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Abstract. A rigorous proof is given of the orthogonality and the completeness of
the Bethe Ansatz eigenstates of the N-boάy Hamiltonian of the nonlinear
Schroedinger model on a finite interval. The completeness proof is based on ideas
of C.N. Yang and C.P. Yang, but their continuity argument at infinite coupling is
replaced by operator monotonicity at zero coupling. The orthogonality proof uses
the algebraic Bethe Ansatz method or inverse scattering method applied to a lattice
approximation introduced by Izergin and Korepin. The latter model is defined in
terms of monodromy matrices without writing down an explicit Hamiltonian. It is
shown that the eigenfunctions of the transfer matrices for this model converge to
the Bethe Ansatz eigenstates of the nonlinear Schroedinger model.

1. Introduction

The nonlinear Schroedinger model was introduced by Lieb and Liniger [26] in
1963 as the first model of a boson gas that contains a nontrivial adjustable
parameter and which can be fully analysed without making approximations.
Earlier, Girardeau [20] had introduced a simpler model of a gas of impenetrable
bosons in one dimension, but this model behaves effectively as a very high-density
gas. Also, the latter model does not have a nontrivial parameter. In many other
respects, however, the two models are quite similar and, indeed, Girardeau's model
can be obtained from the nonlinear Schroedinger model in the infinite-coupling
limit.

In [26], Lieb and Liniger obtained the eigenfunctions of the nonlinear
Schroedinger model Hamiltonian with periodic boundary conditions using an
"Ansatz" similar to the one used by Bethe in his analysis [11] of the one-
dimensional Heisenberg model. They did not prove, however, that the set of
eigenfunctions thus obtained is actually complete. Many other models have since
been shown to be soluble by means of the Bethe Ansatz method and generalisations
thereof. (See for example [19, 6,18, 34 and 14].) In particular Baxter's solution of
the anisotropic Heisenberg chain [5] was a major breakthrough. Another
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important development was the quantum inverse spectral transform method by the
Leningrad group of Faddeev [31] and [16-18] (see also Thacker & Wilkinson
[33]). Concerning the completeness problem, considerable progress was made by
Babbitt and Thomas [35] and [1-3]. They prove orthogonality and completeness
of the Bethe Ansatz eigenstates for the ground state representation of the Heisen-
berg chain in the infinite volume limit. In the Heisenberg chain the existence of
bound states presents a problem in finite volume. Indeed, in Bethe's original paper
the bound states are described only in the infinite volume limit, in which case they
are given by the so-called string solutions to the Bethe Ansatz equations. In finite
volume this string hypothesis has been shown to be incorrect [13].

Given the eigenvalues of the Λf-body Hamiltonian of a soluble quantum model
it is possible to obtain the thermodynamics of the model by means of a method
introduced by Yang & Yang in the case of the nonlinear Schroedinger model in
their remarkable paper [36]. This method is analogous to the usual method (see
e.g. [25]) for deriving the thermodynamics of the free boson gas. As the authors
point out themselves, however, their analysis is not mathematically rigorous.
Recently, Yang & Yang's derivation was put on a rigorous footing in the paper
[15] using techniques from large deviation theory. These techniques were de-
veloped earlier in [7] for various models of an interacting boson gas involving only
the free-gas particle number operators. (See also [8 and 9].) The analysis starts
from one basic assumption which was still unproven: the completeness of the Bethe
Ansatz eigenstates. In this paper we shall prove this long-standing conjecture, thus
completing the analysis of [15].

Let us now briefly outline the way this result is proved in this paper. The
iV-particle Hamiltonian of the nonlinear Schroedinger model is given heuristically
by

HK = - Σ fz +2κ Σ Hxi - xj), (l.i)
j = l Vχj 1 ^ i<j g JV

where K ^ 0. A precise mathematical definition of this Hamiltonian will be given in
Sect. 2. It uses the KLMN theorem [28] and a Sobolev inequality. (This is very
similar to Example X.3 of [28].) As K decreases to 0 one expects H % to converge to
the free-boson Hamiltonian in some sense, while as K -> oo , H% should tend to the
Hamiltonian of Girardeau's model of impenetrable bosons (in the case of point
particles). In Sect. 3 we shall prove that this is indeed the case if one interprets the
convergence in the strong-resolvent sense [27].

In the same paper mentioned above [36], Yang & Yang argue that the
completeness of the Bethe Ansatz eigenfunctions follows from the fact that they
converge to a complete set of eigenfunctions for the impenetrable boson model as
K -• oo. That this argument is faulty can be appreciated considering the following
simple counter example: Let Tκ for 0 ^ K < oo be the operator of ^ 2 ( N ) defined by

(Tκu)n = nun i f l ^n^k,

(Tκu)k + 1 = [(/c + l)sin 2α + κcos2α]u fe + 1

+ (k + 1 — τc)sinαcosα% + 2 ,

(Tκu)k + 2 = {k + 1 — K) si

+ [[(/c + l)cos2α + κ;sin2α]uk+2 •>

(Tκu)n = (n-l)un
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where k = [ K ] , that is k ^ K < k + l , a n d α = ~(κ — k);u = (ul9 u2i . . . ) e * f 2 ( N ) .

We can diagonalise Tκ as follows. Let eί9 e2, . . . be the canonical basis for ^ 2 ( N )

and put

= en for n ^ fe and w ̂  fc + 3 ,

, (1.3)

Then

Tκφn(κ) = nφn(κ) forrc^/e,

^ I W = # H I M , (1.4)

Tκφn(κ) = (n-l)φn(κ) forn^/c + 2.

By computing the resolvent Rκ(λ) = (λl — Γ κ)~ 1 explicitly it is easy to show that
Tκ is continuous in the strong resolvent sense, and also that Tκ -> T^ as K -* oo,
where

T^en = nen (m 1) . (1.5)

Now consider, for each /c < oo, the subset of eigenstates {^M(?c)}n + fc + 1 (the
analogue of the Bethe Ansatz eigenstates). This is a continuous set of states. Indeed,
as K /* k + 1, ι//M(κ:) = ^w(/c + 1) = eM for n^k and n ̂  k + 3, while
Ψk + 2(κ) -> βk + 1 = φk + i(k + 1). Furthermore, ez βry en is the limit of φn(κ) as
K -• oo and yet {^n(?c)}n + fc+i is not complete. (Notice that ψ[κ]+1(?c) is not
continuous, but this does not affect the continuity of Tκ.)

It follows from this example that we have to use some additional information.
We shall use the fact that Hκ is increasing in K. Moreover, we consider the limit
K -• 0 instead of the limit K -• oo. This turns out to be easier because H% is
bounded below. In fact it is still an open problem whether it is possible to construct
a one-parameter family of operators Tκ which is increasing and continuous in the
strong resolvent sense for 0 ^ K ̂  oo and such that there exists a continuous
family of eigenvectors φn{κ) such that {^fi(°°)}*=i ^s complete but {ψn(κ)}^=1 is
not complete for K < oo. In the limit K -• 0 on the other hand we can use the fact
that the eigenvalues decrease when K decreases but the number of eigenvalues
below an arbitrary number λ remains finite. No eigenvalue can therefore escape to
infinity and any additional eigenvector other than the Bethe Ansatz eigenvectors
would give rise to an extra eigenvalue for HQ below a certain finite λ. This
argument of course uses the independence of the Bethe Ansatz eigenstates. The
details are given in Sect. 3.

For the proof of the orthogonality of the Bethe Ansatz eigenstates we make use
of the algebraic Bethe Ansatz method developed by Faddeev et al. [31, 17, 16].
This is an alternative method for diagonalising the iV-body Hamiltonian. (For
a comprehensive review of this method applied to various models, see also [14].)
To be exact it only works for lattice models. To obtain the eigenstates of a given
continuum model one then has to take the continuum limit of an appropriate
lattice model approximation. We shall use the lattice model introduced by Izergin
and Korepin in [21 and 22]. In Sect. 4 we describe this model in terms of the
so-called monodromy matrices, without writing down an explicit Hamiltonian.
One can express the Hamiltonian in terms of logarithmic derivatives of the transfer
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matrix τ(λ) and it was shown in [23], using a local gauge transformation,
that this Hamiltonian converges to the nonlinear Schroedinger Hamiltonian as
the lattice constant tends to zero. It would be interesting to make this derivation
rigorous, but we shall not attempt this here. Instead, we show directly that the
corresponding eigenstates converge to the Bethe Ansatz eigenstates of the nonlin-
ear Schroedinger model. This proof is presented in Sect. 5. It is rather straightfor-
ward but tedious and it involves some delicate cancellations. An alternative
approach might be to use the quantum Gelfand-Levitan equation as proposed by
Craemer, Thacker and Wilkinson [12]. It should be noted that the proof of
convergence presented in this paper also completes Korepin's proof [24] of
Gaudin's formula for the norm of the Bethe Ansatz eigenfunctions in the case of
the nonlinear Schroedinger model. The advantage of the algebraic Bethe Ansatz
method is that it provides us with a one-parameter family of operators which
are simultaneously diagonalised. By varying the parameter the eigenvalues corres-
ponding to different eigenstates can be made non-degenerate so that these eigen-
states must be orthogonal. This orthogonality proof is presented in Sect. 4,
Lemma 4.2.

The proofs for orthogonality and completeness presented in this paper depend
strongly on the fact that there are no bound states in this model. For models with
bound states the situation is more complicated. Indeed, the solutions of the Bethe
Ansatz equations (the analogues of (3.2) and (3.3)) are then manageable only in the
thermodynamic limit, where they are arranged in so-called strings in the complex
/c-plane. Under this string hypothesis Takahashi [32] generalized the Yang-Yang
thermodynamic formalism to the Heisenberg XXZ chain. Completeness of the
Bethe Ansatz eigenstates for the infinite Heisenberg chain in the ground state
representation was proved by Babbitt and Thomas [1]. A mathematical proof of
the Yang-Yang thermodynamics for this model is, however, still an open problem.
The approach of [15] using large deviation theory does not seem hopeful in that
case because it requires completeness for the finite chain. Other models may be
more amenable to this approach. In particular, the massive Thirring model (see e.g.
Bergknoff & Thacker [10] and Thacker [34]) may be a feasible proposition
because it has only a finite number of bound states for a certain range of parameter
values.

2. Definition of the Hamiltonians

In the following the number of particles N is fixed and will therefore not be
included in the notation. We shall use the KLMN Theorem (see [28]) to define the
operators Hκ with 0 < K < oo on the Hubert space L^ym([0,1]*) of quadratically
integrable symmetric functions on [0, 1]N as perturbations of the free gas Hamil-
tonian Ho. The latter is defined with periodic boundary conditions as follows:
Let

Do = | ^G^ s

2

y m ( [0 , l]")|Vx6 [0, l r - ^ O c O ) = ψ(x9 l)and

! ^ ( x , 0 ) = | ^ ( x , l ) l , (2.1)
δxN dxN J
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where C 2

y m ([0,1] N ) denotes the space of twice continuously differentiable symmet-
ric functions. On Do we define the operator Ho by

Hoφ = - Λφ for φeD0 . (2.2)

Then Do contains a complete set of eigenfunctions for H0. These are given by

Ψ°{nj]W= Σ Π exp[2πiW ix f f ( i )] , (2.3)

where x e [0, 1] N and Πj e TL for = 1, 2, . . . , N.

Proposit ion 2.1. The set {φ^}nι <n2< ... <ΛN

 ί 5 a ί o ί α ' s e t ι n ^ e Hίlbert space
£s

2ym([0, 1] N ) satisfying

Hoφ°{nj} = (2π)2 Σn]φ°Hi]. (2.4)

Γ/ze operator Ho defined by (2.2) on Do is therefore essentially self-adjoint.

Proof. The totality follows from the Stone-Weierstrass Theorem. Indeed, consider
the algebra of continuous periodic functions φ e ^ p e r ( [0 , 1]N) of the form

M

ψ(x) = Σ Amexpli(k?)x1 + ••• + C * * ) ] .
m = l

where k{™} = Iπnψ* and n^ e TL. This set is clearly self-adjoint and it contains the
constant functions. It also separates points of the torus as follows immediately from
the one-dimensional case. This set is therefore dense in ^ p e r ( [0 ,1] N ) for the
uniform topology and hence also in L 2 ([0, 1]N) for the L2-topology. Now let SymN

be the symmetrisation operator:

(x l 9 . . . , xN) = -η=^ Σ ^ ( ^ d ) , , xσ(N)) > (2.5)

where the sum runs over the set <9*N of all permutations of{ l ,2 , . . . , JV} . Then, if
D cz L 2 ([0,1] N ) is dense, SymN{D) is dense in Ls

2

ym([0, 1]^). But, if D is the above
algebra then Sym^D) is the set of functions

= j Σ Amφ°{nr) M = 1, 2, . . . , nf] e Z, Am e C j cz Do .

The relation (2.4) is trivial and the essential self-adjointness of Ho follows from
Nelson's analytic vector theorem (see [28], Theorem X.39). D

We denote the self-adjoint extension of Ho also by Ho. Next we define
quadratic forms hκ corresponding to the operators Hκ using the KLMN Theorem
([28], Theorem X.17). For φ,φeD0 we define hκ{φ, φ) by

hκ(φ,φ) = (φ\Hoφ) + κδ(φ,φ), (2.6)

where

δ(φ, ψ) = 2 Σ ί ώci . . . ? . . . J dxNlφφl \Xj=Xi . (2.7)
0
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(Here, the symbol ^ means that the integral over Xj is omitted.) To apply the
KLMN theorem we must establish the inequality

δ(φ,φ)Sc{(φ\Hoφ) (2.8)

for some constant c > 0 and all φ e D(HK). For φeD0 this is a Sobolev inequality
which can be derived in the following way: Let x 0 e [0,1] be arbitrary, and write

xo J

Integrating with respect to x 0 and using the Cauchy-Schwarz inequality we obtain

dφ

dφ

l /2 dφ
\0 J \0

Integrating now with respect to the other variables we find

}dxι...~...]dxN\φ(x)\XJ=xfί2( I dx\φ(x)\2+ J ,
0 0 \[0, 1]* [0,1]*

1/2

(2.10)

dφ

(2.11)

It follows that

δ(φ,φ)^2(N-l)
7 = 1

dφ
2N(N - l)(φ\φ) . (2.12)

A simple integration by parts shows that the first term on the right-hand side
equals 2(N — l)(φ\Hoφ) so that this establishes the inequality (2.8) with
c = 2N(N — 1) for φeD0. But Do is a core for Ho and hence also a form core for
h0. This implies that (2.8) also holds for φ e D(H0). We can now prove:

Proposition 2.2. For all K e [0, oo) there exists a unique self-adjoint operator Hκ with
quadratic form domain Qκ = Qo = Q(H0) such that (φ\Hκφ) = hκ(φ,ψ) for all
φ,φ E Qo. The operators Hκ are increasing in K.

Proof We proceed by induction on K. Assume that Hκo is defined as in the
proposition for some κ0 ^ 0. Then, by (2.12) and the fact that HKQ ^ Ho,

δ{φ, φ) ^ 2(N - l)hκo(φ, φ) + 2N(N - 1) \\φ | | 2 .

It follows by the KLMN theorem that Hκ is uniquely defined for

K <κ0 + ————. Obviously, Hκ ^ HKo if K > κ0 as δ(φ, φ) ^ 0. Π

About the domain of the operators Hκ we can say the following:

Proposition 2.3. Let 0ί be the region

f = { x e [ 0 , l Γ l O g x ! g . . . ^ X i v ^ l } (2.13)
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and define, for K e (0, oo),

0 ( 0 , 1 * ! , . . . , M j v - l ) = Φ(U1> • > MJV-1> 1)

(Mi, . . . , «N-

TTien Dκ a D(HK) and

Hκφ= - Λφ forφeDκ . (2.15)

Proo/. Using the fact that

βo = {0e£s

2ym([O, 1]N) |3 sequence φneD0:φn -> φ i n L 2

and ftκ(0π - 0M) - 0(n, m ^ c»)} (2.16)

a simple regularisation shows that Dκ a Qo. Now

= {φεQ0\3ξeLs

2

ym: (^ |ξ) = Aκ(^, 0) ViA e β 0 } . (2.17)

A simple integration by parts shows that hκ(φ, φ) = — (φ\Δφ) for φ eDo. This
proves that φ e D(HK) because Do is a form core for Hκ. D

Remark. The operator //^ is also well-defined. It is the free particle Hamiltonian
with Dirichlet boundary conditions on the lines xf = Xj. Its quadratic form domain
is given by

Qoo = {Φ e βo I sup fcK(0, 0) < c»} (2.18)
K < 00

and

h^φ)^ sup hκ(Φ,Φ). (2.19)
K< 00

3. Completeness of the Bethe Ansatz Eigenstates

As explained in the introduction we shall prove the completeness of the Bethe
Ansatz eigenstates of the Hamiltonians defined in the previous section using
a modification of the continuity argument proposed by Yang and Yang in their
far-sighted paper [36]. The argument is very general and can be formulated for
a general one-parameter family of operators. It assumes the orthogonality of the
eigenvectors which will be proved in Sect. 5.

We begin by defining the Bethe Ansatz eigenfunctions for the nonlinear
Schroedinger model. For a given set of wave numbers k1 < k2 < . . . < kN one
defines functions φ*£} e Ls

2

ym([0, 1]N) by

[ N Ί
7 = 1 J
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for 0 ^ X ! ^ x 2 = ••• ^ * i v = l 5 where £fN is the set of permutations of
{1, . . . , N}. It was shown in [26] that these functions are eigenfunctions of
Hκ provided that the wave numbers fc1? . . . , kN and the coefficients Aσ satisfy the
following conditions:

X θ^kj-kt), (3.2)
i=ί

if N is odd and

kj = 2π (mj + ±) - Σ ΘΛkj - k,), (3-3)
\ ^ J i = 1

if N is even, where nij e ΊL and the function θκ is given by

θκ(k) = 2 arctan(/c/fc) (3.4)

and

—~ — ~ e χ p [ ~ ι'βκ(fet(j) ~ K(j)Ώ (3.5)

whenever τ and σ differ by a single transposition:

τ(j) = σ(j + 1); τ( j + 1) = σ( j) and τ(i) = σ(i) f o r i φ j , j + l . (3.6)

One easily proves following [26]:

Lemma 3.1. If the set of wave numbers {ku . . . , kN} satisfies the conditions (3.2)
respectively (3.3) with mj e TL and the coefficients Λσ are defined by (3.4) then
ψf*eD(Hκ)and

In [36] (see also [15], Prop. 5.1) it was proved that there is exactly one Bethe
Ansatz eigenstate for every set of integers m1 < <mN:

Lemma 3.2. For every set of integers mx < <mN there exists a unique solution
k1 < - - - < kN to Eqs. (3.2) respectively (3.3). Moreover, these solutions {kj(κ)}
depend continuously on K e (0, oo).

Proof The first statement was proved by Yang and Yang in [36]. They define
a function

B(ku ...9kN) = l-Σkj-2πΣ Ijkj + \ £ θ*(kt ~ kj), (3.8)

where

if AT is odd ,
j \ ntj + ^ if N is even ,

and



Orthogonality and Completeness of the Bethe Ansatz Eigenstates 355

They then showed that (fcl5 . . . , kN) minimises B if and only if it satisfies (3.2)
respectively (3.3), and that B is strictly convex. Notice, however, that B is also
continuously diίferentiable as a function of K. The minimiser therefore varies
continuously with K. D

In this section we shall prove that the functions φ^ are complete in
L^ym([0, 1]N) assuming that they are orthogonal. First we note the following:

Lemma 3.3. Let {φ°{nj} }nί s ... s nN be the total set of eigenfunctions ofH0 defined in
(2.3). Then, for every set of integers nx ̂  ^ nN there exists a set of integers
m1 < < mN such that

where kx < < kN are the solutions of"(3.2) if N is odd and (3.3) if N is even.

Proof Let n1 S ' ' ' ύ nN be given. If N is odd then we define πij as follows:

N + 1

if N is even then we define

mj = nj-^+j-l. (3.10)

Both cases are similar; we consider the case that N is odd. Then

kj -+ Iππij - X ( + π) - ^ ( - π) = 2πmy + {N - 2/ + l)π = 2πwJ ,
i = l i = 7 + l

and

—- ^ - exp[ - iπε(kτU) - kσU{] = 1 .

D

Lemma 3.4. For all c0 e [0, oo),

hκo(φ)= inf MΦ) V^eβo
κ>κo

Proo/ It is obvious that the equality holds if φ e Do. But Do is a form core for Ho.
This means that Do is dense in Qo for the norm \\φ\\2+ = || 0 | |2 + (φ\Hoφ). By the
inequality (2.8), iϊ φn -* φ with respect to this -f -norm then hκ(φn) -> /Γκ(φ)
uniformly in K; on bounded intervals. D

Corollary. For all κ0 e [0, oo), Hκo = l i m K | K o ϋ κ m ί/ze strong resolvent sense.

Proof This follows immediately from [27], Theorem S 16 or [30]. D

Lemma 3.5. Let μn(κ) be the nth eigenvalue of Hκ. Then

μn{κ0) = inf μn(κ) {κ0 e [0, oo)) . (3.11)
K > K Q
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Proof. By the Min-Max Theorem (Theorem XIII.2 of [29]),

μn(κ)= sup inf hκ(φ) . (3.12)
ψeQ0:\\ψ\\ = l

l[φ φ]

It follows immediately that μn(κ0) ^ μn(κ) if K > κ0. Conversely let λ = μn(κ0) and
let ε > 0 be arbitrary. We shall show that, if K — κ0 is small enough then, for all
φu . . . , φn-x there exists φ e Qo such that \\φ\\ = 1, ψ±[φl9 . . . , 0«_i] and
hκ(φ)<λ + ε. Indeed, by (3.12) there exists φ e Qo with | | ^ | | = 1 and
ψ±lφl9...,φn-ι] such that hκo(φ) < λ + e/2. By Eq. (2.8), hκ(Φ)SK0(Φ)
+ c(κ — κ;0)(l 4- hKQ(φ)\ so if we choose c(κ — κo)(2 + λ) < ε/2 then (assuming

ε < 2) we have /*κ(i/0 < A + ε as required. D

Corollary. The operators Hκ have purely discrete spectrum for all K e [0, GO) and
their resolvents are compact operators.

Proof. This follows immediately from Lemma 3.5 and Theorem XIII.64 of
[29]. D

Remark. This result can be used to strengthen the corollary of Lemma 3.4 as
follows. Define the operators Rκ = (1 + HK)'1. Then Rκ -* RKo strongly. Further-
more, Rκ is compact for all K. It follows that, in particular ( # K o ) 1 / 2 and (JR K 0 ) 1 / 4 are
compact. (See [27], Problem VI.46.) Now choose ε > 0 arbitrarily small. Then,
since the unit ball B± of L%m is mapped onto a compact set by ( # K 0 ) 1 / 4 , there exists
a finite subset φu . . . , φM of Bί such that for all φ e B1 there exists φm with

so if we let K — κ0 be small enough so that \\(RK — RKo)φm\\ < ε for all
m = 1, . . . , M then

\\(RK-Rκo)φ\\ ^ \\Rκ(RK0Γ
m((RK0)

mΦ - (Rκo)
mφm)\\

+ \\(RK - Rκo)φm\\ + \\Rκo(Ψ - Φm)\\ < 3ε .

This proves that || Rκ — RKQ \\ -> 0 as K | K0 and hence that Hκ -» HKo in norm
resolvent sensel

We now order the Bethe Ansatz eigenstates φ^A{κ) so that the eigenvalues
λn(κ) = Σ " = Λ (*)2 satisfy λn(κ) ̂  λn+ί(κ).

Lemma 3.6. Suppose that, for some m, μm(κ) < λm(κ). Then μm+k+ί(κ) ^ λm+k(κ)
for all k^O.

Proof. This is obvious since μm+k + 1 is the (k + l) t h eigenvalue above μm and there
are at least k + 1 eigenvalues between μm and λm+k, namely λm, . . . , λm+k. Π

Theorem 3.1. Assume that the Bethe Ansatz eigenstates Φ^ defined by (3.1), where
the wave numbers {fc, }7=i satisfy (3.2) ifN is odd and (3.3) ifN is even, and where the
coefficients Aσ satisfy (3.4), are mutually orthogonal. Then they form a complete set in
L^ym([0, Y]N) as mi < m2 < * < mN run through TL.

Proof. We shall prove that, for all K < oo and all n = 1, 2, . . . , μn(κ) = λn(κ).
Indeed, suppose that for some κ0 and some positive integer n0, μno(κ:0) < λno(κ0).
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Since λn(0) -• GO as n -> oo, there exists p such that μno(
κo) < λp(Q). Now define

κx = inf{κ: > 0|μno(/c) < /Lno(κ)} .

Then there exists a sequence K^ \ κx such that μn^K^) < λ^K^) and hence, by
Lemma 3.6,

Taking n -• oo we find, using Lemma 3.5 and the continuity of the Bethe Ansatz
eigenvalues λm(κ) which follows from Lemma 3.2 and the assumed orthogonality,

Let nx > rc0 be the smallest integer such that λnι(κ1)> X^KX). Then
μnί{κi) ^ λ

nί-Λ^i) = K0(
κi) < λnΛκi) and by continuity, μnMi) ^ K(Ki) =

μno(κ;i) S μno(
κo) < λP(0)> Proceeding in this way we can define sequences (κk) and

(nk) by

κk = ini{κ
and

nk = i {

The sequences stop when κk — 0. We now argue that there must be a k such
that κk = 0. Indeed, for K < κk, μnk_x(κ) = λnk_ι(κ) and in particular,
μnk_ι(0) = λnk_ι(0). On the other hand, μ^^φ) ^ μ^X^.,) < λp(0) so that
nk-i < P> i e t n e sequence (nk) is bounded. It must therefore break off and we
conclude that κk = 0 for some k so that μttk_ι(κ) < λrik_1(κ) for all K > 0 and hence
μnk -1 +1 (0) ^ 4 k _! (0). This contradicts Proposition 2.1. D

In Sect. 5 we shall prove the orthogonality of the Bethe Ansatz eigenstates, thus
completing the proof of the completeness of these states.

Remark. Notice that the proof of this theorem uses only Lemma 3.5. It follows
from the argument of the remark following Lemma 3.5 and Theorem VIII.23 of
[27] that this lemma holds in the general situation of a continuous, non-decreasing
one-parameter family Hκ of positive operators with compact resolvent. The latter
condition actually follows if Ho has compact resolvent as in the corollary of
Lemma 3.5. We can therefore generalise Theorem 3.1 to

Theorem 3.2. Let {Hκ}κ>0 be a one-parameter family of positive self-adjoint oper-
ators on a Hίlbert space J>f. Assume that κ\-^ Hκ is monotonically nondecreasing and
continuous in the strong resolvent sense and that Ho has compact resolvent. Suppose
further that there exists a set of linearly independent eigenfunctions {φn(κ)} for
Hκ which depends continuously on K and is complete at K = 0. Then this set is
complete in Jf for all κ^0.

4. Lattice Approximation and the Algebraic Bethe Ansatz

We shall prove the orthogonality of the Bethe Ansatz eigenstates (3.1) by means of
a lattice approximation introduced by Korepin and Izergin [21]. This lattice model
is defined by a commuting set of transfer matrices which can be diagonalised by
means of the so-called algebraic Bethe Ansatz introduced by Faddeev et al. (see
[16]). Although the corresponding Hamiltonian is a highly complicated object we
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shall prove directly that the corresponding eigenstates converge to the Bethe
Ansatz eigenstates of the nonlinear Schroedinger model as the lattice constant
tends to zero. Using the fact that the eigenstates of the lattice model are simultan-
eous eigenstates of a one-parameter family of operators one can prove that they are
orthogonal. Taking the continuum limit it then follows that the Bethe Ansatz states
(3.1) are also orthogonal.

In this section we shall outline the algebraic Bethe Ansatz method, also called
the quantum inverse scattering method, for the special case of the Korepin-Izergin
model. More extensive reviews can be found in [16, 18 and 14]. It should be noted
that the method was originally developed in the case of the nonlinear Schroedinger
model itself [31, 17]. However, in that case the method is only approximate. It is
the lattice approximation introduced by Korepin and Izergin [21] which is exactly
diagonalisable by this method. They proposed a Hamiltonian for their model in the
form of a trace formula analogous to the one discovered by Baxter in the case of the
one-dimensional Heisenberg model [5]. In [23] an argument is presented using
a local gauge transformation which shows that this Hamiltonian approaches the
nonlinear Schroedinger Hamiltonian in the continuum limit. The mathematical
status of this argument has yet to be investigated. To define the transfer matrices of
the Korepin-Izergin lattice model we subdivide the interval [0, 1] into M intervals
of length A = 1/M. In the following A will be fixed and we impose periodic
boundary conditions by identifying the lattice points 0 and 1. At each lattice point
xn = nA (n = 1, . . . , M) we assume given creation and annihilation operators
α* and an operating on a local Hubert space ^ n « Jf satisfying the commutation
relations

ian,at-] = Aδnm. (4.1)

(The unusual factor A is introduced so that we can consider an and α* as the
continuum annihilation and creation operators a and β* applied to characteristic
functions: an = a(l[Xn_ uXn]) and similarly a* = a*(l[Xn_UXn]).)Let^Δ = ® £ = 1 # *
be the corresponding Fock space where 3Fχ = (®ζ=1^

?)sym is the symmetrised
tensor product of N copies of ffl. A general element Ψ e $F% can be written as

y = Σ nnl9...9nN)a*ί...a*κΩ, (4.2)

where Ω = ®f=ιΩn is the tensor product of the ground states of the local
oscillators: anΩn = 0. Its norm is given by

\\Ψ\\2 = AN £ \f(nu . . . , nN)\2θ(nu . . . , nN), (4.3)
1 ^ m ^ . . . ^nN^M

where

θ(nu...,nN)= Σ Γ K I ^ I - 1 ) ! ^ - (4.4)
Peπ

(Here 0»(N) denotes the set of partitions of {1, . . . , N} and δnP = Y[iepi + jδnιnj if
j e P a {1, . . . , N}.) These formulae will be useful in Sect. 5. Following Faddeev
[16] and Korepin and Izergin [21] we now define local 2 x 2-matrices Ln(λ) for
l e R with operator-valued entries, the so-called monodromy matrices, as follows:
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where an(λ) and β%(λ) are the operators

and

with
β* = - i^fκa*pn

1 V/2
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(4.6)

(4.7)

(4.8)

The transfer matrix τ(λ) of the model is now defined as follows: We form the
product of matrices

= LM(λ)...L1(λ) =
ΛM(λ) B

(4.9)

and take the two-dimensional partial trace

τM(λ) = Tr 2(LM(λ) . . . Li(A)) = AM(λ) + A*M(λ) . (4.10)

The main result of the algebraic Bethe Ansatz method is:

Theorem 4.1. Define for any real number λ,

a(λ)= 1 -iλA/2 (4.11)

and suppose that λ1 < λ2 < . . . < λN are real numbers satisfying the coupled
nonlinear equations

λk - λj - iK

i + fe ικ

Then the wave function

is an eigenfunction of τM(λ) for every λ e 1R with eigenvalue given by
N 2 2 ivr N 2 2 ?V

τ-τ Ak A — IK ( Λ λ Λ f A — Ak — IK _EM(λ; λu . . . , λN) =
k=l

Proof We begin by defining

— A

Hλ,μ) =

λ- λk

and

λ-μ
λ — μ — ικ

c(λ, μ) = — ικ
λ — μ — ικ

The quantum R-matrix is the 4 x 4 scalar matrix given by

/I 0 0 0

0 b(λ,μ) c(λ,μ) 0

0 c(λ,μ) b(λ,μ) 0

\0 0 0 1

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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It is an easy but tedious exercise to show that it satisfies the following commutation
relations, sometimes called the star-triangle relations:

R(λ,μ)(Ln(λ)®Ln(μ)) = (1 ®Ln(μ))(Ln(λ)® l)K(λ, μ) , (4.18)

where the tensor product of 2 x 2-matrices is defined explicitly by

Now, by the fact that, for n φ m, an(λ) and βm commute, we have

TM(λ)®TM(μ) = Π (Ln(λ)®Ln(μ)).

By repeated application of (4.18) we therefore obtain

Λ(λ, μ)(TM(λ)®TM(μ)) = (1® TM(μ))(TM(λ)®l)R(λ, μ) . (4.20)

These relations imply, in particular,

BUλ)ΛM(μ) = c(λ, μ)B%(μ)AM{λ) + b{λ9 μ)ΛM(μ)Btί(λ)

which can be written as

AM(μ)Btt(λ) = - f - BUλ)AM{μ) - °^\ B*M(μ)AM(λ) (4.21)

provided that λ Φ μ, and similarly,

f ^ ^ (4.22)
, μ) b(λ, μ)

Another important consequence of the commutations relations (4.20) is that the
operators B%(λ) commute:

B%{λ)BUμ) = BUμ)BUλ) . (4.23)

These relations enable us to evaluate the operators AM(λ) and A%(λ) applied to the
vector Ψ{λu . . . , λN) defined by (4.13). In the case N = 1 we have simply

i ^ f i ( 4 . 2 4 )
b(λl9λ) b(λί9λ)

and

(4.25)

We now claim that in the general case, if λ φ λu . . . , λN,

A M ( λ ) Ψ ( λ u . . . , λ N ) = A 0 ( λ ; λ l 9 . . . 9 λ N ) Ψ ( λ u . . . 9 λ N )

Â ) . . . Bί(λN)AM(λj)Ω (4.26)
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and

Ab(λ)Ψ(λl9 ...,λN) = Λ0(λ; λl9...9 λN)Ψ(λl9 ...9λN)

- X Λj(λ;λl9...9λN)Bb(λ)BtI(λ1)

. . . BbTλj) • Bb(λN)Ab{λj)Ω , (4.27)

where the coefficients Λ0,Λj,Λ0 and A-3 are given by

Λ0{λ; λl9...9λN) = a(λ)M Π r^-γ,, (4.28)
j=ί 0{λj, A)

Λ0(λ; λu...,λN) = ά(λ)M f [ TJ^TT , (4.29)
; = 1 D(A9/»j)

Λ^1 »-w$n«aj- (43O)

and

^ f t n b r r (431)

To prove the formulas (4.28)—(4.31) we first remark that by symmetry

Aj(λ; λl9 . . . , λN) = ΛN(λ;λl9 . . . , λj9 . . . , λN9 λj) (4.32)

and similarly for Aj. The induction step for the proof of (4.30) now reads

Bb{λN+1)AM(λ)Bb{λN)...Bb{λ1)b(λN+1, λ)

c{λN + u

b{λN + l9λ)

1

Bb{λ)AM(λN+1)Bb(λN) . . . Bbiλ

b(λN+ί9λ)

D{AN+lr> A) J = 1

Biί(λ)Bt,(λιl+1)...BtίTλj)...

c(λN+1,λ) Λ t . .

6(^ + i A)

2^ Λj\λN+ίl Λl5 . . . , Λ^j

= 1

(4.33)
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It follows in particular that

ΛN+I(λ;λl9 . . . , λN)=C^λN+uλ) A^λ^ύλ, ...9λN) (4.34)

and by the symmetry relation (4.32) we obtain (4.30) with N replaced by N + 1.
Now, adding (4.26) and (4.27) we conclude that Ψ(λl9 . . . , λN) is an eigenvector of
AM(λ) + Atf(λ) with eigenvalue

E(λ; λl9 . . . , λN) = Λ0(λ; λl9 . . . , λN) + Λ0(λ; λl9 . . . , λN) (4.35)

provided that λu . . . , λN satisfy the following relations:

Λj(λ;λl9 . . . , λN)oL(λj)M + Λj{λ;λl9 . . . , λN)i(λj)M = 0 for; = 1, . . . , N

(4.36)
or equivalently,

ffl)Mί<W (4.37)
ι) y }

for k = 1, . . . , N9 independently of λ. These relations are just (4.12). This proves
the theorem in case λ φ λj. If λ = λj the result follows by continuity. Indeed,
(AM(λ) + A%(λ))Ψ(λl9 . . . , λN) is easily seen to be continuous in λ while the
relations (4.37) imply that EM(λ; λu . . . , λN) has a removable singularity at λ = λj.

We shall need two properties of the solutions to (4.12) and the corresponding
eigenfunctions (4.13). First we can take logarithms to rewrite (4.12) in a form
analogous to (3.2) and (3.3):

( 1 \ N λ — λ
-λkΔ ) = πmk- Y arctan — (4.38)

2 / ι = i K
if N is odd, and

(\ \ ( \\ N λ — λ
M arctan I - λkΔ I = π I mk + - I — ]Γ arctan ~ (4.39)

\ 2 / \ 2/ / = 1 K
if N is even. Hence we have the analogue of Lemma 3.2:

M M
Lemma 4.1. For every set of integers < m1 < < mN < — there exists

a unique solution λx < < λN to Eqs. (4.38) respectively (4.39). Moreover, as
M -» oo this solution tends to the solution of (3.2) respectively (3.3):

Proof Analogous to (3.8) we define

N λk Aχ N ί N

BM(λu ...,λN) = 2MΣ ί arctan — dx - In £ Ikλk + - £ Θκ{λκ - λt).

(4.40)

It is clear that BM is also strictly convex and that dBM/dλk = 0 if and only if (4.38)
respectively (4.39) holds. Furthermore,

BM(λu . . . , λN) ^ X \ 2M f arctan — dx - 2π/*λ* J . (4.41)
t 2 J
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The right-hand expression tends to infinity when | λk | tends to infinity for some
M M

k provided that - — <h<—. It follows that (4.38) respectively (4.39) has

a unique solution in that case. To show that these solutions tend to the solutions of
(3.2) respectively (3.3) we remark that BM(λu . . . , λN) converges to B(λu . . . , λN)
uniformly on compacta. This, together with strict convexity of B implies that, for
fixed m l 5 . . . , mN the minimiser of BM tends to that of B. D

The second important property of the eigenvectors for finite M is their ortho-
gonality:

Lemma 4.2. Suppose that λγ < < λN and λ\ < < λ'N are two different
solutions of Eqs. (4.12). Then the corresponding wave functions Ψ(λl7 . . . 9λN) and
Ψ(λ\, . . . , λ'N) given by (4.13) are orthogonal.

Proof We shall prove that, for some I G R ,

EM(λ; λί9 . . . , λN) φ EM(λ; λ'u . . . , λ'N) .

To this end define the functions

f(μ) = Π 0* - λk) (4-42)

and similarly

g{μ) = Π (μ - λ*) (4 4 2 ' )

for μe<C, and let W(μ) be the Wronskian

W(μ) =f(μ + iκ)g(μ) -f(μ)g(μ + ικ) . (4.43)

Then we have by (4.14),

f(λ)EM(λ) = a(λ)Mf(λ + ifc) + d(λ)Mf(λ - ικ) (4.44)

and similarly for g. Assuming that Eu(λ) = E'M(λ) for all real λ we obtain

W(λ - ικ) =f(λ)g(λ - ικ) -f(λ - iκ)g(λ)

~w>)d( +ικ)

(i)
On the other hand

W(λ - ικ) = iκ(ll(λ- λ'k) - Π α - λk)) = W{λ). (4.46)
\ f c = l fc=l /

It follows that W(λ) = 0 except for a finite number of λ\ By continuity, W(λ) = 0
for all real λ. By (4.46) this implies that {λk} = {λ'k}. D
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5. Convergence of the Lattice Approximation

To prove the orthogonality of the Bethe Ansatz eigenstates it now suffices to prove
that the eigenstates (4.13) of the lattice model converge to the Bethe Ansatz
eigenstates as A -> 0. We first embed the Fock space £FΔ into the continuum Fock
space & = 0 ; = o Ls

2

ym ([0, 1]") by the mapping

£ f(nu. . . ,%)<• <Ωι-»
l g n i g ^ nN S M

£ f(nu. . . , n N ) S y m ( l [ X B i _ l f X n i ] ® ® ![>„„_ ^ j ) , (5.1)
1 S "1 S ^ nN ^ M

where the symmetrisation operator Sym is defined by (2.5). It is easily seen that this
mapping is an isometry for all M. Indeed.

= ίeΣ Π χί_
Next we rewrite the Bethe Ansatz eigenstates in a more symmetrical way intro-
duced by Gaudin (see [19]):

Lemma 5.1. The Bethe Ansatz eigenstate φfj^} given by (3.1) where the conditions
(3.2)-(3.6) are satisfied can be written as follows:

. . . , x N ) = J N \ S y m ( φ { k j ] ) ( x u . . . , x N ) , (5.3)

where

( ικ \ N

Φ{kj](^ .">XN)= Π i - 7 Γ Z T ε ^ ~ x^ Π ^jXj ( 5 4 )
1 S ί < J: ̂  N \ *i Kj / j = 1

Proof. Let xx < <xN. We shall prove that the coefficients of
e x p [ ί ^ J = 1 kσ{j)xj~\ satisfy (3.5) when σ and τ differ by a single transposition as in
(3.6). Now, assuming that kx < < kN,

V / AΠSymf(x 1 , . . . ,x N )= X Aσ(ku , kN) ft etk »>x> 9 (5.5)
α e ^ j=ί

where

A β ( k u . , k κ ) = Π ( l - , ί K , B ( k , - k j ) ) . (5.6)

If σ and τ differ by a transposition as in (3.6) then σ(ϊ) < σ{i') o τ(i) < τ(ϊ)
when U i' Φ h J +1> while σ(;) < σ(ί) <̂> τ(j + 1) < τ(ί) if ί φ7 + 1 and
σ( j +1) < σ(z) o τ ( j ) < τ(i) if i + j . It follows that

IT, -
•= -expL-iθκ(kτ(j)-kσU))] . (5.7)

Π
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The proof of the convergence of the lattice approximation will now be sub-
divided into two main lemmas: Lemma 5.2 and Lemma 5.4. The first contains the
"analytical" part of the proof and the second the "algebraic" part in a sense. Indeed,
to reduce the problem to an algebraic one we must show that the additional terms
in the monodromy matrices for the lattice model are negligible in the limit A —• 0
compared with the terms originally considered by Faddeev et al. [16,17, 31]. To be
precise we prove:

Lemma 5.2. In the limit A ->• 0, the eigenfunction Ψ(λu. . . , λN) defined in (4.13) is
given by

where

B*(λ) =

and

u . . . , λN)

nγ < < n < M

m

= Σ <*(

O(Δ), (5.8)

(5.9)

(5.io)

Moreover, the operators B^λ) defined by (4.9) are bounded on ^Δ

N by a constant
independent of M (but depending on N).

Remark. In the following we shall omit the O(A) symbol and simply write the
« sign to indicate equality up to order A.

Proof. We prove both statements in the lemma simultaneously by induction on N.
Consider first the case N = 1. We write

where

and

a{λ)

(5.11)

(5 12)

βn \κat

(In (5.12) we have written oc(λ) instead of oc(λ)l with a slight abuse of notation; a(λ)
is given by (4.11).) Then

(We define in general, ί
A C AΨ CΨ

Dψ

\

Ίlt f θ U ° W S

Ψ{λx) = B*M{λχ)Q = β*MAih)Ω =
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For general N and Ψe^fi the decomposition (5.11) leads to

LM(λ). . .

= L0

Mβ). . . L\

M

+ Σ L°M,nι

1 S Hi < • • • < (!„ g M

, , . i . . . LnιLnι_χt

Here,
(5.15)

(5.16)

In the proof of (5.8) we shall show that

(1,2)

B*p(λ)Ψ(λu...,λN). (5.17)

To prove that B%(λ) is bounded on J 2 ^ it is sufficient to show that the (1, 2)-
Ycomponent (5.17) of each term in (5.15) is bounded by a constant times || Ψ \\. The
case p = 0 follows immediately from (5.14): it equals βtί,i{λ) Ψ. To bound this we
write Ψ in the form (4.2). Then, using (5.10),

Hence

κ Σ Σ /("I. . nw)α(λ)M-"ά(λ)--1α p»fl?1 <
n = l 1 ^ n x ^ ^nN ^ M

a.(λ)M-"l6L{λ)ni'1

(5.18)
1/2

4 Λδn.S-

, . . . , Πj,. . . , nNj

^ Wjv+i ^ Λί

. (5.19)

But, by Cauchy-Schwarz,

N+i f(n rr n )

2 JV+1

(5.20)
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Using the fact that θ(nu . . . , nN+ί) ^ (N +l)θ(nu . . . , nj,. . . , nN + 1) we con-
clude that

M

* Σ
n=l 1 ^ nx ^

xθ(nu. . . ,

, . . . 9nN)\2θ(nu. . .,nN)

where

M(A) = (1 + A2zl2/4)M/2 and γM = (1 + κJVzl/4)1/2 .

(5.21)

(5.22)

Since lim supM-*^ KM(λ) = 1 and lim SUPM-^ yM = 1, this implies that β^, i (λ) is
bounded uniformly in M. Indeed,

lim sup || β%t! (A) I , , g V^(N + 1 ) .
M->oo

Let us now consider the pth term in the series (5.15). To this end define for general
p ^ m ^ M a n d Ψe^Δ

N:

ΓίP)= Σ l£n, + Λλ)Ln, LnιL°nι_lΛ(λ)Ψ . (5.23)
l ^ « 1 < < np ^ m

We then have

1 m —
pip-1) (5.24)

n = l

In particular, if ψ\^ is the second column of Γ\^ then ( Ψ{M)I is just the left-hand
side of (5.17), and by (5.24),

and

= Σ

(5.25)

(5-26)

For the first term in (5.25) we have

i m

-κ<x JΞ>ί

a<>a < sup

(5.27)
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because (Ψ(

r^
))1e^^ + 1. This term is therefore of order A. Similarly, the second

term in (5.26) is of order A. In the remaining terms we write {Ψi

n

pS1

1))1 and
(ΐf i-V^ in the form (4.2):

u. . . , % ) < . . . < Ω ,
(5.28)

The last term of (5.25) can then be bounded analogous to (5.19):
2

n=ί

θ(nu. . . , n N + 1 )

N+l j-ί a /

Σ yίγi . <C fyi\ 7 ι

Λ\ J ^^ / / i -j

The last term of (5.25) is therefore also of order A. We conclude that
m

\ίm )l ~ A Pn

(5.29)

(5.30)

uniformly in m provided that the remaining terms in (5.25) and (5.26) can be
bounded uniformly in m. Formula (5.30) of course leads to (5.9).

We bound the first term of (5.26) as follows:

Σ
m

Σ
9nN,n)

(5.31)

Here pn = pn(nu. . . , nN) = (1 +lκΔ#{i\ni = n})1/2. Hence

< n < Σ < % < M ( Σ

x ( Σ l / « - i ( » i > -,nN,n)

m

x Σ l/n-i(^i5 ,nN,n)\2θ(nu. . . , nN)

)2(N+l)N2
ίκγMΔKM(λ)2(N+l)N2 sup (5.32)
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The first term of (5.25) can be written as follows:

369

= κΔ
nN ^ M fc =

1 ? . . . , % , n) \ af a*

Σ
I ^ « i ύ • •• ^ n N i l ^ M j = l

x< ...
(5.33)

This leads to the following bound on the norm:

Σ

N+l

Σ Σ
• <; nN+ι S M j=ί

- - >nj> - >nN+ί9ή)

s u p \\(Ψi

n

p--1

1))1

ip-1))\\2 (5.34)

This concludes the proof of Lemma 5.2. D

The algebraic part of the proof also uses induction. The induction step makes
use of

Lemma 5.3. Let Cσ(λ1,. . . , λN) be defined by

£ij > (5.35)

where σ is the inverse of the permutation σ and

ε f + 1 ifi<j,

Then, ifxί < < xN,

kj}(Xl> 5 XN) — Σu ^σ(fcl> 5 feiv) 1 1 (5.36)



370 T.C. Dorlas

and

T 5 Γ \ )A*U..',IN-I), (5.37)

i Φ σ(N)

where σ' e^?

N-1 is defined by

σ'(ϊ)<σ'(j)oσ(i)<σ(j). (5.38)

/ Equation (5.36) follows from (5.3), (5.5) and (5.6). (5.37) is immediate from
the definition of Cσ. D

Lemma 5.4. For arbitrary N9

1 ^ »! ^ <; nN S M

(5.39)

^ Π ^ ) ' 1 ' ' . (5.40)

Proo/ We use induction on N. For JV = 1 we have already seen that

M M

C (5-41)

where /i(n) = (— iy/κ)oc(λί)
M~n<x(λ1)

n. Notice that pnΩ = Ω. In general we have,
for Ψe^N, ρnΨ ~ Ψ since N is bounded. We may also neglect factors oc(λ) since
these are of order (1 + O(A)). In the induction step we now prove that

where

and

— &k

Γo =

(λN)ψ(λu..

) _ uyC)
- — i N-l,+

Σ

= 0; Ψ

f(N)(n1

Jk, - + Γfc-i,

, . . . , % ) α *

li, + T i k, - •>

+ = o

. . . α * Ω ,

(5.42)

(5.43)

(5.44)
1 ^ «! < <nN ^ M

with

(5.45)

and

r ( f c ) n ^— V ΓT i ι κ r
L,σ (/,!, . . . , AN) — 2 J I I I ^ γ~ H,σ(N)

/<={1,.. ,N}\σ(N)ieI \^σ(i) ~ ^N

(5.46)

This yields (5.39) with the help of Lemma 5.3.
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The left-hand side of (5.42) can be written out as follows:

«1 - 1 H2 — 1 M

Σ Σ ••• Σ

αf>L )M ~(ri + ''' + Γfc+i) + (ni

x Π α μ i )
M - m " " ά μ ί Γ - α * t , α n ι α * . . . α Π i « . . . < _ t Ω . (5.47)

£ = 1

It is easy to see that the terms with rf = πij for some ί and j are negligible in this
sum. Furthermore, for every i = 1,. . . , k there must exist j(ί) such that πt = ynj{iy
We can therefore write {ru . . . , rk+1} u {m l 5. . . , mN-i}\{ni,. . . , ̂ } =
{mΊ,. . . , mJv}, where mΊ < < rriN and rβ = m'ia with 1 ^ iί < * * < ifc + 1

^ AT. The expression (5.47) then becomes

h -1

h = h

xά(λN){m

k + i r ι

\π{(

k

ί k + i - 1 mj

• Σ
Λ = h «i =

.], + + m k +

π ^
V i=ja-ι + 1

/ T \ M — n

Σ
L < < m'N :

Σ '
= W2,', + 1

ι + l

Σ
1 S h <

Σ"' *O
= m'Jk+l

)}
at, . .a

<ιk+ι^N

+"')

(5.48)
α = l

(We have defined j Q = 0 and j f c + 1 = ΛΓ.) Next we can carry out the sums over
nu . . . , nk\ Writing

= αfa) «(^0.))
α(Ajv) α(2 ΐ ( ; α ))

we have

K Z!

na m'ja+l ^a ±

_ Γ ί'Tί, +i ym, +1") / c C Λ \

m T\{ζa ζ° }• ( 5 5 O )

where we have used the fact that

ζa « 1 + iμ ί ( Λ ) - λw)4 + O(42) . (5.51)
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Inserting (5.50) into (5.48) we obtain

ι ' 2 - l i k + i - 1

\Tf(N) /m^) ( ' I \N \^ V"1 V̂  V"1

1 ^ m l < < m ^ 5 Ξ M I ^ i 1 < ••- < i Λ + 1 ^ Λ Γ j i = £ i jk = ίk

k+ί ( / i « - l

y π Π nil ψ-m'^
x 11 1 1 1 1 αi^τίoJ α

/ J α - l

x( Π α(λδ ( l ))
M-m ί-α(λ ϊ ( i )r

ί-

k

α = l

Π i ( 1 , 0 ί
a=l l\Aτ(ja) —AN)

We now split this sum into three parts according to (5.42): We consider
separately the terms with given j u . . . , j k and for each α = 1,. . . , fc we choose
either the term ζ™ia+ι indicated with a " + " or the term ζ™ja+ί indicated with a " —".
A general term of the sum (5.52) can then be labelled with ((j1, ± ) , . . . ,(jk, ± ) ) .
The subdivision (5.42) will be as follows:

1. Ψ[N)

O contains the terms {(iu - ) , • • • ,(zs, - ) , {ίs+2 - 1 , + ) , . . . ,(i f c+i - 1 , +))
for some s = 0 , 1 , . . . , fc.

2. Ψ]^- consists of the terms for which there exists s = l 5 2, . . . , & — 1 such that
(ju ±)e{(iu - ) , (i2 - 1 , + ) } , . . . , ( Λ - i ? ± ) e { ( i s - l s - ) , (iβ - 1 , +)} , (Λ, ± ) =
( i s + 1 - 1 , +), ( ; s + 1 , ± ) = ( i s + i , - ) and Λ + 2 e { i s + 2 , . Λ + 3 -!}>• >
jjkG {ϊfc,. . . , ijfc+i —1} arbitrary. We shall assume that s is minimal so that if, for
some α = 2,. . . , s - 1 , ( j β _ ! , ± ) = (iα - 1 , + ) then ( j Λ , ± ) Φ (iα, - ) .

3. Ψ{

k

N)+ consists of the remaining terms, i.e. those for which there exists
s e { l , . . . , / c } such that {jS9 ±)φ{{ίs, - ) , (is+1 - 1 , +)} and if ( j α _ 1 ? ± )
= (ία — 1 , + ) t h e n j α φ (ϊβ J —) for α e { l , . . . , s —1}. Again we assume that 5 is

minimal so that (ja, ±)e{ia9 - ) , (ia + 1 - 1 , + ) } for a = 1,. . . , s - 1 .

The proof of (5.44)-(5.46) is straightforward. We have

k,0 ~ \
1 ίΞ mi < • < mN ^ M 1 rg ίi < < ik+ι ^ N

Σ Cτ(λu -^N-I) Σ (-l

χ ( " π «μ i ( i ))
M-">-αμ f ( i )

V i = is + l

x Π .(λ " λ ) Π / α " α * , . . . α t Ω . (5.53)
α = l H^τ(/ α ) ~AN) α = s + l H Λ τ ( z α + 1 - 1 ) " " AN)
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If we now define σ e S?N by

σ(i) = τ(i) if i < ίs+1 ,

(is+1) = N (5.54)

σ(ί) = τ(i — 1) if i > is+1 ,

then it is easy to see that τ = σ' as defined by (5.38). Thus we obtain

1 ^ m i < < mN S M 1 ^ ix < < ι k + ι ^ N

fc+1 /

Σ Π ( - 7( 77]
e ^ a=ί \ l\Aσ(ia)

ia Φ σ(N)

Σ Σ Σ ΠΣ Σ Π ( 771 _ i Λ
 εiM

e ^ / c f l , . . , N } \ σ ( i V ) £ e / \ H Λ σ ( i ) AN)
\I\ = k

x Π α(A0 M - m -ά(A ί )
w -< . . . < Ω , (5.55)

ί = l

which proves (5.44)-(5.46).
Next we consider the more difficult problem of proving (5.43). Analogous to

(5.41) we have

^ 0 — PM,1\AN) ^ ( ^ I J ? AN-l) — ^0,0

so that Ψ(

0

N)_ = f (

0

N)

+ = 0. Trivially, ψψ,l = 0. Finally also Ψ^-i.-t- = 0 because, if
k = N — 1 then ί\ = 1,. . . , iN = JV and hence
(;„, ± ) = (α, ±)e{(i 0 , - ) , ( U i - 1 , +)} for all α = 1,. . . , N - 1 . To prove that
ψ[Nl + •Ff-Ί, + = 0 we write

«"Γ-= Σ1 Σ ' Ϊ ' Γ - M ) , (5 56)

where s is given in the definition of Ψ{

k

N)- and r is such that (ja, ±) = (zα, —) for
α = 1,. . . , r and ()α, ±) = (ia + 1 — 1, +) for a = r + 1 , . . . , s — 1. Similarly we
write

^-\,+ =*Σ Σ V - Y + M ) , (5 5 7)
s=l r=0

where 5 is given in the definition of Ψ^li, + and (ja, ±) = (ia, —) for a = 1,. . . , r
and (jai ± ) = (ia + 1 — 1, + ) for a = r + 1 , . . . , s — 1. Using the short-hand

ηi = Wλi)Γ1δί(λi) (5.58)
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we have

i s + 3 - l ik+ι-1

Σ Σ Σ ••• Σ
1 ^m1 < • • • < mN ^ M 1 ^ ix < • • • < ιk+1 ^ N j s + 2 = is + 2 jk = ik

x Π Π C ) ( Π < Γ
α = s+2

-— π —

X Π ί-o K , ΛCa''--Ca'Λ^\atι...alnΩ. (5.59)
α = s + 2 I l\λτ(ja) ~λN) )

(Here ; s + ί = ίs+1.) Next we compute Ψi"2lt + (r, s):

yίNΛ.+(r,s)«(-iv^)N Σ Σ " t 1

1 ^ mx < < mN ^ M 1 ^ IΊ < < ik ^ iV j s = is + 1

x " Σ ••• V x c t μ 1 , . . . ϊ λ w _ 1 ) ( - i r π « & ) M

j s + i = i s + i J k - i = i k - i τe t 9
ί ' N _ 1 i = l

k α \ / jβ M r

11 11 11 */τ(i) II 11 nm r lί

s-ί

x Γί

λτ(ja)

(5-60)

In this sum we can combine the permutations τ and τ which differ only in
a transposition of τ(js) and τ( j s —1). The coefficients of Cτ and Cϊ differ only in
a sign.We can therefore use the fact that
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to rewrite (5.60) in the form

ψ(N) „ /

1 5ί m! < < mjv g M I ^ iy < < ίk 5Ξ TV _/s = i s + 1

< +Σ ••• Σ Σ c τ ( λ 1 , . . . , Λ w _ 1 ) ( - i r π < x (
ik-i ΐe^jv-i

k Γ / i α - 1

x
x

x 'ff ^ ^ :

x π 1 ί .. κ . W - ζ>+ίl ]<••• < « • (5-62)

Comparing this with (5.59) it is now clear that

y g F L ( r , s ) + y ϊ ! > l t + (r,S) = 0 , (5.63)

which completes the proof of (5.43). D

Convergence of the lattice approximation now follows easily:

Theorem 5.1. For arbitrary N, the eigenstates Ψ{λu. . . , λN) of the Korepin-
Izergin lattice model defined by (4.13), where (λu. . . , λN) is a solution of (4.38)
respectively (4.39) for a given set of integers mx < < mN converges to the Bethe
Ansatz eigenstate Ψfjή}9 where (k l 5 . . . , kN) is the solution of (32) respectively (3.3)
with the same set of integers m1 < <mN:

lim Ψ(λl9...9λN) = (-iyfiY
ίe-*k>+ +k»)/2ψϊk

A

j} inJ^-norm. (5.64)
M->oo

Hence the Bethe Ansatz eigenstates for different sets m1 < < mN and
mΊ < < m'N are orthogonal and the set of all Bethe Ansatz eigenstates for an
arbitrary set of integers m1 < <mN is complete in ^N.

Proof. By Lemma 4.1, λj(M) -• /c7- as M -» oo. Writing x7- = Δnj in (5.40) we have

<z(λj)
M-n'aί{λj)

nJ-+e-iλj/2eiλJχ' asM->oo .

By the simple fact that X σ e ^JC σ (A 1 , . . . , ̂ ) | is bounded as M->oo and
IIΣig B l < -•• <nNUu < - - <ΩW2 ύ 1 we may conclude that (5.64) holds. The
orthogonality of the Bethe Ansatz eigenstates then follows from Lemma 4.2 and the
completeness from Theorem 3.1. D
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