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Abstract. This paper provides a rigorous proof of the existence of an infinite number
of black hole solutions to the Einstein-Yang/Mills equations with gauge group SU(2),
for any event horizon. It is also demonstrated that the ADM mass of each solutions is
finite, and that the corresponding Einstein metric tends to the associated Schwarzschild
metric at a rate 1/r2, as r tends to infinity.

1. Introduction

In this paper we prove that the Einstein-Yang/Mills (EYM) equations, with SU(2)
gauge group, admit an infinite family of "black-hole" solutions having a regular event
horizon, for every choice of the radius rH of the event horizon. The solutions obtained
are indexed by a "winding number". Moreover, we prove that the ADM mass, [2] of
each solution is finite, and the corresponding Einstein metric tends to the associated
Schwarzschild solution in the far field. Some of our results were observed numerically
in [4, 5]; see also [3]. Numerical discussions of the stability properties of some of
these solutions can be found in [6, 9].

The existence problem reduces to finding solutions of the following system of
ordinary differential equations in the region r >rH:

τ2Aw" + r(l - A) - ~W w' + w{\ - w2) = 0,
[ r J (i.i)

subject to certain boundary conditions. These equations were studied in [7,8], where
the existence of globally defined regular (i.e., non-black-hole) solutions was proved.
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In the case considered here, we are given that Eqs. (1.1) are singular at r = rH, in
the sense that A(rH) = 0. If wf(r) is bounded near rH, then lim w'(r) exists, and

r-±rH

this constrains the data pair (w{rH), w'{rH)) to lie on a curve W{rH) in the w — w'
plane. We prove that for every rH > 0, there exists a sequence of initial values
(7n,/3n) on ̂ f{rH) for which the corresponding solutions (wn(r),wf

n(r),An(r)) of
(1.1), are both non-singular (An(r) > 0), and bounded, for all r > rH. Furthermore,
we show that each solution has finite ADM mass, μn = lim r(l — An(r))9 and since

fin > rH, these masses can be arbitrarily large. However, in a future publication it
will be shown that (μn — rH) is uniformly bounded.

Our results disprove the "no hair" conjecture for non-abelian black holes [4,10].
This conjecture states that a stationary non-abelian black hole is uniquely determined
by the following quantities at infinity: its mass, its angular momentum, and its
Yang/Mills charge, [10]. We demonstrate the existence of infinitely-many black hole
solutions. Each of our solutions agrees at infinity with a Schwarzschild solution
having as usual, constant mass function, zero angular momentum, and zero Yang-
Mills charge. That is, for any event horizon rH > 0, we produce an infinite number
of counter examples to the no hair conjecture. (These solutions were shown to be
numerically unstable in the papers, [4,6].) We note that the singularity at r — rH

in the Einstein metric for our solutions can be "transformed away" exactly as in the
familiar Schwarzschild case, see [1].

We now describe the contents of this paper. In the next section we discuss the
equations and the boundary conditions, and state the local existence theorem. We also
recall some results proved in [8]. In Sect. 3, we prove the main theorem: Given any
rH > 0 and n G Z + , there exists a smooth, bounded solution (wn(r), wf

n(r), An(r))
of (1.1), defined for all r > rH, satisfying An(r) > 0, lim An(r) = 0, and

r\rH

lim Tan"Λ(w'n(r)/wn(r)) — —nπ. It is a curious fact that the proofs in the cases

rH > I, rH = 1, and rH < 1 are quite different, but the results are the same.
In Sect. 4 we shall obtain some properties of our solutions; in particular we show

that each of our solutions has finite total mass βn, and that the corresponding Einstein
metric coefficients tend to the Schwarzschild metric coefficients

1
as r -» oo, at a rate -r.

rz
Finally, in the appendix, we prove the local existence theorem. (The existence and

continuous dependence issues are somewhat delicate here because the equations are
singular at rH.)

2. Preliminaries

As has been discussed elsewhere, [3, 7, 8], the EYM equations with gauge group G
can be written as

Rt]-\Rgl3=σTιJ, d*F i i = 0. (2.1)

where T{j is the stress-energy tensor associated to the g-valued Yang-Mills curvature
2-form F , and g is the Lie-algebra of G. If we consider static solutions; i.e., solutions
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depending only on r, and G — SU(2), then we may write the metric as

ds2 = -T(r)~2dt2 + A(r)~ιdr2 + r2dΩ2,

(where dΩ2 is the standard metric on the 2-sphere), and the curvature 2-form as

F = w'τ{dr Adθ + w'τ2dr A (sinθdφ) - (1 - w2)τ3dθ A (sinθdφ).

Here T,A and w are the unknown functions, and τ1 ?τ2,T3 form a basis for the Lie
algebra su{2). The EYM equations are given by

TA1 + (1 + 2w/2)A = 1 - ( 1 ~f)2 , (2.2)

Γ π _ w

2γl
τ2Aw" + r(l - A) - ^ 7 + w{\ - w2) = 0 , (2.3)

2rA(T'/T) = - — ^ - + (1 - 2^/ 2)A - 1. (2.4)

Since (2.2) and (2.3) de-couple from (2.4), we solve them first, and then use (2.4) to
obtain T. [We shall return to (2.4) in Sect. 4.]

As in [7,8], we define the function Φ by

(I _ ^2\2
Φ(r, w, A) = r(l -A)- , (2.5)

r
and then (2.2) and (2.3) become

rA1 + 2w'2A = Φ/r , (2.2;)

r2Aw" + Φw;7 + iϋ(l - w2) = 0. (2.37)

Now let f > 0; in order to obtain "black hole" solutions of radius f, the initial
data is required to satisfy the following conditions:

A(f) = 0, w2(f) < 1, and |tι/(f)| < oo .

We then seek a smooth solution of (2.2), (2.3) defined for all r > f which satisfies
the condition

lim (A(r),w(r),w'(r)) is finite.
r—>oo

The following result gives some necessary conditions in order that (2.2), (2.3)
admits a C2+a solution satisfying (2.6) on some interval \r - f\ < ε; we use the
notation w = w(f).

Proposition 2.1. Let f > 0 be given, and let (w(r), w\r), A(r)) be a C2+a solution
of (2.2), (2.3) on an interval f < r < f + ε, which satisfies: lim A(r) — 0, and

r f

lim w2(r) < 1, and l im(^(r),^ /(r)) φ (0,0). Then the following conditions hold:
r—>r r-^-r

Φ(f, w, 0)w'(r) + iϋ(f) (1 - w2(r)) = 0, (2.1)

Φ(f,<ϊ),0)^0, (2.8)

^;/(r) = lim w"(f)

2Φ(f,ιD,0)
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Proof. Since A{?) = 0, (2.7) follows from (2.3). Now if Φ(f,iD,O) = 0, then
w(f) = ±1 or w(f) = 0. If w(f) = ± 1 , then 0 = Φ(f,w,0) — f, contrary to

our assumption. Thus we may assume w(f) = 0. In this case 0 = Φ(f, w, 0) = f = -

r

so r = 1. Now suppose w'(l) < 0; if κ/(l) > 0 a similar argument will work. Since

we see that Φ'(l) = 2 so (2.2/ implies that A'(I) = 0, and A"(l) > 0. Thus A{r) > 0
for r > 1, r near 1. Now set v — Aw'; then υ(l) = 0, and

2w^L w(l^)=0 ( 2 Π )

r rz

so that τ/(l) = 0, and v"(\) > 0. Thus v(r) > 0 for r > 1, r near 1. On the
other hand v(r) = A(r)^7(r) < 0 for r near 1, r > 1. This contradiction shows that
Φ(f,w,0) ^ 0. Finally (2.2/, (2.3)7, and (2.10) give, using LΉospitaΓs rule,

„ _ ,. -Φwr - w(\ -w2) 1 . Φw" + Φ'w1 + (1 - 3w2>u/
; (r) = hm ^- = — r lim

f r 2 ^ f 2 f

r 7°

W"{r) - W'(f) [ 2 ( 1 ~f2)2 + 4U)(1 " ^}

 W'(f)l - w'(f) (1 - 3*2)

(1 - ?ϊ) 2) 2 '

r
r

Thus solving for w"(f) gives (2.9). D

We remark that if w φ- 0 and ^ ( r ) is bounded for r > f, r near f, then lim w'ir)
r\f

exists, (see [8, Lemma 4.4]), and thus (2.7) and (2.8) are satisfied even if the solution
is defined only for r > f. Thus w is a Cι-function. If lim w"(r) exists then (2.9)

r\,f

holds, and w is then a C2-function.
There is a converse to the last result; i.e., the condition (2.8) is also sufficient for

the existence of a smooth solution. We need the following definition, [8].

Definition 2.1. A one-parameter family (w(r,7),t(/(r,7),i4(r,7),r) of solutions of
(2.2), (2.3) defined for f < r < f + s(7), is called continuous, provided that it satisfies
the following. If Γx < Γ2, then there exists a number S(Γι,Γ2) > 0 such that for all

ie[Γvr2ι
(a) 5 ( 7 ) > 5 ( Γ 1 , Γ 2 ) , a n d
(b) (w(r,7),ΐi/(7 ,7), A(r,7),r) depends continuously on (r, 7) for r < r < r +
5(Γ 1 ? Γ 2 ).

We now have the following converse to Proposition 2.1.

Proposition 2.2. Given f and 7 such that f > 0, 7 2 < 1, and such that

Φ(f, 7 ,0) Ξ f - ( 1 ~_7 } ^ 0, (2.12)

ίAere emto α unique β = β(f, 7) sαc/ί that

2 0, (2.13)
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and β depends continuously on 7. Moreover, there exists a unique solution

(w(r, 7), w'(r, 7), Λ(r, 7), r)

of (2.2), (2.3) satisfying (2.9) and the initial conditions w(f, 7) = 7, wf(f, 7) = β,
A(?,η) = 0, defined on some interval f < r < r -f s(7). 77ιe solutions form a
continuous I-parameter family, and are analytic on \r — f\ < 5(7).

Proof Given in the appendix.

In the rest of this paper, for any fixed f > 0, we shall denote by (w(r, 7), wf(r, 7),
A(r,j),r) the C2+α-solution of (2.2), (2.3), satisfying w(f,j) = 7, w'(r,η) = β,
[where β is determined by (2.12), and Φ(f,7) 7̂  0], and A(r,η) = 0; we shall call
this solution the "7-orbit."

We shall next recall a few results from [8]. Before stating them, we must introduce
some notation. First we define the region Γ C t 4 by

Γ = {{w, w1, A, r): w2 < 1, A > 0, r > f, (w, wf) φ (0,0)} .

Next, we let re{η) be the smallest r > f for which the 7-orbit exists Γ; τe(η) = +00
if the 7-orbit stays in Γ for all r > 0. If the 7-orbit exits Γ via A = 0, we say
that the 7-orbit crashes. [A priori it is possible for w'(r) to become unbounded as
r —>• Γj > f, say. But in fact this cannot happen unless A(r) —-> 0 as r —> rx\ this
follows from (2.3)'.] Next, if θ(r,η) is defined by θ(r,η) = ΊΆn~\w'(r^)/w{r^)),
- | < 0(f,7) < 0 , we set

- - [ f l ( r e ( 7 ) , 7 ) - β ( f , 7 ) ] .
π

Theorem 2.3 [8, Theorem 3.1]. Let f > 0 be a fixed positive number. Suppose that

Λn =

be a sequence of orbit segments in Γ, satisfying Ω(ηn) < N for all n. Then the η-orbit
lies in Γ for f < r < re(η), and Ω{η) < N.

Note that the proof in [8] had f = 0 but the proof for f > 0 requires no essential
modifications.

Corollary 2.4 [8, Proposition 2.10]. Suppose that for some 7, and some integer k > 0,
(k — 1) < 4?(7) < k, the 7-orbit doesn't crash and w2(r, 7) < 1 for all r > 0. Then
β(7) = k.

We next have

Proposition 2.5 [8, Proposition 4.8]. Let the orbit segments Λn be as in Theorem 2.3.
Suppose 7 n —>• 7 and Ω{η) = k. Then for sufficiently large n, Ω(^yn) < k + 1.

In the rest of this paper, 0(r, 7), r e(7), and Ω{η) will denote the quantities defined
above. If k is a non-negative integer and Ω(η) = fc, we shall refer to the 7-orbit as a
k-connecter. Finally if σ2 < 1, we define rσ(η) by

ty(rσ(7),7) = σ. (2.14)

[More precise notation would be rσ n(η) to denote the n t h time that the 7-orbit meets
the hyperplane w = σ. However in each instance, the n will be clear and we shall
thus omit the dependence on n.]
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3. The Main Theorem

In this section we shall prove the following theorem.

Theorem 3.1. Given any f > 0, there exists a sequence (7n, /?n, f), where (7n, /?n, f)
satisfies (2.12) and (2.13), such that the corresponding solution (iL?(r, 7n),it/(r,7n),
A(r, 7n), r) of'(2.2), (2.3) with this data lies in Γ for all r > f, and Ω(ηn) = n.

Proof. The proof breaks up into three distinct cases, depending on whether f < 1,
f — 1, or f > 1. These cases are different because the "initial data" sets W(r) defined
by1

= {{wη w')\ Φ(f, w, 0)w' + w(\ - w2) = 0,w/<0, (3.1)

are different in each of the three cases. We begin with the case r > 1 [see Fig. 1,
where the "dashed" curve represents W(r)f}.

1

Fig. 1. W\r\ f > 1
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Proposition 3.2 Theorem 3.1 holds if r > 1.

We shall first show that orbits of (2.2), (2.3) starting on W(f) with f > 1 don't
crash.

Lemma 3.3. Let f > 1; then no orbit (w(r, 7), w'(r, 7), A(r, 7), r) crashes. Moreover,
there are constants δ > 0, r > 0, independent of 7 such that A(r, 7) > δ and

w'(r,j)\ < τ,for r > f + 1.

Proof For ease in notation, we shall suppress the dependence on 7. Consider first
the case f > 1. Define μ(r) by2

: fQ _ A(γ>)) (3 2)

1 In what follows, we shall only be concerned with W{r)\ all results we give concerning data
(w(r),w'(r)) in W\f) have analogous statements for data in the symmetric branch W{f)' =
{(w, wf): Φ(f, w, 0)wf + w{\ - w2) = 0, w1 > 0, w < 0}, lying in the region w' > 0
2 μ(r) = 2m(r), where m(r) is the ADM mass [2]
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Then μl = 2Awn + (1 - w2)2/r2 > 0. From (2.5), for r > f,

(1 - w(r)2Ϋ 1
Φ(r, w, A) = μ(r) - —LL- > μ(f) - -

r r

= f - - = σ > 0 . (3.1)
r

The results now follow from [8, Propositions 2.5 and 2.7]; i.e., the positivity of Φ
enables us to bound A from below, and to keep wr bounded. If f = 1, then by our
local existence theorem, Proposition 2.2, the solution exists for f < r < f -f ε, for
some ε > 0, so this case reduces to the previous one.

Lemma 3.4. Let k E Z + ; if there exists a ηλ for which Ω{ηx) > ky then there is a 7
for which Ω(j) = k.

Proof Let S = {7: 7 > 71 ? and β(7) < &}; 5 ^ φ since 1 G 5. [The 7 = 1
orbit is w(r) = 1, A(r) = 1 — f/r.] Let 7 = inf 5; then by the previous lemma
the 7-orbit cannot crash. The 7-orbit cannot exit Γ via w2 = 1 (if so, J?(7) < fc
and hence Ω(j) < k for some 7 E 5, 7 < 7, 7 near 7). The 7-orbit must then
be a j-connecter for some integer j < fc, by Proposition 2.5. If j < k, then by Corol-
lary 2.4, Ω(η) < j 4- 1 < fc for 7 near 7; this violates the definition of 7 and thus
β(7) = fc. D

In view of this last result, in order to prove Proposition 3.2, we may assume that
for some f > 1,

i?(7)<7& for all 7, (3.4)

and show that this leads to a contradiction.
From [8, Proposition 2.11], the assumption (3.4) implies that we can find

μ > max ( f, — I (3.5)

such that for all 7,
μ(r, 7) < μ/2 , if f < r < r e ( 7 ) . (3.6)

We shall obtain the desired contradiction by showing that orbits which start
sufficiently near (w,wf) = (0,0) have arbitrarily high rotation; that is, we will prove
the following proposition, (which will complete the proof of Proposition 3.2).

Proposition 3.5. Let f > 1 be given, and assume that (3.6) holds. Then given any
M > 0, there is an ε > 0 such that ifθ<j<ε, then Ω(j) > M.

Proof. We define a distance function ρ(r, 7), by

ρ(r, 7)2 = w(r, η)2 + r2w'(r, 7)2 , (3.1)

and an "angle" ^(r, 7) defined for f < r < re(η) by

Tanψ(r, 7) = rtϋ;(r, j)/w(r, 7), -τr/2 < -0(f, 7) < 0. (3.8)

(Notice that if 0(r, 7) is defined as usual by Tan θ(r, 7) = wf(r, j)/w(r, 7) for r > f,
and - π / 2 < 0(f, 7) < 0, then ^(r, 7) > 0(r, 7) for all r > f > 1.)

The proof will be broken up into several technical steps. First define ro(7) by
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7*0(7) being minimal with respect to this property.

Step 1. If 7 is sufficiently close to 0, then £>(f(7), 7) is small, where

f(7) = min[ro(7), μ ] . (3.9)

Step 2. Given any T > 0, if ρ(r(η),η) is sufficiently close to zero, then ρ(r,η) is
near zero for f(7) < r < f(7) + T.

Step 3. If ρ(r, 7) is near zero, then

if T + f(7) > r > 3μ.
The proof of Proposition 3.5 then follows by integrating ψ from 3μ to T for an

appropriately chosen T.
Lt(r Ύ) ϋ

We proceed now with the details. First, A(r, 7) = 1 — > 1 — — , and hence
r LT

A(r, 7) > \ , if r > μ .

Moreover, each 7-orbit must cross w — 0; see [7, Proposition 6.1]. The important step
is to show that we can keep an orbit close to the origin, (w, w1) = (0,0), for bounded
time, provided that we take 7 sufficiently close to zero. Recall f (7) is defined in (3.9).

The proof of Steps 1-3 will follow from a few "facts." In what follows, we shall
often drop the dependence of w, A, etc., on 7 when there is no chance of confusion.

Let σ be as in (3.3); i.e.,

Φ(r, w,A)>f— - Ξ σ > 0 , if r > f .
r

Fact 1. —w'{r^) < 7/σ if f < r < ro(j), and for all r satisfying f < r < re{η),

Proof. From (2.3)7, and (3.3), WΠ{TQ) > 0; thus on f < r < ro(7), -w' has its
maximum either at f or when w"(r) = 0. From (2.3/

—w'(r, 7) = —117(7*, 7) (1 - w2(r, η))/Φ(r, 7) < 7/σ .

If w"(r) = 0, then again —w"(r) < 7/σ, and this proves the first statement. If
f < r < re(7), then wf(r) has its maximum when w"{r) = 0, and at such an r,

\w'(r) <-. D
σ

Fact 2. 7*0(7) — f > σ.

—7
Proof. 7*0(7) — f = —— < σ, from Fact 1 and the mean-value theorem. D

Fact. 3. Suppose ro(7) < μ and 0 < 7 2 < σ3/4μ. Then r2Af(r, 7) > σ/2 if

Pwo/. If r2A'(r) < σ/2 for some r in the above interval, then from (2.2); and
Fact 1,

σ 3

 Λ
A ( r ) > φ(r)σ/2 > σ > σ ^

~ 2rw'(r)2 ~ Arw'(r)2 ~ Aη2r ~
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j y

On the other hand, A(r) = 1 < 1; this contradiction establishes Fact 3. D
r

Now armed with these facts, we complete the proof of Step 1; namely we have

£(r(7),7) < cry, where c = [1 + β2/σ2]ι/2 . (3.11)

Proof. If μ < ro(7), then from Fact 1, w/2(μ,7) < 7 2/σ 2 so £(μ,7)2 < 7 2 +
μ 2 7 2 /σ 2 = c 27 2. If ro(7) < μ, then again from Fact 1, £>(ro(7),7)2 < μ2η2 /σ2 <

2 2 i—i

cΔγ. u

To complete the proof of Step 2 we need one last fact.

Fact 4. There is an η > 0 such that A(r, 7) > η !if 7 2 < σ3 /4μ, and r > f (7).

/V00/. If r < μ, then A(r, 7) > ^, by (3.10). Thus we may assume that μ > r. If
^o(7) ^ A' m e n ^ ( r : 7) ^ 5 if r ^ μ = ^(7) Thus we may assume μ > ro(7), and
consider only those r for which μ > r > ro(7). Since 7 2 < σ3/4μ, Facts 2 and 3
give

), 7) = ^ o ( 7 ) , 7) - A(f, 7) =

^0(7) ro(τ)
σ f ds σ f ds

/ > /
2 J s1 2 J μ1 2μz 2μz

Now if there were a smallest f > ro(<5), f < μ, for which A(f,7) = r1 ? then from
(2.2)', and Fact 3,

r2A\f, 7) = Φ(r) - 2w/2(f)A(f)f

>σ-2w'2(r)^f > σ - 2 ^ ^ μ = σ - l > 0 ,

by (3.5). Thus no such f exists, and we conclude that A(r,j) > r, if ro(7) < r < μ.
Thus Fact 4 holds with 77 = min [r2, | ] .

We can now give the

Proof of Step 2. We have, from (2.3)7, for r > ?,

ρρ' — wwf +

— - 1 -

r 2t^ / 2 Φw'2 w{\ — w2)wr

r A A
2 n"n — w2)wf 2ρ2 ρ2

vA
- 1 - A _ _ Γ _ .

TV A r vA

because \w\ < ρ, \rw'\ < ρ, \ww'\ < ρ2/r, and Φ > 0 from (3.3). Thus since μ > f
[by (3.5)], and ro(7) > f, we have, for r > r(η), from Fact 4,

g'(r, 7) < 2 | 2 _ j

ρ(r,j) ~ f fη ~
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if 7 2 < σ2jrμ. Thus for such r and 7, (In ρ(r, 7))' < J. Now if ro(j) < μ, and
0 < r < T, ln[^(ro(7) + f,7)Mr o (7),7)] < Jr < JT. Thus from Fact 4, for
72 < σ2/4μ,

Q(ro(Ί) + r, 7) < 0(^(7), 7 ) e J T < ceJT

Ί , if 0 < r < Γ . (3.12)

On the other hand, if μ < ro(7), a similar argument shows that for η1 < σ2/4μ,

ρ(μ + r, 7) < c e J T 7 , if 0 < r < T .

This inequality, together with (3.12) implies

£(r(7) + r, 7) < ce J T 7 0 < r < ί ,

and this proves Step 2. D

We have done Step 2, which we state as

Lemma 3.6. Given any T > 0 and any ε > 0, ί/ίere emfs α 7 > 0 swc/z that if
0 < 7 < 7, ί/zeπ £>(r, 7) < ε ifr(η) < r < r(7) + T.

Notice that this lemma does not follow trivially from "continuous dependence on
initial conditions", since the point (u>, w\ A, t) = (0,0,0, f) is a singular point for the
system (2.2), (2.3).

Completion of the Proof of Step 3. Recall that ψ = ψ(r, 7) is defined in (3.8).
We have, from (3.2)',

ww Φw rw
φ' TΛ ... TA

_(
2r rA °°S Ψ r ' {5'U)

Now choose ε such that, 0 < ε2 < | , and choose T > 3/2 so large that

T

/ ds < - M π .
7 35

3μ

Next, take 7 so close to zero that 7 2 < σ2/rμ, and

w(r, 7) 2 < ρ(r, ηf < ε2 if f(7) < r < f(7) + T (3.14)

this is possible because of Lemma 3,6. Now since Φ < μ < μ, we see that for r > 3μ,
rΛ = r - μ > r - μ > 2/2, so Φ/rA < μ/2μ < i, and thus 1 > (1 - Φ/rA) > | .
Using this and (3.14) in (3.13) gives, for f (7) < r < r(η) + T, (suppressing the 7),

ι'^tΛ rκi ^ s i n 2 ^ C 1 - ^ 2 ) 2 / ( l - ε 2 ) s i n 2 ^ ε 2 s i n 2 ^
Φ < (1 - Φ/rA) ^ cos2 ψ

2r r r r

34r r r 3r
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This completes the proof of Step 3.
Now f (7) < μ <3μ <T < Γ-j- r(η), so for those 7 satisfying η1 < σ/4μ9 (3.13)

gives
T T

ψ(T) < φ(T) - ψ(3β) = / ψ'(s)ds < ί -~ < -Mix.
J J 3s

3β 3β

This contradicts (3.4) and completes the proof of Proposition 3.2 D

We have thus proved Theorem 3.1 in the case f > 1. We turn now to the case
f = 1; cf. Fig. 2, where we depict W{\) [and W(\)'\.

-1

I
I

yy/ 2 5

— — — — ^ " "

-0.5

-2.5

-5

-7.5

-10

: 7 5

: 0.5

: ^ ^ — —

: /

Note that if r = 1, then w = 0 satisfies (2.7) but not (2.8) and thus it is not
included in W(X).

Proposition 3.7. Theorem 3.1 holds iff= 1.

Proof. By induction on n. First of all, for n = 0 the solution of (2.2), (2.3) given by

(w(r),w'(r),A(r),r)=

defined for r > 1, satisfies A(l) = 0, and (w( l )X( l ) ) = (1,0) e W(X). Since this
solution has zero rotation, we see that the case n = 0 is proved.

Assume now that the theorem is true for all n < fc; we prove that it is true for
n = k. Note that from Proposition 2.2 and Lemma 3.3, no 7-orbit crashes. We need
the following "compactness" result.

Lemma 3.8. Let 7 = inf{7: 0 < 7 < 1, Ω(η) < k}; then 7 > 0.

Proof. Suppose that the lemma were false. Then we could find a sequence 7 n —> 0,
0 < 7 n < 1, and i?(7n) < k. Define orbit segments Λn by

Λn = {(^(r,7 n ),^ ; (r,7 n ), A(r,7n),r): f <r < re(ηn)} (3.15)
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then Λn c Γ by our earlier remark. From [8, Proposition 3,2], we can find sub-orbit
segments A'n c Λn,

Λn = )\ f

rn < r e (7 n ), such that the right-hand endpoints converge to a point P G Γ\ i.e.,

Now 6>(rn,7n) -> Θ(P) = ΎarΓι(w' /w),mod2π. Since #(r n ,7 n ) > -kπ for
every n, then by passing to a subsequence, we may define Θ(P) in R such that
6 )(rn,7n) —> <9(P). By the methods of [8, Proposition 3.1], the backwards orbit
(w(r), u>'(r), A(r), r), through P, (defined for r < r) stays in Γ1 until r = r0, where
w(r0) = 0, A(r0) > 0, and θ(r0) = -τr/2. In fact, this orbit can be continued further
to r = r 0 — δ, where iu(r0 - δ) = ε > 0, and — π/2 < ^(r0 - <5) < 0. We note in
addition that A(r) > 0 for f > r > r 0 — <5. Thus for n sufficiently large, A(r, 7n) > 0
for f > r > r0 - δ. Since A(f, ηn) = 0, we have that r 0 — δ > f. Now note that

n) = 7 n , and if θ(r^ηn) > —τr/2, then since w' < 0 in this quadrant,

, 7n)

We have θ(r0 - δ, ηn) -^ θ(r0 — δ) < - π / 2 , and hence w(r0 - δ, jn) < 7 n , for large
n. But 0 = Iim7n > limκ;(r0 - δ, ηn) = w(r0 - δ) = ε > 0. This contradiction
completes the proof of Lemma 3.8. D

Fig. 3 w=1

We can now complete the proof of Proposition 3.7. With 7 defined as in the
statement of the last lemma, we choose ηn —* 7, where 0 < ηn < 1, the 7n-orbits lie
in Γ, and Ω(jn) < k. From Theorem 2.3, the 7-orbit lies in Γ and Ω(j) < k. The
7-orbit cannot exit Γ via w2 = 1 for otherwise the same would be true for nearby
7-orbits, with 7 < 7, thus violating the definition of 7. Thus the 7-orbit stays in Γ
for all r > f, so from [8, Proposition 2.10], the 7-orbit is a connecting orbit; i.e. ^(7)
is an integer. If Ω(j) < fc, then from Corollary 2.4 for 7 near 7, 7 < 7, the 7-orbit
exists Γ via w2 — 1 with i?(7) < i?(7) + 1 < k. This again violates the definition of
7, and this contradiction completes the proof of Proposition 3.7. D

We turn now to the final case; namely f < 1; cf. Fig. 4. Note that Φ(f, w, 0) = 0
precisely when f = 1 - 7 2. Define the constant α, 0 < α < 1
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Φ > 0

0.5

Φ > 0 Φ > 0

w = -α

Fig. 4. 9f(f), r < 1

by

a = (3.16)

Notice that along the branch of W(τ) between the lines w = a and w = —a, Φ(r, w, 0)
is negative, so if A(f) — 0 and (w(f),wf(f)) lies on this branch, (2.2)7 implies that
A'{f) < 0. Thus from Proposition 2.2, it follows that A(r) < 0 for r > f, r near f.
Thus there are no solutions to (2.2), (2.3) starting on this branch. Hence if f < 1, we
consider points (w(f),w'(f)), which lie on the set

<w 1}.

Proposition 3.9. Theorem 3.1 holds iff< 1.

Proof. Let k G Z + be given, and set

ηk = inf{7 > a: Ω(η) < k and the 7-orbit doesn't crash} .

(Notice that the above set contains 1 and is thus non-void.) Now suppose that ηk > a.
By Theorem 2.3, the 7^-orbit doesn't crash and Ω(ηk) < k. If the 7^-orbit exits Γ via
w2 = 1, i.e., Ω(ηk) < k, then for 7 near ηk, 7 < j k , the 7-orbit must also exit Γ via
w2 = 1 with Ω(η) < k; this is impossible as it violates the definition of j k . Thus the
7fc-orbit stays in Γ for all r > f, and hence is a connecting orbit by [8, Proposition
2.10]. If Ω(ηk) is an integer < fc, then for 7 < 7fc, 7 near 7fc, ί2(7) < i?(7 fc)+ 1 < fc,
by Corollary 2.4. This again violates the definition of ηk. Thus Ω(jk) — k. It only
remains to show that ηk > a, and this is the content of the following "compactness"
lemma.

Lemma 3.10. Iff<\, then there is a ry{, a < ηx < 1, such that if a <η
the 7-orbit crashes.

then
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Proof. The proof of Lemma 3.10 relies on the following result from [7, Lemma 5.13]:

Lemma 3.11. IfΦ(r,w,A) < -η < 0 for 0 < a < w < b, rh < 1, and w'(rb) is
sufficiently negative, then the orbit (w(r), w'(r), A(r), r) crashes.

Thus to prove Lemma 3.10, we need only verify the conditions of Lemma 3.11.
We choose constants as follows:

o/ 3θί
(i) Let σ > 0 be a lower bound for w(l — w2) on — < w < — i.e.

w(l-w2)>σ, i f - < w < — . (3.17)

(ii) Let L be an upper bound for Aw'2 (cf. [7, Proposition 5.1], i.e., if a < 7 < 1,

(Aw12) (r, 7) < L i f f < r < r e ( 7 ) . (3.18)

(iii) Choose N > \ such that the following hold:

\ + L-— N<-1, (3.19)

and

( 1 U < J 2 L (3.20)
r + 1

(iv) By (3.20) we can choose ε > 0 such that

<^L (3.21)
N r + 1

Now again write Φ = Φ(r,A,w), and ξ(r, tc) = Φ(r, 0,tϋ) = r — (1 — w2)2/r.
From (3.16), ξ(f, α) = 0; thus if it; is near α, ξ(r, ιι;) is small. It follows that we can
find 7j, α < 7j < 1 such that if a < 7 < 72, the following three statements hold:

Φ ( f , 7 ) < ε , (3.22)

^ 7(f,7) < -JV, (3.23)

and
^ ( ^ 7 ) < 0 . (3.24)

[To obtain (3.24), we have as in Proposition 2.1, (dropping the dependence on 7),

= lim ( φ 1 + 3 ^ . (3.25)
r\f Φ

An easy calculation using (3.15) gives, for r > f,

2(1 - w2)2

 / 2Φ (r) = = h 2Λtί; H
r 2

Using this in (3.25) yields w"(f) < 0.]
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Oί

We now show that wn stays negative if w > — i.e., for a < 7 < ryι,

w"(r, 7) < 0 if w(r, 7) > ^ , (3.26)

and thus for a < 7 < ηx,

w'(r, 7) < -iV if w(r, 7) > - . (3.27)

To see that (3.26) holds, we assume that there is a (first) f, f < r < ra^2(j) such

that w"{r,η) — 0. Then from (2.3)', we have at f, (suppressing the 7),

f2Aw"f = -Φ'w1 - (1 - 3w2)u/ = (-Φ + 3w2 - l)w' < 0

because u?'(f, 7) < —N. Thus no such f can exist and so (3.26) holds, as does (3.27).
3α Λ a Λ 7 - 3α/4 1

Now if b — — , and α = —, then rb - r = —φ— < —, where ξ is an

intermediate point. Thus rb < 1 if TV is sufficiently large. Also, if 7 is sufficiently
close to a, then β(η) —» -00; i.e., w'(f,η) -* -00 as 7 -» α, and by (3.26), since
u/(r 3 c / 4 ,7) < wf(f,η), we see that w;/(r6(7),7) —> —00 as 7 —> α.

We next claim that we can find an η > 0 such that a < 7 < 7! implies that

Q/ 3cy

Φ(r, 7) < " ί? , if j < w ^ 7 ) < -4- (3-28)

To see this, we first note that for a < 7 < 71 ? if — < w(r,η) < ηγ then as above,

IDiv T) — T 1
r — f = < — < 1, where <f is an intermediate point. Thus

w'(ξ,<y) N

Oί

r < l + r , if — < w(r, 7) < ηλ .

Moreover, if — < t^(r, 7) < 71 ? then, (dropping the 7),

Φ'(r) = ^~

from (3.20). Thus, if we show that Φ(r, 7) is bounded away from zero (uniformly
in 7), at r = 7"3a/4(7), [cf. (2.14)] then Φ(r, 7) will be uniformly negative if
Oί 3θί

— < u>(r, 7) < — . Thus all the hypotheses of Lemma 3.10 will be verified, and as
we have noted above, this will complete the proof of the lemma.
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We have, for a < 7 < ηγ, (dropping the 7's),

r3a:/4

/ Φ

3a/4

[2(1 - w2)2 ^ . ,2 4(1 - w2)ww'~, ,
— -Ί—- + 2Awfl + — dr2

i
r3a/4 ^ ^ 3a/4

w(l — w )
aw

v + 1
7

7 - 4 ^ 1
where we have used (3.22) and (3.29). But as (r^/A — r) < < —, and

3 \ 3 a w'(0 N
7 a) > a a = —, we have, from (3.21),

4 / 4 4

that is, Φ(r201/4(7)) is uniformly negative if a < 7 < 7^ This completes the proof of
Lemma 3.10. •

As we have remarked above, this completes the proof of Proposition 3.9, and
hence of Theorem 3.1. D

4. Far Field Behavior of the Metric

We now examine the metric in the "far field"; i.e., when r ^> 1. For this, we first note
that for each f > 0, if (w(r,ηn),w'(r,ηn),A(r,ηn),r) = (wJχ),w'n(r),An(r),r) is
a connecting orbit solution, then if μ(r, ηn) — r(\ — A(r, 7n)), then as in [7,8] we
can show that the following limit exists and is finite:

lim μ(r,7n) = μ n ; (4.1)
r—>oo

that is, as noted earlier, μ(r) = 2m(r), so that each solution has finite ADM mass.
We shall now show that for each n, the Einstein metric

ds2

n = -Tn(r)~2dt2 + A-\r)dr2 + r2(dθ2 + sin2 θφθ2), (4.2)

tends, as r —> 00 to the corresponding Schwarzschild metric

dS2

n = - (l - ^ ) dt2 + (l - ^Λ dr2 + r2(dθ2 + sin2 θdφ2) (4.3)

at a rate O[ -z\.\r2
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For this, we fix n and ηn and consider the behavior of the 7n-orbit. Since n is
fixed, we shall suppress it.

We begin with the following lemma.

Lemma 4.1. (i) lim rwf(r) = 0,
r—>oo

(ii) If μ — lim μ(r), then \μ(r) — μ\ = OI - ) , r —* oo.

Proof. For (i), we have, from 1'Hospital's rule and (2.3)/,

lim rw (r) = lim = lim = lim (—rw (r))= lim j r
\/T r — > o o — \ l T

= lim [Φ{r)w'{r) + tϋ(r) (1 - w2(r))]A(r)~ι

ro

because Φ(r) —+ μ, iϋ'(r) —> 0, w2(r) —̂  1 as r —» oo, and
bounded.

To prove (ii), we have

1 since μ(r) is

- μ(r) =

oo

- / (lAw11

where we have used rw'ir) —» 0 as r —> oo. D

Theorem 4.2. F ά f > 0; then for any n,

1
- o i ?

= ° l ?
Proof. We begin with (4.4); thus,

μn

as r —> oo, in view of part (ii) of our lemma.
To prove (4.5), we define functions P and Q by

P'(r) = ϊ ^

r —>• o o ,

r —>• o o ,

r2A(r)

2w/2(r)

P(f+ l) = 0,

(4.4)

(4.5)

and then notice that we have, from (2.2)', and (2.4),

A1 /A = Pf -Q1,

and
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Thus we may write QnA)' = P'-Q\ (lnT2)' = -P'-Qr, so that (In AT2)' = -2Q'.
Thus \nAT2 = -2Q + k, or

AT2 = eke~2Q , (4.6)

where /c is a constant. From Lemma 4.1, part (i), it is easy to see that

lim Q(r) = C
r—>oo

exists and is finite. Choosing k = 2C2, we see that (4.5) follows from (4.4) and (4.6).
This completes the proof of Theorem 4.2. D

5. Appendix

In this section we shall prove the following local existence theorem.

Theorem 5.1. Let f > 0 be given. Assume A(f) = 0, and that (w, β) satisfies

where

Φ(r) = f- ~W φ 0. (5.2)
r

Then there exists a unique C2+Oί solution (w(r,w),wf(r,w),A(r,w)) of (2.2), (2.3)
defined on some interval f < r < f + s(w), satisfying the initial conditions

(A(f, w), w(f, w), w'(r, w)) = (0, w, β).

The solution is analytic on \r — r\ < s(w), and the one-parameter family (A(r,w),
w(r, w), wf(r, w)) is continuous in the sense of Definition 2.1.

Remark. Note that we do not require Φ(r) > 0, nor do we rule out the case

The proof is by iteration.

Proof. For notational convenience, we set

c = Φ(f)/f2 ,

β Γ2(l - w2f/f2 + 4wβ(\ - w2)/? - (1 - 3w2)
2 [ f - (1 - wψ/f '

[cf. (2.9)].
We first rewrite our differential equations (2.2), (2.3); as a first-order system:

w' = z,

, -Φz - w{\ - w2)
Z = r2! '

(1 - w 2) 2

= 1- r2 _ (\+2z2)A
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Now for a given ε > 0, we consider the following Holder spaces with slight
variances on the usual norms:

C«(r, f + ε): \\f\\a = sup
x-y\a

C2+a(f,f + ε):

Next, we define the sets Dι9 i = 1,2,3 by

Dx = D^ε) = {w e C2+a(f, r + ε): w(f) = w, w'(f) - β, w"{r) = d] , (5.6)

i^2 = D2(ε) = {z e C1+Q(f, f + ε): z(f) = ^,z;(f) = d} . (5.7)

Note that for any solution of (2.2), (2.3), A"(f) is determined by differentiating (2.2);
A"(y) = e(w, β) = e. We use this fact in defining D3:

D3 = D3(ε) = {Ae C2+α(f, f + ε): A(f) = 0, A\f) = c, A"(r) = e] . (5.8)

Since Dx is a closed subset of C2+α(f, f+ε), Dj is a complete metric space. Similarly,
D2 and D3 are complete metric spaces. Let X be defined by

X = Dxx D2x D3,

where we denote points in X by θ = (w, z, A). We put the following metric on X:

d ( θ v θ 2 ) = m a x J I K - w2\\2+a, \\zx - z 2 \ \ X w \\AX - A 2 | | 2 + α } .

Remark. If wx and w2 e Dx, then

IK - «

because wx(f) = w2(f) = ΰ>, and wj(f) = ^ ( f ) = β. Similar remarks apply to z
and A.

We define the mapping Γ on X by

T(w,z,A) = (tM,;4), (5-9)

where

Tλ(w,z,A) = w+ I z(s)ds,
f

r

^ ds, (5.10)

i = T3(υ;,z,A) =

Here we are using the notation

r 1 -

u = (1 -w1).
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Note that the integral in T2 is not improper since (uw + φz) (f) = 0, and A'(f) ̂  0.

We leave it to the reader to verify that w e Dl9 z e D2, and A e D3.
For any real number σ > 0, we must show that there exists an ε > 0 such that

both of the following hold:
T(Bσ) C Bσ ,

and
T is a contraction.

(Here Bσ is the ball of radius σ about the point

(wo(r),zo(r),Ao(r)) = (w + β(r-f) + \d(r-f)2,β + d(r-f),c(r-f)+\e(r-f)2) .

Since it is straightforward to show T(Bσ) C Bσ if ε is sufficiently small, we shall
omit the details. We now show that T is a contraction; this will imply the existence
of a local solution in X. Because we have used the maximum in Definition (5.8),
it suffices to show that each Ti is a norm-decreasing, (with a uniform constant). We
begin with Tv Set θ% = (wt,zt,At\ i = 1,2; then

r

TΛΘ,)-TΛΘ2)= ί(zι~z2)ds,

so
IIT,^) - Tλ(θ2)\\2+a = i ||z, - z 2 | | 1 + Ω < i | | ^ - Θ2\\. (5.11)

In order to show that T2 and T3 are norm-decreasing, we shall need the two
following lemmas.

L e m m a 5.2. (a) If υ e Cι+a(f,f + ε) , and υ(f) = 0, then \\v/(r - f)\\a <

(b) Ifυ e C1 + α(f, f + ε), and v(r) = vf{f) = 0, then \\v\\a < ε\\v\\ι+a.
(c) Ifυ e Ca(f,f + ε),andυ(f) = 0,then {{vW^ < εa\\v\\a.
(d) Ifυ,w e Cα(f,f+ ε), fAen | | ^ | | α < I^LIklL + I^ILIklL.
(e) Ifυ e C2+a(f, f + ε), and υ(f) = υ'(f) = υ"{f) = 0, then

IMIl+α<2φll2+α-

.Pr^^/. Parts a) through d) were proved in [7, Lemma 7.1]. To prove e), we have,
from b)

and since w(0) = 0, | | υ | | 1 + α = | | υ ' | | Ω , and | | v | | 2 + α = \ \\v%+a. Butw'(0) = 0 = υ"(0)

implies that

ll«Ίlα<ΦΊII+α, tby(b)],

and thus

IHIl+α = lbΊlα<ΦΊlα+l=2ε|M|2 + α. •

Next, we have, for A e Dv A(f) = 0, A'(f) = c ̂  0, and A/r(f) = e. Thus if we
set

ρ = r - f ,
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we may write
Air) = cρB(r), where B(f) = 1.

Note that B e Cι+a(f,f + ε), and since B(f) = 1, it follows that \/B lies in
Cι+Oί(f,f -f- ε), and B'(r) = e/2c. (This last fact follows from differentiating the
equation A(r) = cρB(r):

A\r) - c cB(r) - c
cB'(r),

and letting ρ —> 0.)
We shall need one more lemma. In what follows ρ will be defined as above.

Lemma 5.3. Suppose that /• G C 2 + α ( f , f + ε), i = 1,2 and that f[ι\f) = $\r),
i = 0,1,2. Then

fi-fi • 0 , and Λ - Λ • 0

as ε —> 0. If in addition fx{r) = / 2(r) = 0, α/t<i gi G C 1 + Q ;(r,f + ε), where

g<f\f) = g$\r),i = \,2, then

9\ί\ 9i J2

ε —• 0 .

/. Let Δf = f{- /2; then
that from Lemma 5.2b, c,

| |Af/ρ| | α - 0 and

as ε —• 0. For the second part, we have

ί\ ~ f

0

', (Δf/ρ)(f) = 0, (Δf/ρ)'(r) = 0, so

- 0 ,

Thus
02/2

Q
01

9\ -92

Q

Now from Lemma 5.2d,

/ l - Λ
α

Hlfflllα
/.

But as Halloo and \\gι\\a are finite, we see that

-> 0 as ε -> 0 ,

in view of the part already proved. Next,

ffi -92

Q
<\\f:2II00

01-02
II/2L

01 - 0 2
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Now f2 € C2+a, /2(f) = 0 so Lemma 5.2c implies

(ft ~ 9T)/Q is in Ca, we see that | | /2 | ft -92

5.2c implies that ft
0 as

0 as ε —> 0. Since

—» 0. Also, Lemma

0, as ε —• 0, and as Halloo is finite, we conclude

that ft 0 as ε -» 0. D

Now we consider T3; we have

r

\

(1 + 2zj)A2

) \

ds,

so

~{z\A2 - z\Aλ) (5.12)
l + Q

Thus as wx and w2 e D t , it follows from Lemma 5.2e that \\(u\ - u\)/r^|| 1 + Q can be
made small if ε is small. Similarly, 11(̂ 2 ~ ^4.1)/τj| 1 + o, is small if ε is small. Finally,
we have

-{z^-zlA,)
1-fα

Now from Lemma 5.2d,

l|z?(A,-Λ)|l,^, < +

(5.13)

(5.14)

Since 2;| is bounded and \\A2 — Λι\\ι+a —> 0 as ε -> 0, the first term on the rhs of
(5.14) is small if ε is small. Since H^III-H* *S bounded, and (A2 — Ax) G Ca, Lemma
5.2c shows that the second term on the rhs of (5.14) is small if ε is small. Similarly,
we have

A| | 1 + β < \\4 - *?|
| | o o is bounded, andand as \\z2 — ̂ f | | o o is bounded, and H^JIi+a —> 0 as ε —» 0, the first term on the rhs

of (5.14) tends to 0 as ε —> 0. Also, H^JI^a is bounded, and as (z\ - zj) G Ca,
\\Z2 ~~ ^iicx) -^ 0 as ε —> 0. Thus from (5.12) we see that T3 is norm-decreasing if ε
is small.

We now consider T2. If # = (w, z, A), we have

T2(θ) = β- uw
s2A

• ds,
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so that

399

r

T (ft \ T (ft \ - ί \ 4+

Now since (5.1) implies φz + uw = 0, we have

r

T2(Θ1)-T2(Θ2) = J [unwΊ — uw Lιw\ — uw — φz — φz

s2A0

ds

^ Π Δ
uw^

V s2A s2A

Thus

Writing

we may apply Lemma 5.3 to conclude that

' uw — uwN

1

ΔI

uw — uw

r7A

{ uw — uw ^

v τ2A )
r uw — uw ^

τ2 4 )

κ r Ά j

1 ί uw

cBr2 V

+

α

—

Q

<

ΰw

'φz — φz^

, ΓM Oi

fφz-φz\
Δ{ *A )

\
y

r2A
• 0 as ε->0.

Now write

and as

i>z — φz φz — φz φz — φz

τ2A τ2A

φz — φz z

r2A '

τ2A r2cB

we may apply Lemma 5.3 to conclude that

bz — ώ

τ2A
0 as ε - • 0 .

Next, we have

f)Z - φZ

τ2A

Now define n by

n(r) =

Δ(ΦZ

\

A('ΦZ

\

φz — dρφ -

— dρφ —

τ2A

— dρφ —

cr2ρB

- φz

φz

φz

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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then from (5.20),

' φz — φz

r2A
n2 n2

But

ρB2 ρBx

n2 n2 _ n2 (Bx — B2

n2 nx . (5.21)

a.

n2

BXB2 oo

Bλ
-

Q

B2

a

n2

BXB2 rv

B, -

Q

B2

ρB2 ρBx BXB2 \ ρ

so that from Lemma 5.2d,

n2 n2

W2~Wi

Now as n2/BxB2 is in Cι+a and

Φ
n= —(z-dρ- z),

we see that n2(f) — n'2(f) = 0. Thus since \\(BX — B2)/ρ\\a is bounded, we may
apply Lemma 5.2c to conclude that

n 2
Bx-B2

BXB2

We also have from Lemma 5.2b that

0 as ε -> 0. (5.23)

n 2

BiB")
0 as ε —» 0, and since

\\(Bι-B2)/ρ\\oo<εa\\(B2-B2)/ρ\\a < γ-^ (Bx - B 2 ) | | 1 + Q , (by Lemma 5.2c,a),

we have

Thus

Finally, if ft(r) = φ/Bxr
2c, then

n 2

BXB2 a

n2

~ρB2

Bx - B2

Q

n2

a.

0 as ε -> 0.

0 as ε -> 0. (5.24)

n,

Now h e C 1 + α , h(f) = 1 (because c = φ/f2), so (ft - 1) G C 1 + α , and thus
||ft — IHQQ —» 0 as ε —> 0 (Lemma 5.2c). Hence if (5 is chosen to satisfy 0 < δ < α,
we can make

|ft|oo <l+δ if ε is small.

Then from Lemma 5.2d,

n 2

QBX

nx

βBx a

_ ( + ,

z2

1-

—

1
II-

1

o:

'2

11/
IK

" 1

ill

1
Il+Q

Z2 —

Q

\h
\n

zx

1
\a

oo

Z2
_

Q

zι
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where we have used Lemma 5.2a. Now is bounded, and
Q

ε -* 0, by Lemma 5.2c, a, (as in the proof above that \\(Bι - B2)/ρ\\c

if k = (1 + δ)/(l + α), then k < 1 and

- > 0 , as

0). Thus

as ε -» 0. This, together with (5.24), (5.23), and (5.21) shows that

A >z — φz

r2A

Thus (5.17) together with (5.16) shows that T2 is norm-decreasing.
It follows that T has a unique fixed point CA(r, w), w(r1 ΰ>), w'{r, w)) in X which

is defined on some interval f <r < f + s(w). Moreover, s(w) depends continuously
on ΰ>, as follows from our proof (see [7, p. 141]). Thus the parametrized family
(A(r, ΊD), w(r, ΰ>), w'(r, w)) is continuous in the sense of Definition 2.1.

Next, fix w as before, and consider the set of analytic functions on the disk
r — f\ < s(w), which are continuous in the closure. (Note that if w, z and A are

analytic, then w and A are obviously analytic. To see that z is analytic note that the
numerator is analytic and vanishes at f, by (5.1). Since Af(f) = c φ 0, it follows
that z is analytic. Thus T preserves this subspace of analytic functions.) Endow this
space with the L°°-norm. Since for any two functions φx and φ2 in this space we
have H0! — 02lloo ^ II^i ~~ ^ I L 5 ^ ) " ' ^ f°W°ws t n a t T is a. contraction on this space.
Thus our solution is analytic in the disk \r — f| < s(w). The proof of Theorem 5.1 is
complete. D
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