — λ.
Now let i denote the anti-automorphism of U given by

Lie,) = eτ, i{fτ) = f%, ^ Λ ) = < Γ Λ .

(We have changed the sign of i from [6]). Let M be an integrable C/-(or t/7-)module,
(,) the canonical pairing of M* and M. It can be verified directly that

(elrv\v) = (v*,e^v), {j?"v*,v) = (υ*,f?v), v*eM*ί,υ£M.

We have also the same relations with up and low interchanged. Suppose that M has
an upper (resp. lower) crystal base (L, B). Then (L-1, BL) with

L-1 = {v* G M*|(^*,L) C A}, (2.16a)

B1- = the base of L^/qL1- dual to β with respect to ( , ) , (2.16b)

is a lower (resp. upper) crystal base of M*L [9].

2.5. Global base. In Sect. 3 we need the global crystal base for finite dimensional
[/'-modules. Let us recall this notion briefly from [9].

Let ί//Q be the subalgebra over Q t ^ " 1 ] of U generated by e^\f(

τ

n) (i e /,

n e Z>0) and q\SQ } = ft (qh+ι-k-q-h-ι+k)/(qk-q-k) (h G (Pd)*, n G Z>0).
L n J fc=i

Suppose V G Mod^ possesses

an upper crystal base (Lo, S o) at g = 0, (2.17a)

an upper crystal base (L^.B^) at q = oo , (2.17b)

a £/'Q-submodule VQ such that VQ (g) Q(^) ^ 1/ . (2.17c)

Assume further that the natural map Lo —> L0/qL0 induces an isomoφhism

^ (2.17(1)

Let G u p denote the inverse map of (2.17d). Under these conditions, {Cu p(6)}6 G β ( ) is
a base of V, called the upper global base. We say simply that V has a global base if
(2.17) are satisfied.

The following fact will be used later ([9], Lemma 5.1.1).

For b G L0/qL0 and n > 0 we have e^+ 1Gu p(6) = 0 <& e^+xb = 0. (2.18)
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We remark that the lower global base can be defined analogously [9], but it does not
have the property (2.18).

2.6. Intertwiners. In this paper we shall deal with intertwiners of ^/-modules of the
form

Φ\Mλ
λ ->

where M2®M3 = 0 Π ( ^ ) ξ ® (Mz)v_ξ. The coalgebra structure Δ+ (resp. Δ_) is

adapted to the upper (resp. lower) crystal base at q = 0 in the sense discussed below.
Let M,N be integrable [/-modules such that wt(M) C λ o + ^ Zα2, wt(iV) C

Mo + Σ ^ α i f° r some λ0, μ0 G P. We define operators βMiΊMN by

) ^ , u G Mλ , (2.19)

Θ ^ w G M λ , ^ G iVμ . (2.20)

Then Δ+(x) = ηMN o Z\__(x) o 7 ^ (x Ĝ  ?7) and βM 0 /3N = /?M g ) Λ Γ o 7 M Λ Γ =

7MTV ° @M®N- We extend 7 M Λ Γ also to M®N. It is known [8] that
(i) (L, 5 ) is a lower crystal base of M at g = 0 if and only if (βM(L), βM(B)) is

an upper crystal base of M at q = 0.
Suppose M; has a lower crystal base (Lι?w,B1™) (i = 1,2,3), and set L f =

^ M Z ( L 1 O W ) ' B? = βMSB\™) F o r a ι i n e a r m a P ^ l o w : M 1 -^ M2(g)M3 we put
ΦUP = ηMiM^ o Φ l o w and vice versa. Then we have

(ϋ) φiow o x = zA_(x) o Φ l o w if and only if <2>UP O X = Δ+(x) o ΦUP (X G E7),

(iii) ΦUP o /3M i = φMi 0 /3M2) o Φ l o w . Hence ^ ^ ( L 1 ^ ) c 4 0 W <g)4°w if and only if

7/7 ίAe r^ ί of this paper, except in Sect. 3.4, crystal lattice!base will always mean
upper crystal lattice/base at q = 0.

3. Vertex Operators

3.1. Formulation. Fix λ,μ G (P+)fc and V G Mod/. In [10] Frenkel and Reshetikhin
studied the vertex operators (VOs). By definition they are operators of the form

Φ(z) = z^-^Φ(z), ^ = ( Λ : Λ + f f , (3-D
r(k + hy)

where Φ(z) is an intertwiner of ^/-modules

Φ(z): F(λ) -> T/(μ)^y[z, z - 1 ] . (3.2)

Fixing a weight basis {^} of V, we define the weight components Φ j n of Φ(z) by

j πGZ

Note that for each υ we have ΦJΎlv — 0 for n ^> 0, since the weights of V(μ) are

Σ Φ-n ] 0 v- we obtain an intertwiner of

nez )

Φ:V(\)-> V(μ)0V. (3.4)
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The weight components (3.3) are recovered uniquely from Φ by using the weight
decomposition of V(μ). Thus there is a bijective correspondence Φ(z) «-> Φ between
intertwiners (3.2) and (3.4), and the two formulations are equivalent. In the following
discussions we often find it more convenient to deal with (3.4), which we also refer
to as a VO.

3.2. Existence of vertex operators. Let us examine the conditions for the existence of
VOs.

Lemma 3.1. Let Φ be a VO (3.4). Then for each υ G V(λ) there exists an N G Z > 0

such that

*f*V> = 0, /"*V> = 0 for alii, j,n.

Proof. First note the following simple fact. Let W be an arbitrary [/ (s^-module,

and let VL — φ Q(q)vk be the Z + 1 dimensional irreducible module with basis
(u\ o<k<l I

vk = flK)v0, eλv0 = 0. If u = Σ,wk®vk e w ® vι satisfies Δ(eψ)u = 0, then
fc=0

e™+ι~kwk = 0 for all k. This can be shown inductively for fc = Z,Z - 1 , . . . by
comparing the coefficients of υk in Δ(e™)u.

To show the lemma we may assume that υ is a weight vector. Since V(λ) is
integrable, we have e^v = 0 (Vz e I) for some m. From the remark above it follows
that e7

i

rι+MΦjnv = 0 for all i,j, n, where

M = max dim U'(st)υΊ - 1 (3.5)

with U'q(&t) denoting the subalgebra generated by eτ, fτ, and qh (h G (PcZ)*) This
implies that f™+M+sΦjnv = 0, where s = (hτ,wtΦjnv) = (hτ)wtυ - wt^) is
independent of n. The proof is over. D

Definition. For a VO (3.4) Φ, let the image of the highest weight vector be

+ ..., (3.6)

where . . . is a sum of terms of the form u 0 υ, u e V{μ)u with v φ μ. We call
υιt G V the leading term of Φ.

The following tells that Φ is determined by its leading term (communicated by
Kashiwara).

Proposition. Notations being as above, let

V£ = {v e V\ wtv = cZ(λ - μ), e f *>μ)+{v = 0 Vi G /} .

map sending Φ to its leading term gives an isomorphism of vector spaces

), V(μ) 0 V)-^V£ C V .

Pr<9<9/. Let Uf(b+) be the Hopf subalgebra of U' generated by eτ (i G I) and qh

(h G (PcZ)*). Then uλ generates a one-dimensional ί/7(b+)-submodule Q(q)uλ with

the defining relations ezuλ = 0, ^ ? / λ = q^h^ux. We have

H o m ^ ί ^ λ ) , F(μ) 0 F)-^> Hom^,(b+)(Q(g)ixλ, F(μ) ® V). (3.7)

In fact it is clear that the canonical map (3.7) is well defined and injective. To see that
it is surjective, pick a υ G V(μ) 0 V such that wt υ = d(λ) and e v = 0 for all z G /.
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Then from the proof of Lemma 3.1 there exists an N G Z > 0 such that f^v = 0 for
i G /, hence v generates an integrable t/'-module isomorphic to V(λ).

Noting (2.15a) we can rewrite (3.7) further as

the right hand side of (3.7) = Homu/{b+)(V*a(μ) <g> Q(q)ux, V)^^Vμ .

The last isomoφhism follows from the presentation of l/*α(μ) as £/'(b+)-module

u\b+)/ ( T ^ ) ' Σ { h )

When V has an upper global base, the space of intertwiners admits a description
in terms of crystals as follows.

Definition. Let (L, B) be a crystal base of V G ModΛ We say that a triple (μ, 6, λ)
(Λ, μ G CP+)fc, b G B) is admissible if uμ ® b G B(μ) ® 5 i s a highest weigh vector
of weight d(λ); or equivalently if

wt 6 = cl(λ - μ), e f *'μ>+16 = 0 for any i e I.

Let
B^ = {be B\(μ, b, λ): admissible} .

From (2.18) it follows that {Gup(b)}beBμ is a base of Vj(\ Hence we have

Proposition 3.3. Assume that V has a global base in the sense of Sect. 2.5 with
the crystal base (L, B). Then the space Ή.omu,{V{\), V(μ) 0 V) ofVOs has a basis
{Φμχ}beB», such that Φf has the leading term G^(b) (b e

3.3. Stability of crystal lattice. Let V G ModΛ In this subsection we assume that V
has a crystal base (L, B). We fix a weight basis {v3} of V such that υ- modqL G B.

We say that a VO Φ (3.4) preserves the crystal lattice if

C L{μ) ® L ,

where L(μ) = f| L{μ)v, Our goal is to show the following.
1/

Theorem 3.4. Let Φ be a VO (3.4) with the leading term υιt G V.
(a) Ifvιt G L, then Φ preserves the crystal lattice.
(b) In addition if' vlt mod qL belongs to B, then Φ induces a morphism of crystals

(c) There exists an m > 0 such that for any v G L(λ)λ_^ we have

Φjnv € q-nrhV-(2ρ M « '- m L(μ) Vj, n ,

where M is given in (3.5). In particular, for any fixed v and TV, Φjnv G qN L(μ) holds
for all but a finite number of(j, n).

A proof of Theorem 3.4 will be given in the next subsection.

Remark 1. In the same way as (3.4) one may also consider intertwiners of the form

Ψ:V(\)-*V®Ϋ(μ). (3.8)
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Under the assumption of Proposition 3.3 it can be shown that the space of intertwiners

(3.8) has a basis {Ψχ

μ} indexed by b G Bμ, such that Ψx

μux = Gupφ) (8) uμ +

terms v' 0 u\ ur £ V(μ)μ.

Remark 2. Let be the automorphism of the algebra U over Q defined by e~τ = eτ,

f% — f^ qh = q~h, and q = q~ι. We have Z\+(x) = σ o Δ_(x) for x G t/, where

σ(α 0 6) = 6 0 α. There exists a linear automorphism G End(V(λ)) such that

xΰ — xΰ for x e U, u e V(λ).

uλ = ΐxλ and

Suppose the finite dimensional module V also admits G End(V) with this property,

and let

Φ{±): V(λ) -> F(μ) (g> V
±

be an intertwiner with respect to the coproduct Z\±. Setting l^^^t; = σ o Φ^υ we

obtain an intertwiner

Moreover ^^~^ (resp. Ψ^) preserves the upper (resp. lower) crystal lattice at q = oo,

but not the one at q = 0 in general.

5.4. Proof of Theorem 3.4. In view of the remarks in Sect. 2.6 it is enough to prove

the theorem in the setting of lower crystal lattice. In this subsection only, a crystal

lattice/base will mean a lower crystal lattice/base. We put A — Δ_, eτ — e^ow,

fi — fl°w, and assume that Φ is an intertwiner with respect to Δ_.

Let ip be the anti-automorphism of U given by

1 = q7lt%et, φ(qh) = qh .

Define a new bilinear form ( , )^ on F(/i) by setting (u,υ)ψ = (β~ιu,v)φ, where

/?ΪX = q(.v>v)-(μ>μ)u for w ^ ^(μ)^. Then ( , )^ is nondegenerate, symmetric, and

satisfies [cf. (2.12, 2.13)]

= {^ G V(μ)|(L(μ), w)^ C A} . ( 3 ' 9 )

Using this we define Φ v : V(μ) 0 V(X) —> F by Φ v (^ 0 v) — Σ (u, Φjnv\vj> w n e r e

^ = Σ Φjn®vj' ^ n t e r m s °f ^ v the intertwining properties of Φ translate as follows:

Φy(u 0 eτv) = ezΦ
v(u 0 υ) + g ' ^ ^ - ^ ^ ^ ί / ^ 0 υ), (3.10)

Φv(^ 0 /.V) = q^^f^iu ®v) + q\HKMu)Φy{eιU 0 v), (3.11)

wtΦv(u ®υ) = cl(wlv - wtu). (3.12)

By the definition of M (3.5) the following hold:

e7

j

nv = 0=ϊΦw(f™+Mu®v) = 0 (\fueV(μ)). (3.13)

We note also that

fτw G Aq^v)~Mf%w (\/w G Vv). (3.14)
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Proof of (SL). Thanks to (3.9), the statement (a) is equivalent to

Φv(u®v) eL (VUG L(μ)μ_ψVυ G L(λ)χ_ξ) (3.15)

for any ξ,η G Q+. It is true in the case ξ = η = 0 by the assumption. We show
(3.15) by induction on ht(ξ) -f ht(η) where ht(ξ) = Σ n% f o r £ — Σ niaι-

Suppose ht(η) > 0. In view of (2.9) we may assume that u = f υ! for some

i G I and u' G L(μ) +Oi . Consider the decomposition of (2.8): u' — Σ f^Uj,
% o<j

v = Σ fik)υk> eιuΐ — eιυk — 0 Then u' G L(μ) [resp. v G L(X)] implies u G L(μ)
0<fc

[resp. vfc G L(λ)] ([8], Proposition 2.3.2). Moreover we have u = ^ /^+ 1 )^ ?-. By

the induction hypothesis we know that Φv(uJ 0 i>fc) G L. Using the result for Uq(sl2)

in Appendix (Corollary A.13) we get Φv(u ®v) = Σ * v(/f '+ 1^ ® Λfcvfc) G L

The case ftί(ξ) > 0 is similar. D

Proof of (b). Since Φ commutes with ê  and /2, it is enough to verify that Φ(B(λ)) C
B(μ) (8) 5 . In view of the description (2.10) of B(λ) it suffices to prove the
following statement by induction: If b — υ mod qL(\) G J5(λ), /̂ 6 7̂  0 and
Φυ moά(qL(μ) ®L) e B(μ) 0 B, then Φ / ^ mod(gL(μ) 0 L) G S(μ) 0 S. Again this
is a consequence of Corollary A 1.3. D

Proof of'(c). We may assume that the leading term t^t belongs to L. We shall show

Φv(u ®υ)e qVQ*-W+VθL (\/u G L(μ)μ_ τ ?, V^ G L(λ) λ_ ξ) (3.16)

for any ξ", 77 G Q + . The assertion (c) follows from this with the choice m =
max^ (2^, λ - μ - α/(wt^ )).

First let us prove (3.16) for ξ = 0, υ = ux by induction on ht(η). The case

ht(η) = 0 being trivial, suppose ht(η) > 0. We may assume that u = / / ^ for

some i, j > 0 and ίz G L(μ)μ_η+ja , ê t/ = 0. From the estimate of powers of

# in the case of t/^O^) (Proposition A1.2) we see that Φv(Uj 0 ux) G g κL implies

Φs/(fluj®ux) G qK+VQj^)^^ H e r e w e u s e ( j ^ ? α^) = ( α ^ a%). The assertion follows

from this.

Next let us consider the general case by induction on ht(ξ). We may assume
v = fy for some i and v' G L(λ)χ_ξ+a.. Let k be such that e\v* Φ 0 and e^1?;7 = 0,
so that v = /^'/[fc + 1]^. Then (3.11) implies

φ^{u ®υ) = [k+ l]~lqlhl>mu)(f^w(u 0 v') + qτΦ
y(eiU (g) i/)). (3.17)

Consider the first term of (3.17). If j , n are such that {u,Φ-nυ')φV- ^ 0, then

= wtυ ; — α/(wtt; ) + n<5. Hence together with (3.14) we find

[k + 1\ 'ql >(u, Φ3nv )ψfιVj e

Since fc + (h^wtυ') > 0 we have by the induction hypothesis

the first term of (3.17) e A g " M g ( 2 e ' r ' - ( M + 1 ) ( i - a t ) ) L . (3.18)
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As for the second term, let u = ]ζ f]u^ eiuj — 0. Then

where we have used (3.13) to restrict the sum to k -f M + 1 > j . Using again the
induction hypothesis we find

the second term of (3.17) G Aq~M

q(^v-oίι-(M+\)(ξ-az))L ( 3 1 9 )

Both of the right-hand sides of (3.18, 3.19) belong to Aq(2g^-{M+l)ξ)L as desired.
D

4. Compositions of Vertex Operators

4.1. Convergence of composition. Let V, W G Mod^ have crystal bases. We shall
consider the intertwiners

Φ:V(μ)-> Ϋ(y)®V.

Fixing bases {v-} C V, {wk} C W we denote by Φ j m , Ψkn their weight components
respectively.

If we set Φx = Σ Φjm 0 VjX~rn (x G Q(^) x ), then it gives rise to an intertwiner

V(μ) ~* y(z/) 0 F x with T^ being the U1 -module in Sect. 2.2. We would like to
define the composition

(Φx ^iά)oΨy = J2 Σ ( χ - m y - n Φ , m o ι?fcn) 0 Vj 0 ^ . (4.1)

For this purpose we need to extend the base field to K = Q((g)), the field of formal
Laurent series in g. We set Vκ = V ® K, U/K = Uf (g) K, etc.

Q(<?) Q(q)

Lemma 4.1. If x/y — q~s with s G Z > 0 , ί/ẑ ft ί/ẑ  composition (4.1)

ŵ // defined intertwiner of U'κ -modules

Vκ(λ) -> Vκ(v) ®VK ®WK .

Proof. We may assume that the leading terms of Φ, Ψ belong to the crystal lattices.
Fix u G L(λ) and I e Z. It suffices to show that for each iV > 0 the sum

J2 qsτnΦjrn o Ψknu comprises only finitely many non-zero terms moάqNL(v).
m+n=l

Since &knu — 0 for n ^> 0, the sum is restricted to n < n 0 for some n 0 .
Theorem 3.4 (c) states that ^ f c n n = 0 modρ M n L(μ) where lim M = co. Since

n—>• — o o

Φ^m, Ψkn both preserve the crystal lattice, the assertion is clear. D

4.2 Dual crystal base. For V G Mod^ we shall consider the dual Ur-module V*L

with respect to i (see Sect. 2.4). We have (VX)*L = (V*% for x G Q((?)x.
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As in (2.6) fix a reference weight λ0 G wt(V). As the reference weight of the dual
module we shall always take ΛQ = - λ 0 G vn(V*L). For υ G Vv we set

βv(V) = q(afM,af(ιy))-(a

TV(V) = ^,α/(λo)-α/(^)) v ? v

Likewise define βv*, etc. It is known ([6], Proposition 5.1.8) that the following give
isomorphisms of U1 -modules:

Fv*'V?-rhv ~ ^ * α , v* *-> sv, o β~l o T y *(<;*), (4.3)

Fv: Vq-2rhv -^(V* α )* α , v ^ Ί*(v), (4.4)

where we identify V with (1/*)*.
Define

{v*,v)L = {βy\v*,v), (4.5a)

L*^ - {i;* G F*|(ι;*,L> t C ̂ 1} , (4.5b)

B*L = the base of L*L/qL*L dual to 5 with respect to (, ) L . (4.5c)

From (2.16) and the remark (i) in Sect. 2.6, (L*L,B*L) is an (upper) crystal base of
V*L. Note that (e%b*,V)L = (6*, eib')L and (fib*,b')L = (6*, j>')\ hold for 6* G £*^,
6 7 G B .

In this section we shall assume that

V has a global base, (4.6a)

V*L has a global base, (4.6b)

Their crystal bases (L, B), (L*, β*) are related via (4.5b), (4.5c). (4.6c)

Lemma 4.2. Lei λ,μG (Pj), beB,b* eB* so that (6,6*>t = 1.

(μ, 6, λ) /5 admissible 4Φ (λ, 6*, μ) /s admissible .

Proof. It suffices to check that the following are equivalent for each i G /:

(i) e f - μ > + 1 6 = 0, (ii) e | Λ < > λ > + 1 6 * = 0 .

Let ε^δ) = max{A:|ef6 ^ 0} and φ^b) = max{k\ffb φ 0}. Then (i) states
ε (6) < (h^μ). The condition (ii) is equivalent to

(φ'x)+ιb*,b')L = (b*,φ'x)+ιb')L = 0 for any 6; 6 J5 . (4.7)

Equation (4.7) means that there is no V G B satisfying b = g ^ ' ^ V , i.e. that
ΦZΦ) < (\, A). The assertion now follows from the relation φ^—ε^b) = (ht, X—μ).
D

4.3 A lemma. By virtue of Lemma 4.2 the set
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is in one to one correspondence with B%. In fact they are dual bases to each other
with respect to (,)r In this subsection we assume that they are non-empty.

Let

Φ%y:V(λ)->Ϋ(μ)®V, beB%, (4.8)

φλμV*L V ^ ) -> V(λ) ® V * L > b* ^ B*μ ( 4 9 )

be the bases of VOs normalized as in Proposition 3.3. For definiteness we have
exhibited the spaces V, V*L explicitly. Using (4.9) we now define

Φx*y*a = ( i d 0 F y * ) o (Φx

μ

by*.)q-rhv . (4.10)

In view of (4.3), (4.10) gives an intertwiner of [/'-modules

Lemma 4.3. Let λ, λ' e (Pj) f e.

ί V ^ ί λ ) , t / ^ ( λ ' ) ) = K if\ = X',

= 0 otherwise.

Proo/. Let 0 : F κ ( λ ) —> Ϋκ(\f) be a {/'-linear map, and let 0 n be its weight
components, so that φn maps F ^ λ ) ^ to Vκ{\')v+nδ. Each φn is a L '̂-linear map
from Vκ(λ) to F^ίλO sending uλ to a highest weight vector of weight λ + nδ in
y x (A 7 ) . Its image is a £/κ-submodule.

From Theorem 4.12 b) in [15] it follows that the integrable highest weight U-
module V(λ) is absolutely irreducible, hence in particular VK(X) is an irreducible
Uκ module. Hence we find that φn — 0 (n φ 0) and that φ0 is a scalar which can
be nonzero only for λ = λ'. D

Proposition 4.4. Let bf e B^ly 6* e B*^. Then the composition of UrK-linear maps
(K = Q((q)))

)(V a ) κ <g>V >V (λ) (4.11)

is a scalar cjχ id. Here cjχ G K enjoys the property

Cgfb* = (b\b*)LmodqQ[[q]], C = ( - l ) ^ λ o * - w t f e % - * ? (4.12)

K = (2ρ, X + λ0 — μ) In particular the matrix (§χ )b, b* is invertible.

Proof. By virtue of Lemma 4.1, (4.11) is well defined. Hence by Lemma 4.3, it must

be a scalar map gfb* id. To see (4.12), let λ = λ7. We set K = (2ρ, λ 4 - λ o * - μ ) G Z ,

Tχ(u) = q^ ρ' ~v'u for u <

and likewise for Tμ. It can be checked that
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Now take bases {υk} C V, {vk} C V* such that vk modgL G B, υ% modqL*L G

B*L. Setting φfy = Σ φk ® vk, Φ^y*a = Σ ΦJ ® vf a n d u s i n g ( 4 13)> w e w r i t e

down the image of ux as follows:

~gfb*ux = q«T;1 Σ φ*j ° TμΦ'k(ux) x (sivfrυ^ .

Note that Tλux = ux and that T (L(μ)v) G qL(μ)u unless v — μ since (2^, a) G Z > 0

for a G Q+\{0}, together with Theorem 3.4(a). In view of the normalization (4.8,
4.9) of VOs, we obtain (4.12). D

5. Connection Matrices

5.7. R matrix. Throughout this and the next sections, we deal with only those modules

V G Mod ̂  such that

V satisfies the conditions (4.6a)-(4.6c), (5.1a)

Its crystal Bv is perfect in the sense of [6]. (5.1b)

Under the assumptions above, there exists an intertwiner of {/-modules

which commutes with the multiplication by zx, z2 and depends rationally onz = Z\/z2

(cf. [6]). Set Rvw(z) = PRvw(z), Pw 0 v = v 0 w. The condition (5.1b) implies
in particular that,

wt V C λ0 - Y^ Z>oαz ^ d™ ^λ0

 = 1 ^ o r s o m e ^o ^ Pcι -

From this section on we take such weight as a reference weight. Pick a nonzero vector
v0 G VXQ, and let w0 G Wμo, μ0 be the counterpart for W. We normalize Rvw(z) by

v w o o o o (5.2)

We have then (cf. [10])

(Rvw(zTψ = βvw(z)Rv*w(z), (5.4)

with some rational function βvw(z) G

5.2. Connection matrix. Fix λ, v G CP+)fc. Suppose that triples (z/, 6 l 5μ), (μ, 62,λ)

are admissible for some μ G (P%)k, bλ G JB V , and 62 G 5 W . In this section we

use the VO in the formulation (3.1, 3.2) Φv^y{z), Φμ

Xw{z). Note that they have the



Crystal Base and Vertex Operators 61

overall fractional powers of z. Correspondingly we must extend the base field
to include the fractional powers qΔχ, etc.

A result of [10] says that

_ 7 / / 7 /

y (Φ ,ι

w(z2) ^id)ΦχV

2(zι)Cvw ( b'2 bx ] (zι/z2) (5.5)
b'vb'2tμ'

holds with some scalar functions

(5.6)

Here (5.6) is understood to be zero unless (v, 6 ;, μ), (μ, b2, λ), (v, b[, μ'), and (μr, b'2, X)
are all admissible triples. We denote by Cvw(z) the matrix with (5.6) as entries where
the matrix indices are (b2, μ, b{) and (b'2, μ', b\).

The composition of vertex operators (in the sense of matrix elements)

are absolutely convergent when \zx\ ^> \z2\, and can be continued meromorphically
(apart from the overall powers of z%) to ( C x ) 2 . The right-hand side of (5.5) should
be understood as a result of analytic continuation. The matrix Cvw(z) satisfies the
Yang-Baxter equation ([10] Theorem 6.3.)

^ v 3

λ,

be

K b9

λ2

bΊ

V

(xy)

λ3

(y)Cv^ b9 b.'3
λ5 b4 λ4

(5.7)

We note that the compositions of intertwiners {(φ"

(μ, 62, λ) : admissible} are linearly independent since

moάqL{v)
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As a direct consequence of (5.3) and the above, Cvw(z) satisfies the first inversion
relation:

μ\ fλ bΊ μ/N

h ) ω c w I k υ2
. μ b2 v

(5.8)

Remark. Assume that the left (resp. right) hand side of (5.5) is absolutely convergent
for \z2/z1\ < 1 (resp. \z2/zι\ > 1). Setting zx = z2 in (5.5) and noting that
Rvv(l) = id we get

(5.9)

In view of Lemma 4.1 it seems likely that the assumption is valid. A rigorous proof
would require the knowledge of poles of the coefficients of the qKZ equation, which
is beyond the scope of the present paper.

5.3. Energy function. Now let us consider the limit q —> 0. By the construction we
have

Φχy(z)uλ modqL(μ) 0 L = zΔμ~Δχuμ <g> b.

By the assumption (5.1b) and Proposition 4.3.2 of [6], we have

E> ί<y\\ (h /<Λ h \ 'y~H(bι<S>b2)]Λ Λ> L /c i n\
JΓLyy\Z)\n nv^i ^9 uj) — Z " i ^> ^9 \J.iuj

Here H denotes the energy function of Rvv (see [6], Sect. 4).
Therefore at q = 0 Eq. (5.5) gives

λ b2 μ\

b'2 bx (z)

In this sense we find that the energy function for the connection matrix C coincides
with that of vertex model in the sense of [6].

5.4. Second inversion relation. Applying (5.4) twice together with the isomorphism
(4.4) we obtain the second inversion relation for the R matrix

avw(z)(((Rvw(zΓι)^y1)^ = (Fv ®id)Rvw(zq-2rhV)(Fyl ® id), (5.12)

OLVW(Z) = βvw(z)/βv*w(z). (5.13)

We shall give its counterpart for the connection matrices. For this purpose we need
to prepare a lemma.

Let {υ3} C V, {̂ *} C F * be the dual bases with respect to the canonical pairing.
Rewriting Proposition 4.4 in terms of VOs (3.1) we have

= δxx,gf* i d V ( λ ) , (5.14)

f (5.15)
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Here we have set Qj = (£,α/(wt(^))), g^bb* = qrhv(Δμ-Aχ)sμbb\ χ h e w e i g h t

components Φ(z)j of a vertex operator is defined by Φ(z)υ = ^ Φ(z)jV 0 v . The
i

second formula is obtained from the first by replacing V" by F * 1 and using (4.3),
with a suitable choice of g*^b*b = qrhy{Aχ-Aμ)~*\b*b^ ~*λb*b e Q((^)).

Now set

Gχ = q2rhVΔ*χλ , χ λ = q-4(ρ>λ) tr V ( λ ) (Γ^) G Q((g)). (5.16)

Note that χ λ is the principally specialized character of the irreducible $ v -module with
highest weight λ, where g v is the dual Kac-Moody algebra.

Lemma 5.1.

Proof. We are to show that

Δλ-4(ρ,λ) f (rfl SΓ^ φ\>'b
(λ) I ^ λ z

V j

— q μ ' fry(μ) [ Tμ o y q JΦχ}

V J

From the intertwining property of the VO we have

μ ° Q λyW 2

By the cyclic property of the trace and the fact that each hand side is convergent in
g-adic topology, the assertion is clear. D

Proposition.

where Gx and a v v are given in (5.16) and (5.13), respectively.

Proof. Let Rvv(z)^ be the matrix elements of Rvv, that is,

Similar convention is used for Rvv*(z) and Rv*v(z) by taking the dual base {̂ *

of {VJ}. From (5.5) we have

b'vb'2,μ'

λ

K
μ' b>2

μ\
b2

v )

\

(
f

z). (5. 17)
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Here we put zλjz2 — z. Operate Φ^vl(z2)k from the left to the both hand sides of

(5.17) and sum over k. Setting W = F * in (5.5) and using (5.3) we have

( μ b2 v

h\ 6*

Λ ; b[ μf

From the relation

Rvv^tj = (Rvv(z)t2)lά = β{z-ι){Rvv*{zΓ%

together with (5.14)—(5.15), we get

xv (zOιcv*v \ bι
X b[ μ>

λ &! μ

From Proposition 4.4 there exist inverse matrices ( 7 ^ b)b*b and (7**bb*)bb* of

and g**. Consequently we get

I μ b2 v \

/ W ^ ' K W 6f 6* (z-1)
\λ 6, μ'/

/ λ 6; μ\

= ΣΊfb[gfblcvv[bλ bΛ(z).
b<vb>2 \μ' b>2 v )

Similarly we can derive

• μ b* λ

βv*v(z)~lCvv* \b2 6, I (2-1)

λ

Using the first inversion relation (5.8) with W = V* and Lemma 5.1, we obtain the
desired result. D
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6. Restricted Paths and One Point Functions

6.1. Restricted paths. Recall that we consider only V G Mod*̂  whose crystal B is
perfect of some level TV G Z > 0 . Hence for any η G (P+)N there exists sequence of
weights η0 = η,ηl9 η2,... G (P^)N and a path pgr = (pgr(n))n>x, pgr(n) G B, such
that for any n the following isomorphism of crystals holds:

B(η)-^->&>(ηn; B) ® B®n .

Here uη is sent to uΎ]n ®pgr{n) ® . . . <g>pgr(l), and d°(η\ B) denotes the set of η paths
(see [6] Sect. 4). It is known that if b G B(η) corresponds to an η path p = (p(n)) n > 1

then
oo

wtfc = η + Y^(af(wtp(k)) - α/(wtpffr (*;))) - ω(p)«,

(6.1)
ω (p) = y ] k(H(p(k + 1) ® p(A )) - H{j>gr{k + 1

OO
V Λ

where JT is the energy function (5.10) of the corresponding Rvv. We shall identify
B(η) with &>(η; B).

Let fc be a positive integer with k > N. Fix £ G (P+) f c_ i V and 77 G (P+)^. We set

High°(ξ, 77) - {^ 0 b G 5 ( 0 <g> 5(77)|e.(^ 0 6) = 0 Vi G /} .

Definition. We say that p = (α,p) is a restricted (£,?7)-path in B if the following
hold.
(1) a = (α(n))n>0, α(n) G (Pj) f c,

(2) p = (p(n))n>! G^(77;B),
(3) the triple (a(ri),p(ri), a{n — 1)) is admissible for all n > 1,

00

(4) α(0) - ξ + η + Σ (α/(wtp(fc)) - α/(wtp (fe))).
J f e = l

Note that the α(n) are uniquely fixed from £ and p by (3), (4). We let ^ e s ( ξ , η\ B)
denote the set of restricted (£, 77)-path in B.

Proposition 6.1. The following is a bijection:

^ e s ( £ , 77; 5 ) -> High°(£, 77), (α, p) *-> uξ 0 p.

The weight of(a,p) G ̂ e s ( £ , ?7; 5 ) ^ <g/v^ by α(0) - ω(p)(5 w/ίΛ ω(p) given in (6.1).

Pr6>6>/. For n > 0 we define ?j(n) G B(ξ)®B(ηn) by the following map induced from

B(ξ)
Θ p(n) 0 ... p(l).

n

First let (α,p) G 9°x^(ξ,,η\B). Then we have wt(n) = wtυ(0) - Σ w t P U ) =

α(n) G P. Let us show υ(n) G High°(ξ, 77n) for all n > 0 by the induction on n.

For n > 0, we have v(n) = ^ 0 uηn, so we get v(n) G High°(ξ,ηn). Assume

that υ(n) G High°(ξ, ηn). From the admissibility of the triple {a(ri),p{n),a(n — 1)),
v(n) ®p(n) — v(n — 1) is a highest weight vectorof B(a(n)) 0 B. Setting n = 0, we
find υ(0) = wξ Θ p G High°(ξ, 77).
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Conversely if p e High0(ξ, 77) then setting a(n) — wti>(n) we have

D

6.2. IRF models and their one point functions. Here we define IRF models whose
Boltzmann weights are given by the connection matrices, and state results on their
one point functions.

As before we fix g, V e Mod ̂  and k > N. Take a two dimensional square lattice
SZ. Place variables λ, μ,... (resp. 6, £/,...) on vertices (resp. bonds) with values in
(P+)k (resp. B). For a configuration of variables around a face

λ-

Fig. 1 μ

we associate the Boltzmann weight

μ

μ' b'2

Recall that it is zero unless the triples (μ,6 l 5λ), (i/,62,μ), (μ\b[,λ), (v,b'2,μ') are
admissible.

Although in our consideration we treated g to be an indeterminate, the matrix
elements of Cvv have meaning as functions of q and z. Under such identification we

restrict q to 0 < q < 1 and z to 1 < z < q~rhV.
Next we explain the ground states of our IRF model. Fix a particular site i.

Consider the horizontal half infinite line I on SZ having i as the left end. The ground
states are labeled by the pair (ξ,η) (ξ e (P^)k_Niη G ( ί + ) ^ ) . The ground state
corresponding to (ξ,η) is described as follows. Define the (ξ,ry)-path agr such that
cl(agr(n - 1) — agr(n)) — wt(ppr(n)). Note that the sequences {agr(n)}n>Q and

gr(0\ agr(l),... [resp. p y r ( l ) , ^ r ( 2 ) , . . . ) on every
i Th d i i l d

g

{PgΛ
n)}n>o a r e periodic. Place ag g y ^

site (resp. edge) on I starting from i. The ground state is uniquely determined by the
condition that it is periodic in the horizontal direction and constant along the NE-SW
direction.

Take a dominant integral weight λ 6 (P+)k We consider the probability of finding
the variable on i being the value λ, and denote it by P(λ|ξ,?7). Here (£,77) signifies
the choice of a boundary condition. Assume that the initial condition (5.9) is valid for
the Cvv. Thanks to the Yang-Baxter equation (5.7) and the second inversion relation
(Proposition 5.2), Baxter's corner transfer matrix method [5] is applicable. We have
the following expression for the one point function.

where

F(λ\ξ,η;q)=

s(ξ, η; B) (λ) = {p = (a, p) G ̂ e s ( ξ , η; B)\a(0) = λ} ,

Z=
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Here ω(p) and χ λ are given in (6.1) and (5.11), respectively. Then we have the
following. Let

High(ξ, η)v = {ve V(0 ® V(η)\ wίv = u, e{v = 0\/i <Ξ 1} .

Proposition 6.2.

Moreover if the generalized Cartan matrix of g is symmetric,

XξXη

Proof. From the theory of crystal base we have

dimHigh(£, η)u = #High°(£, 77),

where High0 (£,77)^ denotes the weight space of High0(£, 77) of weight z/. Hence the
first statement is a direct consequence of Proposition 6.1.

If the generalized Cartan matrix of g is symmetric, then, as noted before, χ λ gives
the principally specialized character of the ^-module V(λ). Therefore we have the
following identity of specialized characters:

which provides us with the way of calculating the normalizing factor Z. D

Remark 1. The quantity qsξ+Sη~SχF(X\ξ, 77; q) is called the branching coefficient [16],

where sx — ' Ί w '—— for λ e (Pl)h. The transformation property of
λ r(/c + /ιv) rhw + k

 F F J

the branching coefficients under the modular transformation enables us to analyze the
critical behavior of our one point function.
Remark 2. This type of results have been established by direct methods for higher spin
representations of Uq(sί2) [17] and the vector representation of Uq(g) of classical types
A, B, D [18,19]. (There are problems for the type C since the vector representation
is not perfect.) Proposition 6.2 covers and generalizes these results, on the assumption
(yet to be verified) that the connection matrices coincide with the Boltzmann weights
constructed in [3,4].

Appendix. Vertex Operators for Uq(sί2)

In this Appendix we study the vertex operators for integrable modules over Uq(sί2).
Dropping indices we write the Chevalley generators as e,/, t. Let Vm denote the

1 dimensional irreducible Uq (5ί2)-module with highest weight vector UQ1. We set

m Λk)Ί.m Ak) _ /

h J ° ' J ~ TkV '

The upper crystal base (L m , JBm) of Vm at q — 0 is given by
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Let now l,m,n be non-negative integers such that I = m + n — 2s, s =
0 , 1 , . . . , min(ra, n). We consider the intertwiners of the form

Φ:Vι^Vm®Vn,

where the tensor product is taken with respect to A — Δ+. Define ckj by

Σ
We are interested in the behavior of ckj as q —> 0. Set ckj = cι_kγn_^k+s_Jy Explicitly
the coefficients ckj, ckj are given by

Proposition ALL

Ckj _ V"^ , Λ , v v(\+i-k)+j(k-3+m-l)
— / v *•) y

0 0 maxO-fe,0)<ί/<minO,s)

X *][fc-j + ̂ ] [ m - j ] / [ * ] (AU)

^ - = the same formula with m and n interchanged, (A 1.2)
coo
p; n ( K 1 o\

00 — 00 ' v,-ί̂ JL ~v

Proof. Solving Δ(e)w — 0 for w = Φ(IAQ) G Vm 0 Vn and applying Z\(/) to it; we
get (Al.l). Likewise starting from Φ{u\) and applying Δ(e) we find (A1.2). We omit
the details. D

Proposition A1.2. We have

°Ί± = q ( k - j ) ( m - s - j ) ^ + mmm^ ( k > j 9 j < m - s ) (A 1.4a)
coo

fc^ fc)(fci) + t) ? (A; < i, A; < m - 5) (A1.4b)

m+S+l) ( 1 + . . .) ^ (fc > m _ s ? j > m _ s ) ?(A1.4c)

where ... means terms in qA.

Proof A direct computation shows that in the case k < m - s the right-hand side
of (Al.l) contains a unique term which gives the lowest power of q. The estimates
(A 1.4a) for k < m - s and (A 1.4b) are derived in this way. The other case can be
treated similarly by using (A1.2, A1.3). D

The following is an immediate consequence of Proposition A 1.2.

Corollary AL3.
(i) Let Φ(uι

0) — UQ1 0 v + . ., where ... stands for a sum of terms u' 0 v',
uf e Q(q)uψ with j φ 0. Ifυ e Ln, then Φ(LZ) C Lm 0 Ln.
(ii) Suppose moreover that v mod qLn G Bn. Then Φ induces a morphism of crystals

Remark. From Sect. 2.6 we can deduce analogous results for lower crystal lattices,
replacing uf by v^1 = f(k)u^ and A+ by Δ_. Proposition A1.2 and Corollary A1.3
are both valid in this setting.
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