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Abstract. We study the Grassmannian Grn

x consisting of equivalence classes of
rank n algebraic vector bundles over a Riemann surface X with an holomorphic
trivialization at a fixed point p. Commutative subalgebras oϊgl(n, Hλ\ Hλ being the
ring of functions holomorphic on a punctured disc about p, define flows on the
Grassmannian, giving rise to classes of solutions to multi-component KP hierar-
chies. These commutative subalgebras correspond to Heisenberg algebras in the
Kac-Moody algebra associated to gl(n, Hλ). One can obtain, by the Krichever
map, points of Grn

x (and solutions of mcKP) from coverings /: Y -* X and other
geometric data. Conversely for every point of Grx and for every choice of Heisen-
berg algebra we construct, using the cotangent bundle of Grx, an algebraic curve
covering X and other data, thus inverting the Krichever map. We show the explicit
relation between the choice of Heisenberg algebra and the geometry of the covering
space.

1. Introduction

1.1. In the seventies it was discovered that one could obtain solutions of certain
non-linear evolutionary equations of "soliton type" in terms of ^-functions of
Riemann surfaces or, more generally, one could construct solutions from coherent
sheaves on algebraic curves, see e.g., [Kr, Muml, Du, KrN, vMM]. (In fact, certain
solutions of the Korteweg-de Vries equation (KdV) in terms of elliptic functions
were known classically [KdV].) Somewhat later it was discovered that solutions of
such equations could be identified with points of infinite dimensional Grassman-
nians, or, equivalently, with the orbits of infinite dimensional groups in representa-
tion spaces (see e.g., [Sa, DaJKM, Ka]).

Both points of view, the algebro-geometric one and the representation theor-
etic, could be connected by associating to a Riemann surface (along with a line

* The research was partially supported by US Army grant DAA L03-87-K-0110 and NSF grant
DMS 9106938
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bundle and other ingredients that won't concern us for the moment) a point
of an infinite dimensional Grassmannian, [SeW]. This map from algebro-
geometric data to Grassmannians we will call (as is now standard) the Krichever
map.

In the representation theoretic approach one starts with, say, an affine,
simply laced, Kac-Moody algebra g and a highest weight representation
(see [Ka]). For every maximal Heisenberg algebra Jf in g one has an explicit
construction of the basic representation in terms of vertex operators, certain
formal infinite order differential operators in an infinite number of variables
(see [KaP, Lep]). In the realization determined by Jf7 the defining equations
of the orbit of the associated Kac-Moody group through the highest weight
vector are then differential equations in terms of the variables occurring in
the corresponding vertex operators, see, e.g., [KaW]. For the simplest choice of
Heisenberg algebra, the principal one, one obtains the generalized Korteweg-de
Vries hierarchies and it is mainly in this context that the Krichever map is
studied (especially in connection with the Schottky problem [Mull, Sh]), but
see also [Di].

The question we want to address in this paper is the significance of the choice of
Heisenberg algebra (which plays such an important role in the representation
theory) for the algebro-geometric picture.

First recall ([KaP, Lep]) that every partition n of an integer n determines
a Heisenberg algebra Jf - in s?(n, (C), the non-twisted affine Kac-Moody algebra
based on the loop group of sl(n, (C), and that every conjugacy class of Heisenberg
algebras corresponds to one unique partition. The principal Heisenberg algebra
j^princ of j ^ ̂  corresponds to the partition of n into a single part. Next
recall that in the standard treatment of algebro-geometric solutions of generalized
KdV hierarchies, corresponding to the principal Heisenberg 3&vrinc, the geometric
data for the Krichever map involves a Riemann surface Y covering the Riemann
sphere in such a way that inverse image of the North Pole ("infinity") is a single
point of Y.

We will explain that this generalizes as follows: the number of points over
infinity should correspond to the number of parts in the partition. More precisely,
solutions of soliton hierachies, coming from other choices of Heisenbergs ^f-,
where n = {nu n2, . . . , nk) is a partition of n into k parts, can be obtained from
Riemann surfaces covering the Riemann sphere with k points (with ramification
index nf at the fth point) lying over the north pole.

In fact, we study a more general situation of algebraic curves Y covering a
fixed nonsingular and irreducible Riemann surface X. Any coherent torsion free
sheaf on Y will push forward to a vector bundle on X. The collection of vector
bundles on X of fixed rank together with a trivialization at some fixed point peX
forms an infinite dimensional Grassmannian Grx described in Sect. 2, (see also
[PrS]). In this situation the Krichever map associates a point WeGrn

x to any
covering / : Y-> X, a coherent sheaf on Y and data a t / " 1(p). This is described in
detail in Sect. 5.

To invert the Krichever map and obtain the geometric data from the point
We Grn

x we introduce in Sect. 3 the non-commutative stabilizer algebra Sw of W.
This is the subalgebra of elements s of the loop algebra such that sW c W. We
show that it may be thought of as a subspace (of codimension 2n2g, with g the
genus of X) of the fiber of the cotangent bundle T*Grn

x, and that for the case of
X = P 1 it may be identified with this fiber. In a similar context cotangent bundles
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of moduli spaces have appeared earlier in Hitchin's work on Higgs bundles and
spectral curves, see [Hi] (see also [AHH, B]).1

By projection from the Kac-Moody algebra to the loop algebra we obtain from
every Heisenberg algebra #P- a maximal Abelian subalgebra Jf - of the loop
algebra. We will refer also to this as a Heisenberg algebra (of type n). The finite
order part of the intersection Sj^ = Sw n Jf- is a finitely generated commutative
(C-algebra. So we can associate to every point of the infinite Grassmannian Grn

x,
φ(n) (the number of partitions of n) distinct commutative rings and we prove in
Sects. 6 and 7 that the compactification of the spectrum of each of these rings is an
algebraic curve Y covering X with the branching behaviour over p e X determined
by the choice of partition. (In the best case the pullback divisor/* (p) is of the form
ΣriiPi, pie Y if the nt are the parts of the partition. In general the situation can be
considerably more complicated, see Theorem 7.5.1 for a more precise statement.
We stress that for most W the curve constructed by this method is just the original
X, see Example 6.2.) We can also construct a coherent sheaf on Y corresponding to
the S^y module W9 as well as the other geometric data, so that we obtain in this way
an inverse of the Krichever map, generalizing a procedure in [SeW], cf. also
[Muml]. (In this paper we study only the finite order parts of these stabilizer
algebras so that our curves are algebraic. More generally one can study holomor-
phic stabilizer algebras but in that setting the geometric data may be more
complicated, see Example 6.2.)

Now there are, again for every Heisenberg algebra, natural flows on the
Grassmannian that preserve the curves and are called therefore isospectral. In
Sect. 8 we briefly discuss the associated differential equations and their Hamil-
tonian structure. They turn out to be certain subsystems of the multicomponent
KP hierarchy studied in, e.g., [UT, Di]. Other papers that consider the relation
between vector bundles and soliton equations are [Mul2, PrW].

We conclude with some remarks in Sect. 9. Some of the results of this paper
were announced in [AB].

2. The Infinite Grassmannian Grn

x

2.0. Pressley and Segal introduced in [PrS] (Sect. 8.11) an infinite dimensional
Grassmannian which can be identified with the space of holomorphic vector
bundles over a Riemann surface X together with an holomorphic trivialization in
a disc around a fixed point peX. The Grassmannian consists of certain subspaces
of the Hubert space L 2 ( S \ C"), where S1 is the boundary of the disk, given by the
//-completion of the restriction of the holomorphic sections of the vector bundle in
the complement of the disk to the boundary. There is a natural transitive action of
the smooth loop group on this Grassmannian, so it is also an homogeneous space
for this group. In this section we will describe a variant of their construction so as
to study the space Grn

x of equivalence classes of pairs ($, t\ where $ is an algebraic
vector bundle over X and t is an holomorphic trivialization of $ at p. In this set-up
there is no a priori connection between the radius of convergence of the local

1 After completing this paper we received a preprint by Landi and Reina [LR] in which the
holomorphic cotangent bundle to the Grassmannian is used to study the Hamiltonian structure
of soliton equations. In that paper, only the principal Heisenberg algebra is used and also, the
base curve is always P 1



268 M.R. Adams and M.J. Bergvelt

holomorphic coordinate at p and that of the local trivialization, cf. [ADKP]. Along
the way we will also make some remarks about formal trivializations and the
corresponding formal Grassmannian as in, for instance, [KNTY].

2.1. Let X be an integral, smooth, projective, algebraic curve (over the complex
numbers as always in this paper) and p some point on X fixed once and for all. In
this sub-section we recall the definitions of algebraic and holomorphic local
coordinates λ~ι at p. (We use λ~1 instead of just λ so that our conventions match
those of the usual infinite Grassmannian based on the Riemann sphere, where p is
considered to be the point at infinity.)

Let Gx be the (algebraic) structure sheaf of X and let ΘXiP be the ring of rational
functions which are regular at p. This is a local ring with maximal ideal xxιp given
by functions which vanish at p. An algebraic local coordinate is a generator λ'1

of mp. Notice that this defines an injective local C-algebra homomorphism
' : ®x,p "> £ P-"* ] of the local ring to the ring of formal power series.

Recall [Ser] that an algebraic curve (X, Θx) (or more generally an algebraic
variety) has canonically associated to it an analytic space (X, Θψι), where Θx

oX is the
sheaf of germs of holomorphic functions on X. (So X has now the complex, instead
of the Zariski, topology.) To define an holomorphic local coordinate the ring Θx^pis
replaced by Gx°}p9 the ring of germs of holomorphic functions at p on X. This, too, is
a local ring with maximal ideal m£o1, the germs of holomorphic functions at p which
vanish at p. A generator A"1 of m^01 gives then an holomorphic local coordinate.
As above, this defines an injective local homomorphism of (C-algebras
liΘx^p-^Clλ'1}. (The image is Cj/Γ 1 } , the formal power series in A"1 which
converge in some neighborhood of oo.) Of course any algebraic local coordinate is
also holomorphic. For both kinds of local coordinates we have by definition
1(1) = 1. We will denote the image l(Θx,p) by Ap9 when / is either algebraic or
holomorphic.

From now on we will fix an holomorphic local coordinate λ"1 (which might
happen to be algebraic).

A local coordinate induces an injection:

χ = <C[λ]Θ λ-'Cμ-1} . (2.1.1)

Here Kx is the function field of X, i.e., the quotient field of the integral domain ΘXtP,
and Lλ is the field of Laurent series (in 2" 1 ), the quotient field of the ring of
convergent power series (in λ~1). We will in the sequel not distinguish between Kx

and its image in Lλ.
For any point q on X the local ring Θχ,q is a subring of Kx, so the map (2.1.1)

gives a map ΘXfq<^Kx^Lλ. Let us denote by Λq = l{Θx,q) the image in Lλ. Define

H°(X, Θx(*p)) = 0 H°(X, Θx{kp)) . (2.1.2)
k = 0

Then H°(X, Θχ{*p)) is the subring of Kx consisting of the meromorphic functions
on X with only possible pole (of finite order) at p. H°{X, Θx{*p)) is the (algebraic)
coordinate ring of the affine curve X — p9 in particular H°(X, Oχ(*p)) is a
Dedekind domain. Since H°(X, Θx(*p)) is the intersection of the local rings ΘXtq9

get an inclusion H°(X9 Θx(*p))<^Lλ. We will denote the image by Ax, i.e.,

Λx= Π Aq = l(H°(X,Ox(*p)). (2.1.3)
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Remark. The local ring Θx,p has the formal completion (9X,P\ this is a local ring
with maximal ideal mp. A formal local coordinate^ p is given by /~1(A~1), where
/ is any isomorphism of local (C-algebras /: C ^ p ^ C p , " 1 ] ; in particular the

1maximal ideal rhp maps isomorphically to the ideal generated by λ'1. We will
denote the formal local coordinate simply by λ'1. Using this we can inject the
function field Kx in Fλ = C[λ] ® λ ^ C J / Γ 1 ] , the field of formal Laurent series.
The field Lλ is a subfield of Fλ and this gives also Ax as a subring of Fλ.

2.2. Examples. If X has genus 0, we take λ to be the usual aίfine coordinate on F 1 ,
and p the point at infinity. Then λ~1 is an algebraic coordinate at oo and Λx is the
polynomial ring <C[/l] c Lλ.

If X has genus 1, i.e., X is an elliptic curve, we use the Weierstrass p-function:
for z a local holomorphic coordinate around p there is a unique meromorphic
function p(z) on X which is holomorphic outside p and has polar part 1/z2 at p.
Then, identifying p(z) with its Laurent series in Lz-ι,

AX = <L® <£p{z) ® (Cp'(z) 0 (C^(z)2 0 c= L2-i . (2.2.1)

If one prefers, one can introduce a new holomorphic local coordinate
λ~ι := p{z)~112 around p. Then, using the differential equation relating the Weier-
strass p-function and its derivative:

- g 3 , (2.2.2)

we get, defining μ:= λ3(4 — g2λ~4' — g^λ"6)112, for the coordinate ring

. (2.2.3)

The inclusion (C[/l2] c Ax induces a very simple covering map X -* P 1 , showing
that it is in general natural to choose a local coordinate λ'1 such that a power of
λ has no poles outside p. We will see similar choices of local coordinates in Sect. 5.
Note that here we might have started with z being a local algebraic coordinate, but
that if one wants Ax to have the form (2.2.3) one ends up with λ~λ being not
algebraic, but holomorphic.

2.3. Now let $ be the sheaf of algebraic sections of a rank n algebraic vector bundle
E over X. We want to discuss trivializations of S at p. As with local coordinates this
depends on whether we are working in the algebraic, holomorphic, or formal
category. Recall that the stalk Sp is a free ^^^-module of rank n, and so is
isomorphic to (Θx,p)

n, the direct sum of n copies of the stalk at p of the structure
sheaf. A n algebraic trivialization of S a t p is a c h o i c e of i s o m o r p h i s m i\ip^ {Θx,p)

n.

If λ ~ * is a local holomorphic coordinate, inducing the injection /: &XiP -> C{ΛΓ1},
we continue to call the composition

1})\ (2.3.1)

an algebraic trivialization, where / acts componentwise.
Letting $ho1 denote the sheaf of germs of holomorphic sections of £, we note

that the stalk at p, <?Jo1, is simply given by ΘX°}P®SP and that this is a free
Θx°>p module of rank n. An holomorphic trivialization is a choice of isomorphism
i: $po1 >̂ (0χ°p)". Again, if λ~x is a local holomorphic coordinate, giving the isomor-
phism l'.{Θψ}p)

n-+{fc{λ~ι})n, we continue to call the composition t = l°i an
holomorphic trivialization.
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Note that the basis picked out by the choice of the isomorphism i corresponds
under the trivialization t to the standard basis {eJjMo of (Cfλ"1})11, since 1(1) = 1,
et being the column vector with a 1 on the ith place as its only non-zero entry. (We
have the, maybe deplorable, convention of indexing n-component vectors, matrices
etc. by the integers 0,1, . . . , n — 1.)

We will call two pairs (<f, ί) and (S\ tr) ίsomorphic (notation: (S,t) ~ (S\ t'))\i
there exists an isomorphism of Θx°

ι -modules φ: Sho1 -> Sfhoϊ such that the induced
map t' ° φ ° t"*: (C {λ ~x} )w -> (C {λ ~*} )π is the identity. In other words ψ gives an
isomorphism of the holomorphic vector bundles £ h o 1 and E'ho1 and maps one
trivialization at p to the other. We will denote the isomorphism class containing
(<?, t) by [<?, t\. We remark here that by the GAGA principle [Ser] φ actually
comes from an isomorphism of the algebraic sheaves S and $'.

Definition 2.3.1. The set of equivalence classes [S, ί ] , where t is an holomorphic
trivialization at p, is the Grassmannian, Grx; the algebraic Grassmannian, Grn

x'
alg, is

then the set of equivalence classes \β, £], where t is an algebraic trivialization.

Note that our Grassmannians depend also on the choices of the point p and of
the local coordinate A"1, although, for simplicity's sake, we suppress this from the
notation.

Remark. We can of course also define a formal Grassmannian Grx

Jorm by taking
equivalence classes of pairs (S, t), where t is now & formal trivialization. To define
formal trivializations introduce the formal stalk, Sp of the bundle E at p by
$p= ®χ,p® $P This is^a free module of rank n over ΘXtP and â  choice of
isomorphism i\Sp ^ [&χ,p)

n defines a formal trivialization t = l°ί, where
I- (®χ,p)n -* ((C[^~1]i)M i s g i v e n by t h e formal local coordinate.

2.4. In this subsection we describe Gr\ as a collection of subspaces of the space of
n-component Laurent series L\. We first recall the X-lattice approach to vector
bundles (cf. [H]). Let Kbe an n dimensional vector space over the function field Kx

of X and let a family {Mq a V}qeX be given where Mq is a free rank n module over
the local ring ΘXtq. Assume furthermore that for almost all qeX, for some fixed
basis Si of V, Mq = ®(9x,q£i. Then the family {Mq} is (essentially) what is called an
X-lattice in [H]. Their study leads to the adelic description of the moduli space of
vector bundles over X, cf. also [AtB],

Let SO = Kx(g)φχ£
> be the space of meromorphic sections of our rank n vector

bundle E. This is an n dimensional vector space over Kx and there is for every q in
X an injection iq: Sq -• SO from the stalk at q to the "generic stalk" So. The image of
iq will be still denoted by Sq. Then the collection {Sq} in So is an X-lattice.
Conversely every X-lattice {Mq} determines a locally free sheaf S by defining
S(U) = f]qeu Mq for all open U in X. Isomorphic locally free sheaves S, S' give rise
to equivalent X-lattices, i.e., families {Sq}, {Sq} with Sq = ySq for y e Gl(n, Kx\ and
vice versa.

Now return to the situation where we fix an holomorphic trivialization t of S at
p. We can identify the space of meromorphic sections of S with Kx (x) Sp. Any
element e of Sq extends to a meromorphic section of E, so determines, by taking the
germ at p, an element iq(e) of Kx® Sp. The holomorphic trivialization t induces
(using also (2.1.1)) an homomorphism:

t:Kx®Sp-*Ln

λ. (2.4.1)
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We will still denote by Sq the image in L\ = (Lλ)
n. In this way we obtain an

X-lattice {gq} in t(Kx ® Sp) inside Lλ.

Lemma 2.4.1. Isomorphίc pairs {β, t) give identical families {Sq} in Ln

λ.

Proof. Assume {β, t) ~ (β\ t') and let φ denote the isomorphism. Then φ gives
isomorphisms φq'.Sq-^S'q and φp\$p-*$'p and we know that t = t'°φp. Let ίq

denote the map $q-±Kx® Sp and iq the corresponding map on S'q. Then the
following diagram commutes:

ΦΛ ΦΛ II (2A2)
6 q > Kx®ώ p • Lλ

ϊq f

Since we wished to show that t°iq = t' °ϊq° φq, this proves the Lemma. •

The vector bundle analogue of (2.1.2) is the following:

H°(X9 δ{*p)) := U H°(X9 £{kp)) . (2.4.3)

This is the space of meromorphic sections of E with possible poles at p, and it is the
intersection (in Kx ® Sp) of the Sq, q φ p. So, using the trivialization as described
above, we get a subspace in L":

W=W(£,t)= f)Sq^L\, (2.4.4)
p*q

which depends only on the isomorphism class \β, ί ] , by the commutative diagram
2.4.2. This is a finitely generated projective module of rank n over Ax, the
coordinate ring of X — p. In general this module is not free, however it has the
following property: the Kx -vector space V = Kx®AχW = t(Kx (x) Sp) a L\ has
a basis {εt = yej with γeόl(n, (Cj/l"1}). Indeed any (algebraic) basis of Sp gives
a basis of V and will be related to the trivializing basis of the holomorphic stalk,
{ej, by an element of G/(n, C{A"1}). The Ws arising from algebraic trivializations
are then characterized by the fact that V = Kx ®Aχ PFhas a basis related to {et} by
an element of Gl(n, Ap\ so that in this case we could take in fact {ej as basis for V.

Conversely, let W be a finitely generated projective ^-module of rank n in
L\ such that V = Kx ®Aχ Whas some basis {εj related to the standard basis by an
element of Gl(n, Cj/l"1}). Then we have for each qeXp an Aq = Θx,q-module
Sq = Aq ® W of rank n, which is free because W is projective. Automatically the
Sq are of the form (+) A^i for almost all qeX — p. Indeed any basis {εj of Sq for
some qeX — p will be a basis also for almost all Sq and {εf} is related to {εf}
by an element of G/(n, Kx). To complete the collection {$q}qeχ-P to an X-lattice
in V (in order to obtain a locally free sheaf) we just have to specify Sp. Any free
Ap module in V will do, so we can take Sp= (^)AqSi. Any other choice of basis
{ε'i} of V, with ε = /e ί 5 y ' e G ί ^ C j / l " 1 } ) , will be related by an element of
Gl(n, Kx)r~λ G/(n, C j l " 1 } ) = Gl(n, Ap)to {εj. This does not c h a n g e ^ and so gives
the same X-lattice and the same locally free sheaf S. This sheaf has a distinguished
trivialization ίf = y~ 1ε ί = / " 1ε . Note that the construction depends on the choice
of basis {βi} in Ln

λ and that we are free to perform Gl(n, Kx) transformations on it.
Taking this into account we find that we have proven
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Proposition 2.4.2. Grn

x is in one to one correspondence with the collection of rank
n projectiυe Ax-modules W in L\ such that V = Kx ®Aχ W has a basis {&i = get},

where the g belongs to Gl(n, { 1 }

The algebraic Grassmannian is distinguished by the fact that the standard basis
{βi} gives a basis for V, or in other words that the element g connecting the
standard basis {et} and {εj belongs to the subgroup Gl(n, Ap).

Remark. The formal Grassmannian is similarly equivalent to the finitely generated
rank n projective ^x-modules W in F" , such that V = Kx®AχW has a basis
{εf = geh geGl(n9 [λ" 1 ] ) } that is also a basis for almost all localizations.

2.5. Let us consider the special case where X = P 1 and λ~ι is the standard
algebraic coordinates at oo. Then Ax is the principal ideal domain (C[2] and all
locally free Ax modules W a Lλ coming from an element of Grpi are in this case
free as Ax -modules. Geometrically this reflects the fact that all algebraic vector
bundles over P 1 — oo are algebraically trivializable. So we have a basis {wj for
W which gives, by juxtaposition, an element g of Gl(n, Lλ\ i.e., the columns oϊg are
the Wf's. (We can think of Gl(n9 Lλ) as the group of real analytic maps from an
infinitesimal circle around p with only possibly a finite order pole at p in the
interior of the circle.) This shows that for X = P 1 the elements of the Grassmannian
lie on the orbit of Gl(n, Lλ) through the distinguished subspace

Hfr^^ζ&AxetczLί, (2.5.1)
i = 0

corresponding to the trivial bundle 0pi with its natural trivialization at oo, since
W=gH$'al*).

Conversely for any Riemann surface an element of the Gl(n9 Lλ) orbit through
ff .̂aig) j j e s j n t ^ e Grassmannian Gr\. This follows from the following proposition:

Proposition 2.5.1. Let geGl(n, Lλ), then

g = gκg-, with gκeGl(n,Kx), g.sGl{n^{λ~'}) . (2.5.2)

Proof. Let σ " 1 be an algebraic local coordinate at p. Then there is a unique
isomorphism φ:Lλ-> Lσ that restricts to an isomorphism C j l " 1 } -> (^{σ'1}. We
extend φ by componentwise action to matrices. Then by the Birkhoff factorization
(cf. [PrS, Theorem 8.2.1]) we have for g = φ(g) a decomposition g = g+-D ̂ _,
with g+ polynomial in σ, D = diag(σαi, σfl2, . . . , σβn), α{eΈ and
cj- eGl(n, (^{σ'1}). Then, clearly, g+ DeGl(n, Kx) and applying φ'1 proves the
proposition. •

So if geGl(n,Lλ) then W= gH%-**> = 0 ^ Axget = ®]ZlAxgκEi9 with
{εt = g- βi). Then V = Kx ® ί^has the basis required by Proposition 2.4.2 and the
free, rank n, ̂ -module ^belongs to the Grassmannian. lϊg- happens to belong
to Gl(n, Ap) we get in this manner an element of the algebraic Grassmannian.

Since this W is free as an Ax module, we see that for general X the orbit of
Gl(n9 Lλ) through the element (2.5.1) will give us the part of the Grassmannian
corresponding to bundles $ such that $ is algebraically trivializable over X — p.
For X = P 1 this gives the whole Grassmannian.

To describe the Grassmannian for an arbitrary curve X as an homogeneous
space, we will in the next subsection change the framework to allow the action of
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matrices with infinite order poles at p, essentially by tensoring everything in sight
by the appropriate ring of holomorphic functions. Another approach would be to
use the X-lattices of Ap modules Sp included in the n-component Laurent series
Ln

λ (or in the n-component formal Laurent series F" in the formal category) briefly
mentioned in Sect. 2.4. This would exhibit our Grassmannians as homogeneous
spaces of adelic groups, which seems to be more complicated than the holomorphic
loop group setting that we are going to use. However if one is interested in these
curves in arbitrary characteristic (for instance in the context of string theory, see for
example [KaSU]), the adelic setting seems appropriate.

2.6. We have noted in the previous subsection that for X = P 1 an element W of the
Grassmannian is free as an Ax -module. This is not the case, of course, for an
arbitrary algebraic curve X. However, as is well known, every holomorphic bundle
on X — p, now thought of as a complex manifold, is trivial, since X — p is a Stein
manifold. So we can consider instead of Wthe tensor product Who{:= Aψ{ ®Aχ W,
which is then free of rank n over Aψ\ where Ax°

ι is the ring of holomorphic
functions on X — p9 usually denoted Θ(X — p). If W corresponds to the equiva-
lence class of a pair (<?, ί), then Who1 is the space H°(X - p, £hoϊ) of holomorphic
sections of ShoX over X — p. Now Aψι is not contained in Lλ9 since there are in
Aψι functions with essential singularities at p. This leads us to look for a space in
which both Lλ and Aψι are contained. This will also allow us later on to consider
"time flows" of points of the Grassmannians with exponential singularities.

Let A"1 be a local holomorphic coordinate at p. We can think of A"1 as an
holomorphic function from a neighborhood of p e X to a neighborhood of the
origin in (C and we can consider for small ε the disks Dε of radius ε around pεX,
using the holomorphic local coordinate. Let Dε be this disk with p deleted. Define
then(cf. [ADKP]):

H = limΘh

x

ol(Dε) , (2.6.1)

the space of germs of functions holomorphic in a deleted neighborhood of p. We
can think of H as consisting of certain functions with, in general, expansions in
λ infinite in both directions, in which case we will write H = Hλ. In the sequel we
will refer to functions (or more generally vectors or matrices) having a finite
number of positive powers in λ in their expansions as being finite order. For instance
the subfield of Laurent series Lλ of the field of formal Laurent series Fλ makes up
the finite order elements in Hλ (and hence, in particular Kx is made up of finite
order elements). However Ax°\ which contains functions with essential singularities
at p, is also included in Hλ, but a general element of Fλ does not belong to Hλ.

The group Gl(n9 Hλ) acts on Hn

λ = <C" ®^Hλ. Put

n - l

Htn,hol) = Q ^hol^. c Hn ^ £.6.2)

i = 0

Consider an element W of the Grassmannian Grx. Then Who{ = Aψι® W is
a subspace of if".

Lemma 2.6.1. The map

W^ Who1 = Aψγ ® W (2.6.3)

from elements WeGrx to subspaces of H" is injective.
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Proof. Let W be the finite order part of Who1 so that we have an exact sequence of
Ax -modules:

0-+W-+W'-^ W'/W-^O . (2.6.4)

Since Ax°
ι is flat over Ax we get, by tensoring, another exact sequence:

0 -* Aψ1 ® W->Aψι ®W' -> Aψι ® (W'/W) -> 0 . (2.6.5)

Now Who1 = Aψ1 ® W = Aψ1 ® W so we get Aψι ® (W'/W) = 0. On the other
hand we can construct (see 2.4) from Wand W' coherent sheaves δ and δ1 on X by
gluing in the stalk δp = δ'p = (J) APE{ at p, where εf is the basis of F = PFX ® Wthat
exists by Proposition 2.4.2. Then δ'/δ is an algebraic coherent sheaf on the
projective curve X and Θψι ® (δ'/δ) the corresponding analytic sheaf. But by the
sequence 2.6.5 and because δp = S'p we see that in fact Θψ1 ® (δ'/δ) = 0, so, by
GAGA, also δ'/δ = 0 and hence W = W'. So the finite order part of Who1 is Wand
Who1 determines W uniquely. •

As we said before Who1 is free of rank n over Ax°\ so we have a basis {w, }?= x of
Who1. Then Who1 = gH$'hol\ for geGl(n, Hλ) given by the juxtaposition of the basis
{\Vi}U i The stabilizer of H%-hol) in Gl(n, Hλ) is the subgroup Gl(n, A*01) so we find
that the (holomorphic) Grassmannian is contained in the homogeneous space:

G/(n, Hλ)/Gl(n, AY) . (2.6.6)

In fact,

Proposition 2.6.2.

Proof. It remains to show that iΐW= gH$-hol\ for g e Gl(n, Hλ\ then W = Who1 for
some Win Grn

x. Since g gives an holomorphic matrix valued function on a deleted
neighborhood Dε of p it gives a transition function from Dεto X — p, and thus an
holomorphic vector bundle on X with trivializations on Dε and X — p. The sections
of this bundle over X — p in the trivialization over Dε give back ^ . By the GAGA
principle, every holomorphic vector bundle on X is indeed algebraic and thus
W = Who1 for this algebraic bundle with holomorphic trivialization at p. •

Remark. We have seen in Sect. 2.5 that WeGrn

x is free iff W= gH^'alg) for some
geGl(n,Lλ). So in this case we also have Who1 = gH(

x>
hol) for the same g. The

converse is also true: if Who1 = gH^'hol) for a finite order g then Wis free, as easily
follows from Lemma 2.6.1.

If {w/}"=1 is a set of linearly independent elements of W (over Ax) then the
images of these elements in Who1 = Aψ1 ® Ware independent over Aψ1. However,
since Ax°

ι is not a field, they may not span. If one takes the element geGl(n, Lλ)
obtained by juxtaposition of the vectors Wj then the vector bundle δ obtained by
this transition matrix will be algebraically trivializable over X — p. Its algebraic
sections over X — p will be given by gH{^ΆXg) which is in general just a subset of the
finite order part Woi WhoL. there will be elements of Wnot obtainable by Ax -linear
combinations of the finite order set wf = g eh except in case that the wf formja basis
for Wover Ax to begin with. So the algebraic and holomorphic bundles δ, ShoX are
just subbundles of δ and δhoi, in general.

2.7. Any Riemann surface X admits a covering map/: X —• P 1 of degree k, for all
sufficiently large fe, so in a sense all Grassmannians Gr\ based on X are included in
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the Grassmannian Gr^i (in many different ways). More concretely, if we choose for
instance, as in Sect. 2.2, the local coordinate λ on X at p in such a way that
Ax — C © (£λk © . . . we can define z = λk and think of z as the standard algebraic
coordinate on P 1 . Then Ax is free over <£\_z] of rank k and hence We Grn

x is free of
rank nk over C[z]. We can identify in an obvious way L\ with Lkn (see Sect. 4.2) and
using this we see that Wis an element of Grp* corresponding to the class [/* SJ* ί ] ,
if PF corresponds to the bundle S. Here/* ί is the trivialization of the push forward
bundle f+δ determined by the basis {zjt~1{ei)}ί

ij
n=~0

1J=k~1 of the Gj>\ ^ module
(/*^)oo; this will be explained in more detail in Sect. 5.

One can also map Grx into an universal Grassmannian Gr of subspaces W of
Hz (see 2.6) that have a Fredholm projection W->HZt + 9 where HZt + is the
subspace of Hz consisting of holomorphic functions on P 1 — oo (here we think
of z as a coordinate on P 1 ) . (This is the definition in [ADKP], see also [SeW,
PrS].) This works as follows. First note that Ax a Lλ has a projection to C[λ]
with zero kernel and cokernel of dimension g. Then H{

x'
alg\ and thus also

H(n,hoi) = ^ h o i φ ^ a i g ^ h a § a p r o j e c t i o n t 0 c ^ (respectively i f £ + ) with zero
kernel and cokernel of dimension ng. Finally, we use the isomorphism Hn

λ -» Hz

given by λkβi \-^znk + ι to get a subspace W(X9 n) a Hz which belongs to Gr. Now, Gr
is an homogeneous space of the group A^ consisting of invertible operators on Hz

whose diagonal blocks with respect to the decomposition Hz = HZf + 0 HZt _ are
Fredholm; here Hz, _ is the ring of convergent power seriesjn z" 1 . The action of
Gl(n, Hλ) on HI then translates to an action of a subgroup Gl(n, Hλ) of A^ on Hz.
Thus we see that Grn

x = Gl{n, Hλ)H^ho1 corresponds to the orbit Gl{n9 Hλ) W{X, n)
contained in the universal Grassmannian Gr. In fact the points of Grn

x considered in
Gr are characterized by the fact that they are stable under the action of the image of
Aψι thought of as a subring of Hz using the map λ\-+zn (cf. [PrS]). (Note that for
every n we get a different subring in Hz isomorphic to Λx°

ι.) The fact that W(X, n)
belongs to Gr implies that there exists an infinite matrix y(X, rήeA^ such that

In general y(X, ή) however will not belong to the image of the loop group in the
group of infinite matrices.

3. The Cotangent Bundle to the Grassmannian

3.1. In this section we study the cotangent bundle to the Grassmannian Grn

x of
vector bundles on X and we will show that the fiber of the cotangent bundle at
a point W contains as a finite codimensional subspace the stabilizer algebra S^1 of
Who1: the linear transformations of Hn that map Who1 onto itself. In the sequel,
commutative subalgebras of the finite order part of Sψl will be used to construct
covering spaces for X.

3.2. We recall here some well known facts about symplectic reduction for homo-
geneous spaces, see for more details e.g., Guillemin, Sternberg [GS1]. Let G
be a Lie group, g its Lie algebra and denote by Lg, Rg the action of geG on G
from the left and the right respectively. These actions lift to symplectic actions
on the cotangent bundle Γ*G with moment maps JL, JR: Γ*G-^g* given by
JL{μg) = R*μg, JR{μg)= -L*μg for all μgeT*G. We trivialize T*G by right
identification: μgeT*G is identified with the pair (g9 μ)eGxg*, such that
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<μ, X) = (μg, Rg*X), Xeq. Then in these coordinates

§*<—^xg*—>§*

μ < (g,μ) • -Ad*-i(μ) '

where Ad* denotes the coadjoint action of g on g*, i.e., Ad* is the dual map to
Ad,-..

Now let K be a Lie subgroup of G and ϊ the corresponding subalgebra of g. The
right action of G on T*G restricts to a right action of K with moment map
JR,K ^ * G -* ϊ* I n fact J R ^ = πι* ° J κ , where πp is the restriction of linear forms on
9 to I.

Now consider the Marsden-Weinstein reduction JR,KΦ)/K at Oef* of Γ*G
under the K-action. The inverse image of zero under πf* is isomorphic to (g/ϊ)*. Let
us choose a complement of ϊ in g: g = £ φ ϊ. Here £ is just a vector subspace, not in
general a subalgebra. Then (g/f)* ~ £* and

Now the right action of K on Γ*G in the right trivialization is just (g, μ) i—• (gk, μ),
hence the Marsden-Weinstein reduction of T*G by this action in this trivialization
is a bundle over the quotient G/K, with fiber at the point gK given by the space
Ad*(£*). If we choose on g an Ad-invariant nondegenerate bilinear form <,>:
g x g -> <C we can identify g* with g and under this identification £* gets identified
with the perpendicular tL = {xeg | <x, y>, Vyeϊ}. The fiber over gK can then
finally be identified with Ad^ϊ1).

Summing up: the cotangent bundle to G/K can be identified, given the choice of
bilinear form, with pairs (gK, s), with se Ad^f1).

We remark here that in the infinite dimensional situation one must take care
about what is meant by the cotangent bundle. If one is not working in the Hubert
space setting then it is usually not the case that a nondegenerate bilinear form gives
an identification of g with g*, but if the form is continuous then it does give a map
g -+ g*. In the case that g is split into ϊ © 2 then f1 gives in general only a subspace
of £* and thus the above formulation gives only a subspace of the fiber of the
cotangent bundle. We ignore this subtlety in this paper.

3.3. We now apply this to our situation: the holomorphic Grassmannian, which is
according to Sect. 2.6 a homogeneous space for the loop group Gl(n, Hλ) with
stabilizer at the origin Gl(n, Λψι). Since elements of these groups may be considered
as holomorphic maps into Gl(n, C), we may differentiate pointwise to get the Lie
algebras g = gl(n, Hλ) and ϊ = gl(n, Aψι). We will identify a complementary sub-
space for gl(n, Λ\°ι) in the Lie algebra gl(n, Hλ) and an invariant bilinear form such
that with respect to this form (gl{n, Λψ1))1 is easily identified. To this end we first
study a bilinear form on the space Hλ of germs of holomorphic functions in
a deleted neighborhood of p.

First recall some basic facts about complex valued harmonic functions of one
complex variable. Recall that a smooth function h is harmonic if dδh = 0.lϊh is
harmonic on a disc, D, then h may be written h = h+ + h-, where h+ is holomor-
phic and h- is antiholomorphic on D. This fact easily follows by noting that dh is
a closed holomorphic one form. On a punctured disc, D, it is similarly follows that
h may be written in the form h = h+ + h- (on D) if and only if §dD dh = 0 (otherwise
there is a log zz term).
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We will be interested in global harmonic functions on X — p, the set of which
we denote by Har(X — p). A basic fact we need is that given any positive integer /c,
one can construct an harmonic function hk on X — p such that (hk) — λk is regular
at p. Furthermore hk is unique up to a constant. The uniqueness follows easily from
the fact that the only global harmonic functions on X are constants. Existence
comes from looking at the long exact sequence of

0 -> Har -• H a φ p ) -> Θ{np)/Θ -+ 0 ,

where Har denotes the sheaf of harmonic functions which are regular at p, Har(rcp)
is the sheaf of harmonic functions whose behaviour at p is at worst λn, and Θ(np)/Θ
is the skyscraper sheaf of principal parts of meromorphic funtions with poles at
p of order at most n. In the long exact sequence one must see that
Hx(Har) ~ H1 (Har(np)) ~ <£ in order to see that 0 ->fl°(Har) - > # ° ( H a φ p ) )
-> H°(Θ(np)/Θ) -> 0 is exact. However H1 of these sheaves is easily computed from

the short exact sequence

0 -• Θ(np) -> H a φ p ) - ^ K -• 0 ,

where K denotes the sheaf of anti-holomorphic one forms.
Now assume that the genus of X is g and let [au a2, . . , ag} be the gap-values

of peX, see [GH, p. 273]. For each at let ha% be the harmonic function on X — p
with ha. — λai + 1 regular at p. Considering the ha. as harmonic functions on Dε, set
d(hai)+l= hidλ and let

K = © C ( δ ) + . (3.3.1)
1

Proposition 3.3.1.
Hλ = Λψι 0 C{λ~1 }λ~1 θ V . (3.3.2)

Proof. The gaps at are precisely those integers for which there is no holomorphic
function on X — p with pole of order a{ at p, thus the three subspaces are clearly
pairwise disjoint. To see that they span Hλ define a sheaf 3F := Θψ\X — p)
© Θψι(Dε) on the Riemann surface X (with the complex topology). The stalk of
& at q is isomorphic to Θ\°ι iff qφDε and to #£o1 0 Θ\oλ if qeDε. Hence we have an
exact sequence of sheaves:

0 -> (9ψ* -> jF -> ̂ o l ( D ε ) -> 0 .

Here on the level of the stalks the injection of Θψx is given byf^->(f\x-p,f\Dι) and
the surjection is given by (/, #)ι—• l/2(/— gf). In cohomology we get:

0 -> H°(X, ΘY) -> H°(X, ^ ) -> H°(X, ^ o l 0 ε ) ) -> H 1 ^ ^x 1) -» 0 , (3.3.3)

since all the higher cohomology groups vanish (X — p and Dε are Stein). This gives,
after taking the limit ε -> 0:

ψι ) -»0 , (3.3.4)

where the injection of constants is given by c\->(c,c, 0). Now HX{X, Θψι) ^

H1(X,ΘX) is g dimensional and one easily checks that V maps injectively to
x
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There is another description of the gap-values, namely at is a gap-value if and
only if there is a global holomorphic one-form on X which vanishes at p to
precisely the order a{ — 1. For each i let ωt be a global holomorphic one form with
leading term λί~a%d(λ~ί)= —λ~aι~1dλ. Locally, on a disc around p, ωt = gtdλ
where g^λ) = — λ~ai~ι -f lower order. Let

U = ®(Cgt. (3.3.5)
1

Note that although the g/s are not uniquely determined, the space U is indepen-
dent of the choices, furthermore, if we let Ω1'°(X) denote the holomorphic
one-forms on X, U is isomorphic to Ωίt0(X).

We now define a bilinear form on Hλ by

</, g} := Resp(fgdλ) = §fgdλ, f9geHλ. (3.3.6)

Since/and g are just germs of holomorphic functions on a deleted neighborhood of
p the integral must be interpreted as occurring on the boundary of a small disc Dε

on which representative functions for / and g are defined.

Proposition 3.3.2. With respect to the pairing (3.3.6) we have

Y . (3.3.7)

Proof. To see that Aψι ® V® U c (Aψ1)1 first take/e,4£o1 and geAψ1 ® U. Then
fgdλ extends to an holomorphic one-form on X — p so it must have zero residue. If
instead we take geV then g = h+ for some harmonic function on X — p and
gdλ = d(h + ) = dh.So by Stokes' theorem §fgdλ = jfdh = \X-D d(fdh) = 0, since
df =0 and ddh = dδh = O.

Conversely, it is a result of A.H. Read [R] (see also [Ro]) that if ω is
a continuous section over dDε of the holomorphic cotangent bundle, and
§dDεfa = 0 for all functions/which are holomorphic on X — Dε and continuous up
to the boundary, then ω extends holomorphically to X — Dε. Using the fact that an
holomorphic function on X — Dε can be approximated uniformly by an holomor-
phic function onX — p (cf. Simha [Si]), and shrinking the neighborhood slightly, it
follows that if ω is an holomorphic one-form on a punctured disc about p and
§dDJω = 0 for all feΘ(X — p) then ω extends to an holomorphic one-form on
X — p. Hence, from the assumption that g e (A^1)1 we conclude that gdλ extends to
a global holomorphic one-form ω on X — p satisfying §dD ω = 0. Now note that
d: R2ir{X -p)-^ΩU0(X -p)/ΩU0{X) is onto, and that for /zeHar(X-p),
dh = dh+, so we can identify (Aψ1)1 with the holomorphic parts of harmonic
functions on X - p, i.e., ge AY ®V®U. •

Note that the direct sums in (3.3.7) is the direct sum of vector spaces. We now
extend this result to MatM(//λ), the vector space of n x n matrices with coefficients in
Hλ, by defining the bilinear form

\ B(λ)):= § tτ(A(λ)B(λ)dλ)9 A{λ\ B(λ)eMαtn(Hλ) . (3.3.8)

It follows immediately from the above proposition that

) 1 = Ma.tn(Aψι ® V® U) , (3.3.9)
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and thus we may identify the fiber of the cotangent bundle of the holomorphic
Grassmannian at the point Who1 = gHx'

ho1 as the space

T$Grn

x = Ad,(Mat n (^ 0 1 Θ V® U) . (3.3.10)

Let us define

S%ι = Δdg(gl(n,Aψι)) (3.3.11)

Since, clearly,

S$ι = {segl{n, Hλ)\sW
ho1 c Who1} , (3.3.12)

we refer to Sψl as the holomorphic stabilizer algebra of Who1 in gl(n, Hλ). Since

nGr\ = S5?1 Θ Ad g (Mat n (FΘ U)) (3.3.13)

we see that the fiber of the cotangent bundle of the Grassmannian at W contains
the stabilizer algebra as codimension 2n2g subspace S\y\ where g is the genus of X.
The Aψι -module S$ι is just EndA^ι(Wh°ι). Similarly we can introduce
5^n = {segl(n, Lλ)\sWa W) so that s | n - EndAχ(W). The relation between the
two endomorphism rings is given by:

Lemma 3.3.3.
ohol ^ jhol /ςx ofin
ύψ — Λ x (X) ^W

Proof. We have an homomorphism

Φ: AY ® E n d . ί ^ ) -> End^hoi(^ 0 1 ® W) , (3.3.14)

so that the tensor product b ®/, with be Aχ°\ feEndAχ(W), gets mapped to the
endomorphism of Who1 that sends β®wtobβ ®/(w), where βeAψ\ weW. This
homomorphism is easily checked to be injective. Note that, as WhoX is free,
EndAχ-oi(Who1) = gl(n, Aψ1), and that, if W were free, we would have
EndA

X

χ(W) ~ gl(n, Ax). Since gl(n9 Ax°
ι) = Ax°

ι ® gl(n, Ax) in this case Φ is an
isomorphism. For the general case write the projective Ax -module W as a direct
summand, F = W® W\ of a free module F and put F h o 1 = Aψι ® F. Then any
element 5 of End^hoi(i^ho1) can be extended to an endomorphism of F h o 1 (say by the
zero map on tlie complement of Who1) and hence it can be written as
5 = Σfi(l ® Si) with fi^Aψ1 and 5iGEnd(F). Let πw: F -> Wbe the projection on
the first summand in the decomposition F = W® W and define st = πw ° S; ° πw;
this is an element of End(W). Then, since tensoring with a fixed module is a
functor, 1 ® Si = (1 ® π^)°(l ® Sj)°(l ® π^). But l®πw = πw*oι, so 1 ® st

= π^hoi°(l (g) if) ° π̂ rhoi and ^ / f ( l ® s£) = % o Y / f(l ® 5i)°πw = % ° r % So
we get for s, thought of as an endomorphism of W^°ι, the expression s = ^ / f ( l ® sf)
and Φ is surjective. •

In case W is free there is a simple expression for the finite order stabilizer
algebra. Recall from 2.6 that P^is free iff Who{ = gH%hoϊ for # finite order. Then we
have:

Lemma 3.3.4. IfW=gHx^
oX with g a finite order element of Gl(n, Hλ) then

Sψ1 = Adg(gl(n, Ax)) .

Proof The holomorphic stabilizer algebra of Hx'
hoϊ is of course gl(n, Aψι) and

the finite order part is gl(n, Ax). Let s be an element of S^11, then
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sWho1 = sgH£ho1 a Whoλ = gHx>
ho\ so Ad,-i(s) is an element of the finite order

stabilizer of Hx'
ho\ i.e., of gl(n, Ax\ as g is assumed to be of finite order. Hence

Swn c Aάg(gl(n, Ax)\ The reverse inclusion is immediate. •

Note that in case X = P 1 the situation becomes much simpler: we can identify
Sψ1 with the fiber at W of the cotangent bundle of the Grassmannian.

We will study stabilizer algebras in more detail in Sect. 6.

4. Heisenberg Algebras

4.1. Let gl(r, Hλ) be the "real analytic loop algebra on an infinitesimal circle
around p." Consider the subalgebra J f = Hλ[Pr~\ of gl(r, Hλ) consisting of poly-
nomials over Hλ in the generator Pr9 the rxr matrix

/ θ 1 0 . . . 0 θ \

. 0 00 0 1

0 0 0

0 0 0

\ λ 0 0

1 0

0 1

0 0 /

r-2

= λEr-10 -f Σ Eii+1
i = 0

(4.1.1)

Note that, since Pr

r = λlr, the general element of Jfr may be written in the two
distinct forms:

ht(λ)eHλ9
(4.1.2)

or,

Σ (4.1.3)

Jfr is an abelian subalgebra oϊgl(r, Hλ) which extends to the principal Heisenberg
subalgebra of the Kac-Moody central extension of gl{r, Hλ). In general we will
refer to such Abelian subalgebras of gl(r, Hλ) also as Heisenberg subalgebras.

Let n be a positive integer and fix a partition n = (n^ ̂  n2 ^ . . . nk > 0) of
n into k parts. (So we have n — Σ*=i nί ) The Heisenberg subalgebra 2tf- of type
n in gl(r9 Hλ) is

where each principal Heisenberg subalgebra f̂"' is embedded in
a diagonal block, i.e.:

ff"1 0 . . . 0 \

0 H"2 . . . 0

: : " . 0

\ ° H"

(4.1.4)

r, Hλ) as

(4.1.5)
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When the partition n is understood we shall denote by 0>a, 1 ̂  a rg fc, the element of
2tf- with Pna in the α th block and zeroes elsewhere. Thus, the general element of Jί?-
may be written in either of the following forms:

^ Σ hUλ)^L hl{λ)eHλ9 (4.1.6)
i = 0 a=ί

or,

Σ Σ ίf^ί, ίfeC. (4.1.7)
i= — oo α = 1

The algebras J f - exhaust, up to isomorphism, all maximum Abelian subalge-
bras of gl(n, Hλ) that are stable under the Cartan involution ω 0 : gl(n, C) -• gl(n, <C)
given by X -• — X * (see for instance [tKr]).

4.2. We can identify the principal Heisenberg algebra Jf r with Hz by the C-
algebra isomorphism J^r -> H 2 given by

ί=0 i = 0

This shows that J^f is an integral domain.
The space H\ is an Jf'-module and the space Hz is a Hz -module. Using the

above (C-algebra isomorphism there is a module isomorphism Hr

λ -> iϊ z given by

*Σ "tWet^'Σ "tW ( 4 2 2 )
i = 0 i = 0

Similarly, given a fixed partition n = (nx ^ n2 ^ . . . nk > 0), we have a (C-algebra
isomorphism J f - -> Hz by identifying the diagonal nt x n̂  block of 2tf - with the ith

component of Hk

z. The ring structure of Hi is given by componentwise multiplica-
tion. This also induces a module isomorphism from Hn

λ to Hz. Note that arbitrary
Heisenberg algebras are not integral domains: they contain zero-divisors.

43. The finite order part of tf\ L\ = 0 L λ [ ^ α ] is built up out of blocks L λ [ ^ α ]
of principal finite order Heisenberg algebras. There is a natural filtration on
L-λ which will be important for us in the later sections.

In general if R is a C-algebra an order function on R is a map o: JR -* Έ such that
o(r1r2) ^ o(r1)o(r2) and o(cr) = o(r) for all r,r1,r2eR,ce(C. Given an order
function we define a filtration. . . Ri c Ri+1 c . . . of R by declaring Rt to be the set
of elements r oϊ R that have order o(r) less than or equal i.

On the ring of Laurent series we define an order by o(f(λ)) = k if
f(λ) = Σk-aofiλ

i, fk=¥Q- Define then on the finite order principal Heisenberg
algebra Lλ[Pn~] an order on by giving the generator Pn order 1 and λ order n.
In other words if seLλlPn'] has an expansion s = Σi=ofiWPn ^ e n °n{s) ==
m&Xi(n Ό(fi(λ)) -f i). Note that this filtration corresponds to the natural filtration
on Lz c Hz under the isomorphism &?- -+ Hz of Eq. (4.2.1).

Finally for s an element of an arbitrary finite order Heisenberg algebra L-λ we
define

o? = maxf=1oΠl[πi(s)] , (4.3.1)

where

π t : jP*-+3fn* (4.3.2)
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is the projection of the ίth block of size nt x nf in the Heisenberg algebra. Let us
denote by Ls the elements of order s in L-λ. Then we have LsaLs+1 and
Ls + 1/Ls ~ Ck, where k is the number of parts of n.

5. Covering Maps and Direct Images

5.1. Our Grassmannians Grn

x are constructed from rank n bundles $ on the curve
X. Now it is known that "generically" such bundles are the direct image of a line
bundle under an rc-sheeted covering map/: Y -^ X, where Y is a smooth curve; for
a precise formulation see [BNR]. We will consider more generally curves Y that
may be singular, reducible or even decomposable. This makes it then natural to
consider also torsion free coherent sheaves, not only bundles. For the reader's
convenience we will include some of the standard defintions and results; for more
details see e.g., [Ha].

5.2. Let Y be an algebraic projective curve and Θγ its algebraic structure sheaf. An
algebraic coherent sheaf ΊF is a sheaf of Θγ -modules that is locally the cokernel of
a morphism of free finite modules: we have for every qeY a, subset U containing
q and an exact sequence, for some nonnegative integers α, β:

ΘY(UY -> Θγ(U)β -> #-(17) -» 0 . (5.2.1)

A coherent sheaf !F is called torsion-free if s / = 0, seΘYtq9f + 0e^q9 with s not
a zero divisor, implies 5 = 0. We will always assume sheaves to be coherent and
torsion-free in the sequel.

The rank of ^ at q is the maximal number of linearly independent elements
(over &γ,q) in J%. The rank of a coherent sheaf is constant inside every irreducible
component of Y. Another local invariant of 3F is the fiber dimension μq{^) at
a closed point q defined as follows: let mq a Θγ^ be the maximal ideal of q and
Kq = ΘYtq/mq ~ C the local residue field. Then we put μq(&) = ά\mKq{^q/\nq^q).
By Nakayama's lemma this is also the minimal number of generators of J^; in
other words the fiber dimension is the minimal β that can occur in the sequence
(5.2.1). The rank of #" and the fiber dimension of J* at g will be equal if and only if
BFq is free. If q is a nonsingular point the stalk ΘYtq is a Dedekind domain. Since
a finitely generated torsion-free module over a Dedekind domain is locally free (see
[Bo, VII, Sect. 5.10]) in the case of a smooth point the stalk of 3F is free. In
particular if Y is a nonsingular irreducible curve every torsion free coherent sheaf is
locally free, i.e., the sheaf of sections of an algebraic vector bundle.

5.3. Continue with X being an irreducible, reduced, nonsingular, projective curve
and Y an arbitrary reduced projective curve. An l-fold branched cover of X by Y is
a morphism/: Y -> X such that for every x e X the inverse image/ " x (x) consists of
a finite number of points {yu y2i . . . , y^}, with k = / for all but a finite number of
x, and such that the rank of ΘYtyi (over Θx,x) is £u with £ \ ίt = ί. Here we use the
local homomorphism

Λί:0χ.*->0r., , (5-3.1)

to give ΘYiy. the structure of an ΘXfX -module. We will refer to the rank // as the
ramification index of the covering map at yt.
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Let now !F be a sheaf (i.e., a coherent torsion-free sheaf) on 7, of rank mt at
the zth point lying over xeX. We don't assume these mt to be constant or
even non-zero. Then the direct image sheaf /* J^ on X is defined by /*
#"([/):= ^{f~γ(£/)); the structure of ΘX(U) module is again provided by using
the homomorphism/#. The direct image sheaf is then a coherent torsion free sheaf
of rank n = Yjilimi (this is independent of the choice of the point x) on X, and since
X is non-singular this is in fact a rank n vector bundle.

In this way we obtain from sheaves f on 7 vector bundles $ =f^^ on X.
Next we investigate how to obtain the other ingredient going into the concoction of
an element of Grn

x: the local trivialization t of δ at the point peX.

5.4. If (7, Θγ) is an algebraic curve, there exists a unique analytic space (7, Θψι)
associated to it and for any algebraic coherent sheaf 3F we have a unique analytic
coherent sheaf #" h o 1 = Θψι <g) J*\ If/: 7-> X is an algebraic /-fold branched cover
we can extend it to the corresponding analytic spaces and f*^ho{ is for any
coherent sheaf J^ an analytic coherent sheaf on (X, Θx

oX). lίX is nonsingular this is
the sheaf of sections of an holomorphic bundle on X.

We will be interested in the situation where the fiber/~1{p) = {pi, . . . , pk} of
the special point p on X contains only nonsingular points. In this case the stalk
(f*^hol)p c an be described very explicitly. If λ~ι is a local holomorphic coordinate
at p then/^f (λ~x) belongs to m% but not to n/p\

+ \ where ^ is the ramification index
at pi. By choosing a local holomorphic coordinate zt at pt appropriately we may
assume that/pf (ΛΓ1) = zf. Then a basis for ΘYyPι as a 0χ5jP module is provided by
{1, Zj, zf, . . . , zf1"1}. If ^ has rank m; at p; then we can choose a basis
{fPKfP, - >/m?} for J%t over 0 y,P ι and doing this at all points of the fiber

f~ι{p) will give a basis of ( / * # % over $X j / 7, viz.,

{zf/y

(i) 11 ^ y g wif, 0 ^ 0 ^ ^ - 1, 1 ̂  ϊ ^ fc} . (5.4.1)

Summarizing, the following

Geometric Data.
(1) An /-fold branched covering map/: 7-> X, where Yis an arbitrary projective

reduced curve and X is a smooth integral projective curve, such t h a t / - 1 ( p )
consists of k nonsingular points pt with ramification indices / i5

(2) Local holomorphic coordinates zf at pf such that zf =f*(λ~1\
(3) A torsion-free coherent sheaf 3F of rank mt at pf with a basis of J^. at each

point pi9

determine an element \β, ί ] of the Grassmannian Grn

x, where n — ̂ ^imi. namely,
put $ = / * ̂  and construct the trivialization from the basis (5.4.1).

The equivalent description of \β, ί] e Gr^ in terms of an Ax submodule W of
L\ is obtained from the geometric data as follows: let σ be a section of 3F over
Y — f~1(p% i.e., σeH°(Y— f~1(p), #"). Then σ determines a section of the rank
n bundle δ = / * # " over X — p and using the basis (5.4.1) and the local coordinate
λ~ * we obtain, an element of L" as in Sect. (2.3). The space W c L" is the collection
of elements of L" obtained in this way from sections of H°(Y— f~1{p\ SF\
Similarly Who1 is obtained by pushing down the sections of H°(Y-f~1(p\ J^ho1)
and again using the basis (5.4.1) to obtain an element of Hn

λ.
The simplest case of this construction is that where the sheaf 3P has rank

1 everywhere on Y. Then the covering m a p / Y-> X has degree n and the partition
of n that defines the relevant Heisenberg algebra is given by the ramification indices
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at the Pi, The simplest subcase here is maybe that where there is a single point lying
over peX and the associated Heisenberg is the principal Heisenberg of size n. This
is the situation that leads to the KdV hierarchies, in case X = P 1 , cf. [SW].

5.5. In this subsection we study the stabilizer algebra of the element We Grx which
we obtain from the above geometric data. Recall from Sect. 3.3 that the stabilizer
algebra of WeGrn

x, is given by S$ι = {segl(n, Hλ)\sWho1 a Who1}. Now notice
that multiplication by an holomorphic funtion son Y — f ~1 (p) preserves the space
H°(Y-f1{p)9^

rho1) of holomorphic sections. Thus the pushforward s=f+{s)
gives an element of Sψl when expanded in the basis (5.4.1). Indeed we will argue
that s belongs to the intersection of this stabilizer algebra and an Heisenberg
algebra corresponding to a partition of n to be determined below.

First observe that the action of the element zt on ΘγtPi, considered as an
dλ^p-module with basis {1, zh zf, . . . , zί1"1}, is given with respect to this basis by
multiplication by the matrix:

f°
1

0

0

\o

0 . . .

0 . . .

1 . . .

0 . . .

0 . . .

0

0

0

1

0

0

0

0

0

1

/Γ 1

0

0

0

0

(5.5.1)

i.e., zt is represented by the inverse of the generator of the principal Heisenberg
algebra of size fu see Sect. 4.4. The basis {l,zi9zf9 . . . , z ' " 1 } of ΘYfPi as ΘXiP

module, along with a basis {/0\/i, . . . ,fmt-i} of $Fm as 0y 5 A -module, induces a
basis of 3FPi as Θx^p module, namely;

{ J o j J1 5 •> Jnti ~ 19 zU0 9 ZU1 > J zUmi - 1 •> •> zi JθZi Jl •> > zi Jnii - 1 )

(5.5.2)

With respect to this basis the action of z{

 λ on #p. is represented by the element
P™ίnO the πiith power of the generator of the principal Heisenberg algebra of size

Next observe that any holomorphic function son Y —f~1(p) may be expanded
in terms of the local coordinates at the points pt over p to give a fc-tuple
{s^Zi), s2{z2)9 - j sfc(zfe)}, with Si(zi)eHz7ί. Hence in the pushforward, s =/iJί(s),
each component s^zi) is represented as an expansion in the element PJJ;Z. of the
principal Heisenberg algebra j f m i \ Putting this all together we get a representa-
tion for s as an element of Jf-, where n is the partition of n = mxlγ + m2l2 +
+ mklk into the k parts m^. So we find, as promised, that the pushforward of

a holomorphic function on Y — f~1(p) belongs to Sj}?1 n Jf-. In fact:

Lemma 5.5.1. Let Wbe a point of the Grassmannian given by the geometric data in
Sect. 5.4. Then

Proof. It remains to be shown that (S^ o ln J f s ) ^U{H°(Y-f~ι(p\ Θψ1)). Let
1 n Jf-. Using the isomorphism J^- -> ί ί j induced by the partition n into
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k parts (see Sect. 4.2) and identifying H\-1 with (£)k

i= χ Hz-1 we see that 5 can be
thought of as an holomorphic function s in a deleted neighborhood of/~1 (p). Since
seSψ1 the function 5 stabilizes H°(Y ~f~ί(p\ £F\ and therefore 5 extends to an
holomorphic function on all of Y—f~1(p). (We use here the fact that

It follows then that we also have:

Note that we have made here a choice of ordering of the basis (5.4.1) to represent
holomorphic functions by explicit matrices. The choice we made seems the most
natural; it has the fortunate effect that for a covering map/: 7-» X with k points
over peX the holomorphic functions on Y — f~1{p) corresponds to a subalgebra
of an Heisenberg algebra determined by a partition with also k parts. However
other choices are possible and this will give the holomorphic functions as subalge-
bras of more complicated Heisenbergs. For instance we might take as basis for SFm\

( ri ri U-lfi ri ri U-lri ri ri U-lri \
i/θ>zr7O> > zi Jθ>Jl>ziJl> •> zi J l ? J m , - 1 > zijmι- 1 -> •> zi Jnn -1 /

In this case zf1 acts on !FVi as the matrix diag(Pj., Plι9 . . . , Pti) (m̂  terms) and
a holomorphic section will be represented using this ordering at all points
Pi by a matrix from the Heisenberg algebra corresponding to the partition
n = ^ + 4- /i + l2 •+• * + l2 + + lk + + lk (every lt repeated mt times).
Also intermediate conventions for the ordering can of course be chosen. In
the direct Krichever problem (obtaining a point in the infinite Grassmannian
from geometric data) we can choose not to use these artificially complicated
Heisenbergs, but in the inverse process of obtaining geometric data from a point in
the Grassmannian we can't avoid them. This is the reason that Theorem 7.5.1 is
rather complicated.

5.6. This ring S^ = Sψ1 n Jf-, where W comes from the geometric data in (5.4) is,
as we have seen, isomorphic to the ring Aγ of rational functions on 7 regular except
possibly at points in f~1(p). We have a filtration

Aγ = A0^AιaA2cz..., As = H°{Y, Θγ(sD)) , (5.6.1)

where D = pλ + p2 + + pk. So As consists of the regular functions on
Y —f~1(p) that have at most a pole of order s at any of the points in / " 1 (p). By
Riemann-Roch we have for large s:

As+1/As ~ Cfc . (5.6.2)

In Sect. 4.3 we introduced a filtration on the finite order Heisenberg algebra
L-λ = φ * = 1 £ λ [ ^ « i ] We have to change this slightly to obtain a filtration on
^w ^ ® Lλ[0>

n.'] that corresponds to the filtration onAγ. We saw that zf1 corres-
ponds to the element ^ i» x . Since zf1 has a single pole at pt we should give
&™;mi order 1, not m{ as in Sect. 4.3.

In other words if nt = ^mi we define on the subalgebra

] (5.6.3)

a modified order function

<V.(s) = ot(s)/mh seLλ\3Pf:m^- (5.6.4)
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Then, on the subalgebra

ψ-= ® Lx&ZmJ , (5.6.5)
i=l

define the order

oQtί{s) = max5[oWl,^(^(s))], seLψ- . (5.6.6)

With this new definition of the filtration the correspondence of Aγ and S^ is an
isomorphism of filtered C-algebras.

6. Stabilizer Algebras and Their Spectra

6.1. Let Who an element of Grn

x and recall from Sect. 3.3 that the stabilizer algebra
of Who1 is

S$ι = {segl(n,Hλ)\sWho1 c Who1} . (6.1.1)

This is a noncommutative algebra associated to W which can be identified with
a large subspace of the fiber of the cotangent bundle of the Grassmannian at W. We
saw in the previous section that for ^coming from a covering map/: 7-» X, and
additional data, the commutative subalgebra Sψι n Jf - has a natural geometric
interpretation: it is essentially the ring of holomorphic functions on the analytic
space Y — f ~1 (p). In the same way the finite order part Sw

n n 2tf- can be identified
with the coordinate ring of the affine curve Y —/~ 1 (p) .

Wanting to obtain the geometric data from W we define for arbitrary W (not
a priori coming from the Geometric Data of Sect. 5.4) and arbitrary partition of n:

S*, = Sw

n n JP* . (6.1.2)

For brevity we refer to this as the stabilizer algebra of type n. This is an abelian
subalgebra of the finite order stabilizer Sw

n which in general is not maximal. We
will see that S^ is the affine coordinate ring of a curve, Spec(Sjp, covering X. In
Sect. 7 we will construct a compactification for Spec(S^) and we will show that we
can in fact reconstruct all the data from W and the choice of Heisenberg algebra

6.2. Example. Although Jf - is a maximal Abelian subalgebra of gl(n9 Hλ), it is in
general not true that the stabilizer S^ is maximal Abelian in Sψ1. For example let

We Gr\ have a basis over Λx consisting of wx = I . ), w2 = ( I, where b φ Kx, for

W vJ
Kx the quotient field of Ax. Consider then the principal stabilizer subalgebra Sψ,
corresponding to the partition of 2 into one part. It consists of polynomials over Lλ

in the matrix P2 = ( I stabilizing W, since W is free over Ax. But for any

f(λ)eLλ we have/(λ)P2WiΦ W, since clearly no element of PFhas a zero as second
component. Hence Sw = Ax 1 2 x 2 This means that any element of Sw commutes
with Sw, which is therefore not maximal.

We can also use this example to point out that, despite Lemma 3.3.3, it is not in
general true that the holomorphic stabilizer of type n, S^ho\ is obtained by
tensoring the finite order stabilizer of type n, S^, with Aψι. Indeed, if we take for
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simplicity X = P 1 and b above to be of the form h/g9 where h and g are holomor-
phic on X — p and have an essential singularity at p, then the ring

\ (6.2.1)

certainly belongs to Sfcho1 if f(λ) = g2(λ). So 5^'ho1 is strictly bigger than
Λψι ®Sw = Λχ°ι 12 x 2 N o t e t h a t m t m s example Spec(S^) is just X - p, but that
# can be thought of as the ring of analytic functions of the "hyperelliptic analytic
curve" z2 = λ{g(λ)f. In general, it seems that to study the holomorphic stabilizer
algebra S^ho1 one has to introduce infinite genus curves or similar complicated
objects [McK].

6.3. Let us list some algebraic properties of the finite order stabilizer algebra S^. It
is a reduced ring, i.e., it does not contain any nilpotents, and it is torsion free as
^-module. Furthermore, W is finitely generated and projective, so there is a free
finite rank Ax module F and an other module W with F = W © W. Thus
Swn ( = End (WO), a n d hence S^, is an ^-submodule of the endomorphism ring
End(F), which is itself of finite rank and free. Since Ax is Noetherian it follows that
S^y is finitely generated and Noetherian. Finally, since the ring Ax is always con-
tained as a diagonal subring in S^5 it follows that S^ is an integral extension of Ax.

This last fact can be seen very explicitly in the case Wis free: let s e S^, then s is
conjugate to an element of gl(n, Ax) (see Lemma 3.3.4). Hence the characteristic
polynomial of s, Ps(t) = det(ίlΛ — s) belongs to >4x[ί], and is of the form

tn + aίt
n~1 + - + an = 0, ateAx. (6.3.1)

Since s satisfies, by the Cayley-Hamilton theorem, its own characteristic equation
we see that s is integral over Ax.

6.4. Associated to a commutative ring A is a topological space Spec(^4), the set of
prime ideals in A, with as basis of open sets D(f) = {p e Spec(A) \f$p}, where fe A.
X = Spec (A) comes naturally equipped with a sheaf of local rings, the structure
sheaf Θx. The space of sections of the structure sheaf over the open set D(f) is the
localization Af and the stalk at a point p of X is the local ring ΘXfP = Ap. For
instance Spec(^x) is the affine curve X — p together with its sheaf of regular
functions. Here we want to consider the space Spec(5^).

Since the commutative ring S^ is an integral extension of AXi the Krull

dimensions of S^ and Ax are equal and hence also Spec(iS^) is a curve.
As a topological space Spec(S^) decomposes into a finite number of irreducible

components V(pa) = {pe Sρec(^4) | pα cr p}, where the pα are the minimal primes of
S^, a = 1, . . . , r. The elements of the minimal primes pα are precisely the zero
divisors of S^. Since S^ is a subring of an Heisenberg algebra the zero-divisors are
easy to identify using the block structure and so we can determine the minimal
primes and hence the decomposition of Spec(S^) into irreducible components.

Recall from Sect. 3.2 that a principal Heisenberg algebra (corresponding to
a partition of n into one part) is an integral domain. Hence also a stabilizer algebra
Sψ of principal type is an integral domain and in this case <0> is the unique
minimal prime and Spec(Sψ) is irreducible. (This is the situation one usually finds
discussed in the literature on the Krichever method in soliton theory, where one
studies the KdV or KP hierarchies related to the principal Heisenberg algebra, see
e.g., [SeW].)
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To study the general case of a stabilizer algebra S^ contained in a non-principal
Heisenberg, we use the projections πt introduced in (4.3.2). Let seS^, n a partition
of n into k > 1 parts, so Jf- is not an integral domain in this case, although
S^ might be. Then we define the support of s as the subset

S(s) = {iellπ^s) Φ 0}, / = {1, 2, . . . , k} . (6.4.1)

We say that s has full support if S(s) = I.lΐ s and t are two elements in S^ then
S(st) = S(s) n S(t) since the principal Heisenberg algebras are integral domains.
Thus it follows that if s has full support then it can not be a zero-divisor. In fact
from the following lemma we see that s is a zero-divisor if and only if it does not
have full support:

Lemma 6.4.1. Let se-S^, Then there exists a teS^ with S(t) = I — S{s) and hence
st = 0.

Proof. Consider the projection π S ( s ) = 0 i e S ( s ) ^ . Then πS(s)(s) = 5 is a non-zero-
divisor in πS(S)(S^). Now πS ( s )(S^) is an integral extension of Λx (since S^ is) and
hence we have an equation for πS(s)(s) of the form (πS(s)(s))M + X ^ f e ^ s ) ) ' = 0,
with ateAx and a0 Φ 0 (since πS(s)(s) is a non-zero-divisor). Define then

+ "Σ aAeS*,. (6.4.2)

This element has support S(t) = I — S(s). •

Because of the multiplicative property of supports, S(s1s2) = S(si) n S(s2), we
obtain r minimal subsets Sfl, I ^ α ^ r ^ f e o f / = {1, 2, . . . , fe} such that

(1) Sa n Sb = 0 if a Φ ft;

(3) 3zaeS^ with S(za) = Sa;
(4) if for some z φ O ε S ^ w e have S(z) c Sa then S(z) = Sβ.

Consider the projection:

7isa' £;L —• ζjp τij(S^r) . (6.4.3)
jeSa

The image is (by (4)) an integral domain and the kernel pα = ker πSa is a prime ideal.
In fact this is a minimal prime ideal: suppose that p c pα is a prime ideal and let
xepa; then by Lemma 6.4.1 there exists a zeS^ with S(z) — Sa and zx = 0; now
z mod p is not zero and hence x mod p must be zero for otherwise there would be
a zero-divisor in the integral domain S^/p; this means that p = pa and pα is indeed
minimal. So in this case Spec(S^) has r irreducible components isomorphic to

For example, consider an elliptic curve X with affine coordinate ring Ax

given in Eq. (2.2.3). Take g = \ Q_2fe )eG/(2, ί/λ) and the free ,4x-module

0

-A2 _
gebra S ^ 1 of type (1, 1), corresponding to the "homogeneous" Heisenberg algebra

W=g.Hx

2> als) e Gr | . Then s = ( Λ

Λ

 U

 2fc ) is an element of the stabilizer subal-
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of gl(2, Hλ\ since g~1sgegl(2, Ax). But λ2keΛx and leSp1 so also the zero-
fλ2k 0\ ίO 0 \ ίλ2k 0

divisors and 2k) belong to S^ 1 . In fact S^1 ~ Ax[\ u uy yu A ) \ u u

0 4̂χ I 2/c ) is the direct sum of two copies of Ax and its spectrum consists of

two copies of the affine curve X — p touching to order k at the points over the
origin of the Riemann sphere. Of course the method of Sect. 5 provides us with
examples of non-principal stabilizer algebras which are irreducible.

It can happen that S^ is the Cartesian product of K > 1 C-algebras. In this case
(S^) is the disjoint union of K components and S^ will contain K nontrivial

idempotents; an idempotent is an element eeS^ such that e Φ 0, 1 and e2 = e.
Idempotents are zero-divisors that are independent of λ. Now since the restriction
of e to any of the diagonal blocks is not a zero-divisor we must have

where et = 0 or 1, ln. is the identity matrix in the n^ diagonal block of H- and not
all of the e/s are simultaneously 0 or 1. The fact that S^ contains an idempotent
means that W is a direct sum

W=eW®{\ -e)W

and that the summands are embeddings of elements of lower rank Grassmannians
Grp

x and Gr\. In other words, there is an element gegl^Hχ) such that
W = gH^hoλ) and such that g is the direct sum of two elements, eg and (1 — e)g, of
lower dimensional loop groups gl(p,Hλ) and gl(q,Hλ) (where p = Σk=i eini>
q = ΣUi(1-ei)nι)-

6.5. The total quotient ring Q{S^) is the ring of fractions (S ~~1)(S^\ where S is the
multiplicative set of non-zero-divisors in S^. As is well known (see e.g., [Ku]) this
is the Cartesian product of the fields Fι = Q(S^/Pi) of rational functions on the
irreducible components Spec(S^/Pi). Another convenient description of this ring of
rational functions is given by the following

Lemma 6.5.1. Q(S%) = Kx ®ΛχS^.

Proof. Recall that if B, C are rings, S a multiplicative subset in B and φ: B -> C
a homomorphism such that:

(1) For all seS, φ(s) is invertible in C;
(2) If φ(b) = 0 then there exists an seS such that sfr = 0;
(3) Every element of C can be written as φ(b)φ(s)~1, for beB, seS, then

C~S~iB. We check these conditions for the homomorphism
ψ: S!fr-> Kx®AχS!fr, sh->l(χ)s and the multiplicative set of non-zero-
divisors in S!^.

Since S^ is an integral extension of Ax also Kx ®Aχ S^ is an integral extension
of Kx. Let seS. Then φ(s) satisfies a monic equation φ(s)n -f K^ίφ(s)n~1

+ ' ' ' + k0 = 0, kieKx. Since for seS also φ(s) is a non-zero-divisor we may

assume that k0 φ 0 and we see that φ(s) is invertible (since φis)'1 = — — {φ{s)n~1

k0

+ kn-^(s)n~2 + + fci)), verifying property (1).



290 M.R. Adams and MJ. Bergvelt

Next suppose that φ(t) = 0, and teS^. Then there exists an aeAx such that
at = 0. But S^ is torsion free as Λx -module and hence t = 0. This proves part (2).

For part (3) let Y =Στ® siEKx® sϊv τ h e n γ=Σo ^ β ® s» w h e r e

Pi Pi Pt

we find Y = * <g> £ M Λ = <A(Σ 0iiBisi)φ{β1 . . . ft)"1,
Pi Pi

and also point (3) is verified. •

So KX®S?V = F1xF2x. .. Fr, where Fa is the function field of the ath irredu-
cible component Spec(S^/pfl) of Spec(S^). The support of Fa is of course the subset
Sa c / = {1, 2, . . . , k) introduced in Sect. 6.4 to determine the minimal primes of

6.6. In the previous subsection we saw that we could determine the irreducible
components of Sρec(<S^) by studying the decomposition into fields of the tensor
product Kx © Sjy. By tensoring with the larger field Lλ of Laurent series we get
even more detailed information about Spec(S^): we will use the field decomposi-
tion of the tensor product Lλ ® S^ to define a filtration on S^ which allows us (in
the next chapter) to compactify Spec(iS^) to a projective curve Y with a natural
covering map Y-+X.

Each field Fa occurring in Kx © S^ will decompose in general into more fields
after tensoring with Lλ: Lλ (x) Fa = F^ x Fl x . . . x F\a. (The number of fields ka

occurring in this decomposition will turn out to be the number of points lying over
peX in the irreducible component of the compactification Y of Spec(S^) with
function field Fa.) The number of fields Σ K in Lλ (x) S^ is at most k, the number of
blocks in the Heisenberg algebra.

Let us denote by S% the support of the field Fα

e. Let/e Fl and ί e S«. If n^f) is the
zero of a polynomial P(t)eLλ[t\ then the ith diagonal block of P ( / ) e F α

e is the
zero matrix. Hence P(f) is identically zero and all projections π Xf\ ieS% satisfy
the same equations. This means that all projections πf(Fα

e) are isomorphic field
extensions of Lλ of degree (I = [F f l

e: Lλ~\. Each πt(Fa) is a subfield of Lλ{Pi'\.
First we state some general facts about Lλ[Pn]. LA[PΠ] is a finite field extension

of Lλ with [ L A [ ^ ] Lλ~\ = n (since P^ = λ). In fact LA[PM] is a Galois extension of
Lλ with Galois group Z n = {1, ω, ω 2, . . . , ωn~x}, where ω is a primitive n th root of
unity. This group acts by multiplication Pnι-»ωTn, ί = 0,1, . . . , n — 1 on the
generator of the extension. By Galois theory the only subfield extensions of Lλ[Pn~]
are the fixed fields of subgroups H of TLn. These fields are of the form Lλ\P™\

m = -, corresponding to the subgroups ΊL^ oϊΈn, where £ runs over the divisors of

n. In particular this means that the minimal polynomial of an element X of Lλ[Pn~\
(generating some subfield Lλ[X] of Lλ[Pn~]) must have degree / dividing n, and in

this case XeLλ[Py\ m = -.
υ

Hence if i is in the support S% of the field Fα

e and /fl

e is the degree [Fα

e: LΛ] of the
extension (equivalently £1 is the rank of π^Sjp), then /^ divides ni5 the size of the ith

block: nf = mj/α

e and we have:

S^Θ^K1]. (6.6.1)
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We then define on S^ the filtration θn,o s e e (5.6.6), induced by the inclusion (6.6.1)
where / is the collection of integers ί{ = n^m^ Note that for all ίJeS%, seS^we
have o^^π^s)) = on.j.(πj(s)). In other words the blocks within the support of
a single field component contribute in the same way to the order of s. If each of the
fields F^ has support in a single block, (i.e., if there are exactly k fields in Lλ ® S^\l
is a partition of the rank t of S^ over Λx.

Proposition 6.6.1. Let S^ = S^n n Jf - be the stabilizer algebra of type n
= n1 + n2 + ' ' + nk of WE Gr\. Ifko^k is the number of fields in Lλ (g) SJ-, and

[S^)h denotes the elements of order at most i in S^, then

(Sg.λ+i/ίS^i^C*0, (6.6.2)

for all i larger than some i0.

Proof We first study the simplest case: a principal stabilizer algebra Sw of rank
n over Λx. Let {sί9s2, . . . 9 sn} be a maximal independent set in Sw. Then
{sl9 s2, . . , sn} is also a basis for Lλ (x) S{̂  = L λ [P n ] (or rather the elements 1 (x) sf

are, but we will not make this distinction). Hence in particular we can write

Pn=t fliWsί9 at(λ)sLλ. (6.6.3)
£ = 1

We can split each of the Laurent series a{(λ) into a Laurent polynomial
/?t(/l) e(C[/l, / Γ 1 ] and another Laurent series y^λ) such that a^λ) = βi(λ) + y^λ),
and on(βi(λ)Si) ^ 1, oII(

iyί(λ)sί) < 1. Then we have, recalling that Pn has order 1:

n

£ jβiί^Si = Pn + lower order terms . (6.6.4)

Now every Laurent polynomial βi(λ), when multiplied by any sufficiently high
power of λ, is the highest order part of an element/^i) e Λx: fi(λ) = βί(λ)λm + lower
order terms. We fix an m0 that works for all βι(λ) and find:

n

σ:= ^ /i^jsf = λm°Pn + lower order terms . (6.6.5)
i=ί

Now, as/i G >4χ and sf e Sψ, we have cr G SW and we have found an element of order
1 (mod n). The first n powers of σ are then independent and, remembering that
multiplication by λ increases the order of an element by n, we see that there is at
least one element of every sufficiently high order in Sw. Since Sw c Lλ[Pn~] there is
exactly one independent element of each high enough order (up to addition of
lower order elements) and we find (Sw)i + 1/(Sw)i = <C for large i.

The general case is essentially the same: for every field Fα

e in Lλ® S^, with
support Sa and of dimension £1 over LA, one shows that there is an element σe

aeS^
which has its highest order term in the blocks indexed by ieS% and with order
°n,Aσea) = 1 (mod/a). The first te

a powers of σe

a are independent and since multiply-
ing by λ increases the order in this block /fl

e, we find again an element of every high
enough order in S^. Since such elements σe

a, σe

a> (and their first /^, respectively
£a' powers) for distinct subfields Ft and F$ are linearly independent we find for
every field in Lλ ® S^ one independent element and S^ contains k0 independent
elements of all high enough orders. •
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To finish this discussion of the filtration of S^ we note that (S^)o is isomorphic
to (Cfc if S^ is the Cartesian product of K (C-algebras (see the discussion at the end of
Sect. 6.4) and that

(S^)t = 09 ϊ < 0 . (6.6.6)

To prove this last statement we use the natural filtration of the ̂ -component
Laurent series L" given by o(s) = maxJ Γ^s^λ)) if s = (so(λ\ . . . , s ^ ^ ^ e L " .
This induces a filtration on the subspaces We Gr\ which has the following inter-
pretation: if W corresponds to a bundle E and weWhas order k then w corres-
ponds to a section ε of δ which has a pole of order k at p and is regular elsewhere. If
k is negative then ε has a zero and is a global section of S. Since the space of global
sections is finite dimensional there can occur only a finite number of negative
orders for elements of a fixed W. Consider then an element seS-^ and weW such
that s w Φ 0. One easily chekcs that if the order of s were negative the order of s w
would be strictly less than the order of w. But this would imply, since sW c W9 that
in the set {sι w} c W an infinite number of elements of distinct negative order
occur, which is impossible. This proves (6.6.6).

7. The Compactification of Spec (5^)

7.1. Next we want to compactify the affine curve Spec(S^). This uses the filtration
on S1^ described in Sect. 6.6. Let us first recall some elementary facts about filtered
and graded rings and homogeneous spectra (see e.g. Hartshorne [Ha]).

Let A be a ring with some order function o and corresponding filtration
Ao cz A1 a A2 <= . . . , (so A-1 is zero). Define an associated graded ring

R(A)=®Ri9 (7.1.1)
i = 0

where Rt = At. To simplify notation we will write usually JR if it is clear to which
filtered ring A we refer. Let w denote the element of degree 1 in R which is the image
of leA under the embedding of Ao in A1. So if α belongs to At we obtain an
element oc{i)eRi and we have α 0 ) = α(i)w7'"i if j ^ i.

Define for arbitrary homogeneous element fe R the homogeneous ring of quo-
tients of R by R(f) = {g/fn\deg(g) = deg(/"), n ̂  0}. Then one can recover the
original ring A and its filtration from the pair (R, w): we have A ^ R{w)9 via

α(/)/w1' e R(w).
Consider next the homogeneous spectrum of R. Let R+ = @™=1Ri and define

Proj(#) = {peSpQc(R)\p is homogeneous and R+ φp} . (7.1.2)

Recall that an ideal / of a graded ring is called homogeneous if / = © J n Rι or
equivalently if it is generated by homogeneous elements. Proj(K) is a topological
space with basic open sets

D + (f) = {pePτo)(R)\fΦp}, (7.1.3)

for/a homogeneous element of R. Just as Spec (̂ 4) also X = Proj(#) has its sheaf of
local rings, again denoted by Θx and called the structure sheaf. The space of
sections of the structure sheaf over the basic open set D + (/) is the ring Rif) and the
stalk at a point peX is the local ring Θx>p = Rip), the degree zero part of the ring of
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quotients of R with denominator set the homogeneous elements of R not in p.
Closed sets of Proj(#) are the components of/)+(/) or more generally of the form
V(I) = {pePro){R)\I c p} for homogeneous ideals I.

In contrast to an open subset D + (f) (which is isomorphic to the affine scheme
Spec(# (/))), the closed sets V(I) don't have a canonical scheme structure. However,
note that V{In) = V(I\ n > 0 and that we have an isomorphism of topological
spaces

φn: Pro)(R/In)-^V(Inl qePτoj(R/n^ΨnHq) > (7.1.4)

where φn: R -> R/In is the canonical surjection.
Letting Yn = Proj(R/In) and ΘYn its structure sheaf we have a closed immersion

(φn,φ#):(Yn,ΘYn)-±(X,Θx). (7.1.5)

This means that the map φf : Θx -> φn*Oγ is surjective, where φf is, on the level of
stalks, the canonical map R(φn(q)) -»(R/I \q). Hence each closed immersion defines
a sheaf of ideals 3 n , the kernel of φ*, and Θx/3n is a sheaf with support on V(I). We
define the nih infinitesimal neighborhood of V(I) as the scheme {V(I\ Θx/3n); it
carries information about the way V(I) is embedded in X. It is then natural to
consider the inverse limit of these scheme structures on V(I). The locally ringed
space X = (V(I),Θχ) with Θx = lim Θx/3n is called the formal completion of
X along the subscheme V(I). The formal completion is independent of the ideal we
use to define the subset V(I).

Lemma 7.1.1. Let R be a Noetherian graded ring and I a homogeneous ideal of
R such that V(I) contains only a finite number of maximal ideals Pi,p2, > , Pk
Then the structure sheaf Θx of the formal completion of X = Proj(i^) along V(I) has
a stalk at pt isomorphic to the mp-adic completion Θx^Pι of the local ring ΘXtPι, where
mPi is the maximal ideal of Θx^Pi.

Proof Without loss of generality we may assume that / is a radical ideal; then we
have / = P| Pi. Using the fact that R is Noetherian and hence the ideals pt are
finitely generated one checks that also ln = f]p". Now the ideals p", p] are coprime
if i φ j and hence by the Chinese remainder theorem we have^R/In = φ-R/pf.
Hence we also have R = lim R/In = ^9 lim R/pf. The ring R determines the
formal completion sheaf Θx\ we have ΘχiPι = R(Pί)> where pt = lim pj/In. But

R ( A ) = lim RiPi)/mPι = KmΘx,JmPι = Θx,Pι . (7.1.6)

If R is a finitely generated graded (C-algebra with Proj(#) isomorphic to the
Proj of a quotient S of the polynomial algebra (C[t0, . . . , tN~] with deg(^) = 1 we
call Proj(^) and also R projective, since in that case Proj(#) is isomorphic to
a closed subscheme in the projective space ΨN.

Let us return to the case where we have a filtered ring Λ9 an associated graded
ring R{Λ). Then we have

Proj (R) = D + (w) u V(w) . (7.1.7)

Now D + (w) ^ Spec(i^(w)) ^ Spec(/4), so we see that V(I) is "the divisor at infinity"
that has to be added to Spec (A) to obtain the projective scheme Proj OR). We have
seen that each of the rings R/wnR determines, via Proj(i^/w".R), a closed subscheme
structure on V(w).
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We will be interested in the case where X = Proj(R) is projective of dimension
1 and V(w) contains a finite number of closed points. Then Lemma 7.1.1 tells us in
particular that the points in V(w) that we have to add to complete Spec (̂ 4) are all
nonsingular if and only if the stalks of the formal completion are isomorphic to the
ring of formal power series in dim(X) = 1 variables.

7.2. We can first of all apply this to the ring Ax of Sect. 2.1. This ring is filtered by
the order of the pole at p. It will be no surprise that the Proj of R(AX) is nothing but
a projective nonsingular integral scheme isomorphic to X itself and that the Proj of
R/xv R can be identified with the nth infinitesimal neighborhood of p, the missing
point which has to be added to the space Spec(/lx) ^ X — p to get X back.

This can be seen as follows. Ax is a subalgebra of Lλ = <C[T] © (C{λ~1 }/λ and
for every i ̂  z0, for some ίo> there are normalized elements

/, = Σ cfi~j> co = 1 (7.2.1)

of order i. Then the graded ring R = R{AX) is a subalgebra of L^ w-1 = L~λ ® Lw-1
generated by a subset of the elements of JR of the form

fi{i)= Σ c μ ' - V , (7.2.2)

corresponding to a set of generators for Ax. (So one can identify λ with I/w.) One
checks that R is a quotient of a quasi-homogeneous polynomial algebra and that
Proj(iΐ) is projective and hence complete.

Next we investigate V(w), the divisor at infinity that we have to add to make
Spec(Ax) complete in X' = Proj(i^). Let us for simplicity first consider the closed
subscheme structure on V(w) determined by R/wR. The normalization of the ft in
(7.2.1) is such that/-/} = λi+j + lower order_for all ij ^ i0. These elements ft of Ax

give elements fW of R satisfying/j ( l )// 7 ) = λi+j (mod wR). This allows us to define
a map

φ:R/wR^C[tl deg(ί)=l, (7.2.3)

by setting the restriction φj to (R/wR)j for j < i0 equal to zero and defining
Φi(fi{ί)) = ? ( a n d extending linearly). So t can be identified with λ (mod wR). Then
φ is a graded ring homomorphism and φ i 5 i ̂  ι0 is the isomorphism. In general if
φ: R -• S is a homomorphism of graded rings such that the restriction φn\Rn-+ Sn

is an isomorphism for all n large enough, then we have Proj(.R) ~ Proj(S). We call
R and S isomorphic in large degree in this case. So in our case, where R = R(AX\ the
quotient R/wR is isomorphic in large degree to the polynomial ring in one variable
and one sees that Proj(R/wR) consists of one point p (corresponding to the zero
ideal in <C[ί]). Hence Proj(R(Ax)) is obtained from Spec(^l) by adding a single
point p.

To investigate whether this added point is nonsingular or not we study the
formal completion of Proj (ft) along the point F(w). The structure sheaf of this
formal completion is obtained from the inverse limit of the rings R/wnR. Now for
i^io + n we have Rt/wnRi-n = (Cλ1® C w ϊ " 1 0 © w " ; 1 ! ^ 1 " " (moduΛR).
Hence the ring R/wnR is isomorphic in large degree to C[w, A]/<w">, The stalk of
the structure sheaf of Proj (R/wnR) at the unique maximal ideal is isomorphic to the
localization of C[w, A]/<w"> at <w> which is easily calculated to be (C[μ]/μn,
where μ = w/λ = 1/λ is a local coordinate at p e V(w). Hence the stalk of the formal
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completion is C[μ]| and the added point is indeed nonsingular. Since
Proj(Λ) = Spec(^ z) u V(w) and Λx is the coordinate ring of a nonsingular curve
we see that all points of Proj(i^) are nonsingular and X' = Proj(#) is a nonsingular
reduced curve with Spec^^) as open subscheme. In particular X and X' have the
same function field. By the uniqueness, up to isomorphism, of a nonsingular
irreducible projective curve with given function field we have then Proj(Λ) = X,
and we have recovered our complete curve from the affine coordinate ring together
with its filtration and the local coordinate μ = 1/λ at p.

7.3. Next we consider the stabilizer algebra S^ for We Grn

x and n a partition into
k parts. Let R = R(S^). Then, since S^ is finitely generated, as before R is
a quotient of a quasi-homogeneous polynomial ring and hence Proj(#) is a projec-
tive complete curve. We have Proj(R) = Spec(S^)u V(w). Similar to the dis-
cussion for Ax we introduce normalized elements in S^. To that end let SI be the
support of the field Ffl

e in the decomposition of Lλ ® S^ and define

λe

a= Σ 0>^e^n- , (7.3.1)
I G S α

where n /̂m, is the degree of the field extension Ffl

e over Lλ. Note that λe

a is an
element of order 1 in the filtration o ^ , see Sect. 5.6. Then we require that the
highest order term of the normalized element σe

aJeS^ of order i with highest order
term in the blocks indexed by SI is precisely (λe

a)\ (It is easy to check that we can
indeed normalize elements of S^ in this way.)

Then we have

<ybJ = δe,fδa,b(λe

a)
i+j + lower order, ij ^ i0 . (7.3.2)

We find in the same_way as before that R/wnR ~ f| (C[w, Je

a^/wn (isomorphism in
large degree), where λe

a/w = λe

a and the product is taken over the indices describing
the k0 fields in Lλ ® S^. Hence the k0 stalks of the formal completion of Proj(K)
along V(w) are isomorphic to the formal power series rings C[μ*]], where
μe

a = w/λe

a = [λlY1. Hence V(w) consists of exactly k0 nonsingular points pe

a that
have to be added to Spec(5^) to obtain the reduced complete curve Y = Y^ =
Proj(i^(5^)). Here again the μe

a are local coordinates at the points pe

a.
So now we have constructed from S^ a curve Y^. Since Ax is a subring of

Sjy and the filtration of Ax is obtained by restriction of the filtration of S^ we have
also an inclusion of R(AX) in R(S^). This defines an /-fold branched covering map
/: Y^ -• X. The fiber of the point peX consists of the points pe

a corresponding to
one of the fields Fα

e. Since multiplication by λ of an element σe

a of S^ with its highest
order component in the blocks indexed by the support of the field ¥1 increases the
order by il = [F α

e :L λ ] , the ramification index of pe

a is indeed fe

a% The local
coordinate μe

a satisfies clearly φ*^'1) = (μlY*.

7.4. Now consider the element W of Grx. It is a finitely generated torsion free
module over S^ and hence defines a torsion free coherent sheaf over Spec(S^). To
extend it to Y^ we need a filtration on W compatible with the filtration on S^.
Recall from Sect. 6.6 that S^ cz 0 ^ = 1 Lλ[P%\ with n{ = m/ f and that the filtration
of S-fr is obtained from this inclusion, see (5.5.6). Similarly the filtration on W is
obtained from the inclusion W ^ L\, where we decompose L\ = @k

i=ίL
n

λ

ι and
introduce a filtration on it as follows. If {e(

0

0, e{{\ . . . , β^}_ x} is the natural basis of
the component L"\ i.e., ef = et, with t = n1 + n2 + + ni-1 +j, we give
e^f order q^ where j = q^nii + r7 , 0 ^ r7- < m; and within this block multiplication by
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λ increases the order by *f,. One easily checks that this gives L\ = @k

i=1L
n

λ

i the
structure of filtered 0 * = 1 L A [^ f ]-module .

Define then F = 0 ^ , where Ff = W{ are the elements of W of order i or less.
Then F is a graded, torsion free, finitely generated R = R(S^) module. It defines
a torsion free coherent sheaf 3F on the curve Y^ in the usual way. The space of
sections of 3F over Y^r—f~1(p) can then be identified with W, if we take as basis
for the holomorphic stalks J^e, thought of as free ®γn,Pι submodules of Lλ, the
basis {e{o\ eψ, . . . , e^-1 }ieS

e- Note that in this manner we get as basis for ̂ pe over
ΘXyP the elements

{e$,eψ, . . . , ^ > _ 1 , ( ^ ) - 1 β 0 = e^ΛKY'e, = e<?ί + 1 , . . . , ̂ M ^ . (7.4.1)

This uses the fact that

In this way we have found also the sheaf JF and the trivialization of it at the points
in the inverse image of p e X.

7.5. Let us summarize in the following theorem our construction of the inverse of
the Krichever map of 5.4.

Theorem 7.5.1. Let X be a nonsingular curve, peX a point, λ~x a local holomorphic
coordinate at p and Grn

x the Grassmannian (of rank n bundles -f triυializations)
constructed from these data (see Sect. 2). Let We Grx, let n be a partition
(nl9 n2, . . . , nk) of n and let S^ be the finite order stabilizer algebra of W of type n
(Sect. 6), corresponding to the Heisenberg algebra Jf- (Sect. 4). Let {Ffl

e} be the k0

fields occurring in the decomposition of the tensor product Lλ (x) S^ (Sect. 6.6) and let
fl be the degree of the field extension Fα

e over Lλ, the field of Laurent series (Sect. 2.1).
Then there exists a curve Y^ and a covering map f: Y^-^X such thatf~1(p)

consists ofk0 nonsingular points pe

a, one for each field Fα

e, and such that the pull back
divisor f*(p) is^CPa-

Let Se

a a {1, 2, . . . , k} be the support of the field Fe

a (Sect. 6.4). For each ί e Se

a the
part ΐii ofn is divisible by /*, say mi = n^l, and we put me

a = Σ i e S e w t . Then there
exists an algebraic coherent torsion free sheafs on Y^ such that the1stalk ^pe is free
of rank me

afor each point pe

a in the inverse image of p. Furthermore there is a basis for
each of the holomorphic stalks 3F\f such that the space of algebraic sections of
£F over Y^ —f~1(p\ with respect to these bases, can be identified with the element
W in Gr\ (Sect. 5.4).

8. Time Evolution, Lax Equation, and Multi-component KP Equations

8.1. In this section we study the flows on the Grassmannian by exponentiation of
elements of tff -. These flows leave invariant the commutative algebra S^ and hence
also the curve Spec(S^). The flow on the Grassmannian gives a flow of modules
over this ring which can be interpreted as a flow of bundles over the curve. In the
case that the bundles have rank one, these flows are linear with respect to the toral
structure of the Jacobian of the curve.

In Sect. 8.3 we relate these flows to multi-component KP equations by mapping
Grx into the universal Grassmannian. Finally, in Sect. 8.4, we give an Hamiltonian
interpretation of these flows on the cotangent bundle of the Grassmannian.
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8.2. Let σeJf-. Consider the flow on Gr\ given by:

W{t) = exp(ίσ) W. (8.2.1)

Since for W= gH^hol) we have that S$l = g(gl{n, Aψι))g'\ it follows that

S^% = exp(tσ)g(gl{n9 ^ o l ) ) ^ " 1 e x p ( - ί σ ) . (8.2.2)

Thus if seSwlt)n Jf- then, since Jf-is commutative, it follows that s = exp( — tσ)'S
exp(ίσ) is an element of S^o

(0) n Jf-, i.e., S ^ n J f - does not depend on the
parameter t. In particular, the finite order part, S^(t), is also independent of ί, as is
its completion Y^. Thus the curve Spec(S^) is independent of the flows. Further-
more the one parameter family of S^ modules W(t) corresponds to a one para-
meter family of bundles E(t) over the curve Spec(S^) as constructed in Chap. 7.

8.3. As we explained in Sect. 2.7 the Grassmannian Grn

x is a subvariety of the
universal Grassmannian Gr = Gr(Hz). When we are interested in flows on Grn

x

determined by a partition n = (n1? . . . , nfc), of n into k parts, it is more convenient
to map Grn

x into Gr(Hk\ the Grassmannian of subspaces of Hk whose projection to
Hk, + is Fredholm. Here we use the map H" -• Hk given by

λιei^zn«ι+jea, (8.3.1)

where i = Πι + + na-1 + j , and et (respectively ea) give a basis for (Cn (resp. Cfe).
(Of course the Grassmannians Gr(Hz) and Gr(Hz) are isomorphic.)

The action of the Heisenberg algebra Jίf- translates into an action of the
algebra of diagonal k x k matrices on Hk

z generated by Λι

a = zΈaa9 where ί e Z and
1 ^ α ̂  k. Indeed the map (8.3.1) induces the map 0>a i—• zEaa, where the element ^ β

of Jf- is defined in Sect. 4.1. Let Γ- denote the group of transformations on Hz of
the form φ-(t) = e x p Q £ . > 0 £ * = 1 ίMίX where the ί? are thought of as time vari-
ables. For We Gr(Hk

z), put W{t) = φ^t)"1 W. We say that W(t) belongs to the big
cell when the projection W(t) -• Hz, + is an isomorphism, where i/£ + is the
subspace of Hz of fc-component vectors of the form Yji>ofiz\fίe(£k. If MKis in the
big cell there is a unique kxk matrix wave function

ww(t) = φn-(t)(lkxk+ X WtZ-^eW, (8.3.2)

w h e r e t h e wt arc kxk m a t r i x funct ions of t h e if, a n d we say t h a t a. kxk m a t r i x
b e l o n g s t o Wif its c o l u m n s d o . W e let d = YJ

k

ι = 1 8tα act as a differential o p e r a t o r o n
m a t r i c e s f rom t h e right. M o r e general ly we c o n s i d e r kxk m a t r i c e s w i t h coefficients
pseudo-dif ferential o p e r a t o r s in δ. T h e n we h a v e

φ*(t)φE) = φ*(t)(zE)9 (8.3.3)

for any kxk matrix E (possibly dependent upon t). The wave operator is then the
matrix pseudo-differential operator defined by

t > 0

and we have

φn-(t)-w. (8.3.5)
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The wave operator w satisfies the equation

3 ί ? i v = - w ( K i ) - , (8.3.6)

where R^ = vv"1 dί(£αfl) w and the subscript - denotes the formal integral oper-
ator part of a pseudo-differential operator (i.e., the negative order part). The
multi-component KP equation is then given by

Stfβ = [ & ( * £ ) + ] , (83.7)

where Q = w~xAdw, for a constant diagonal matrix A with distinct non-zero
eigenvalues (cf. [DaJKM, UT, Di]). In [BtK] it is explained that with the multi-
component KP equation naturally are associated also difference equations (besides
the differential equations (8.3.7)), coming from group elements commuting with the
Heisenberg algebra. In this paper we will not discuss these discrete equations,
which are in the simplest case the equations for the Toda-lattice.

Now let us assume that We Grn

x maps to an element of Gr(Hk

z) of index zero
(this is not essential but will make the formulae much simpler). Then the flow on
Gr\ from Sect. 8.2 will give rise to a multi-component KP flow on the image, W, of
W'XVL Gr(Hk

z). The elements of Wcoming from finite order elements of W(t\ i.e.,
those of the form <£-(£)(Σ-oo α*z')> generate a free rank k module over the ring of
differential operators. A basis for this module is given by the k columns of the wave
function (see [DS, SeW, BtK]). This means that for any/e,4 x (so fW c W) we
have

fww(t) = ww(t)Pf , (8.3.8)

where/denotes/realized as a matrix of size k x k acting on Hk, using 8.1.3, and Pf

is a k x k matrix of differential operators. The map/i—•/h-> Pf gives a map from Ax

to a commutative subring Ax of all k x k matrix differential operators. (For the
simplest case of X = P 1 and the principal Heisenberg algebra (k = 1) this ring is
Ax = C[L], the ring of polynomials in the Lax-operator L, the unique nth order
differential operator such that λww = wwL.)

Similarly, we have, for any element s of the stabilizer algebra S^ of type n for
WeGrn

x, a differential operator Ps. This _gives a ring of commutative matrix
differential operators S^. Of course Ax a S^.

8.4. We now sketch how the Heisenberg flows on Grn

x are related to Hamiltonian
flows on the duals of loop algebras and to Hamiltonian flows on the cotangent
bundle of Grn

x.
First note that the action of the group Gl(n, Hλ) on Grx lifts to an Hamiltonian

action on T*Grx in the usual way that any group action on a manifold lifts to an
Hamiltonian action on the cotangent bundle. On the other hand, to give an
Hamiltonian version of the Heisenberg flows on the dual of a loop algebra one
must consider Lax pairs and the Adler, Kostant, Symes (AKS) theorem
[Ad, Ko, Sy] (see also [FNR, RSTS]). This version of the flows works out com-
pletely only in the standard setting with X = P 1 , however we can make some
comments on the more general situation.

We first discuss the case in which X = P 1 so that Aψι = Hλ+, the space of
holomorphic functions on P 1 — oo. Let ^ί?^« be an element of Jf- and set
W{t) = e x p ( - £ tf^i) W. Assume that W(i) belongs to the big cell of Grps so that
W[t) = g-(t)Hl +, where g(t) = exp( —]£ ί?^ί)fif admits a Birkhoff decomposition
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of the form g(t) = g-(t)g+(t) without diagonal term. Define the resolvents (cf.
[GD]):

-{t). (8.4.1)

Let R(t) = ]Γ AaRa for some choice of constants Aa e (C. We have the Lax equation

3 t fK = [(Λi) + ,R] (8.4.2)

since gZ1dfag- = — (#«)-• Equation (8.4.2) can be realized as an Hamiltonian
flow on the dual of the Lie algebra gl(n, Hλt +) with Hamiltonian function given by
the restriction of an Ad*-invariant function on gl(n, Hλ)*. Indeed, the splitting of
gl(n9 Hλ) from Proposition 3.3.1, applied to the case X = P 1 , yields

gl{n9 Hλ) = gl(n, λ'^{λ^})® gl(n, Hλt+) . (8.4.3)

Using the pairing (3.3.6) this gives an identification

gl(n,Hλt + )* ~ glfaλ-^λ-1}) . (8.4.4)

If F is an Ad*-invariant function on gl(n9 Hλ)* we may restrict to gl(n, Hλ^ + )* since
(8.4.3) gives

gl(n, Hλf = gl{n, λ ^ c μ - 1 } ) * θ gl{n9 Hλ,+)* . (8.4.5)

Using the identification (8.4.4) the Hamiltonian flow for F on gl(n, Hλ +)* is given
by the Lax pair

jtA = UdF{A))+9A], (8A6)

where Aegl(n9 A~1C{2~1}) and dF (A) is the differential at A of F a s a function on
gl(n, Hλ)*, thought of as an element of T%(gl(n, Hλ)*) ~ gl(n, Hλ). For example, if

Fij(A(λ)) = -§tτ(λiA(λy) (8.4.7)

then

1 . (8.4.8)

To realize (8.4.2) as a flow of this type we must first consider R(t) as an element of
gl(n, λ~1 (C{λ~x}). Since Ra(t) has order 1 in λ this is easily achieved by multiplying
Eq. (8.4.2) by λ~2. Next, we must find an Ad*-invariant function F such that
dF(λ~2R(t)) = Rι

a. This is possible provided we choose the constants, Aa9 distinct.
Indeed, since R is the conjugate of the matrix <P = J] AaέPa which is in block form,
so that K-7'"1^) is the conjugate of ^j~x =YJA

J

a~
1&J

a~
1

9 it is possible to find
a linear combination, F9 of the Ft/s which gives dF(λ~2R(t)) = R[.

Consider now the situation where there is a Laurent series f(λ)eLλ such that
L(λ) =f(λ)R belongs to gl(n,H^+). Then we see that s =f(λ)Aa&a belongs to
Sty?1 n 3tf\ the holomorphic stabilizer algebra of type n for W. Since from chapter
3 we have that Sψ1 is contained in the cotangent fiber to Gr\ at the point W, we
may consider the evolution of the pair {W{t\ L(λ)(t)) as a flow through the point
{W{0), L{λ)(0)) in the cotangent bundle T*Grn

x. For X = P 1 this flow can be related
to the AKS theorem and collective integrability by using a modification of the
Ad*-invariant function used to give the Hamiltonian. This modification depends
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on the function f(λ) and thus on the initial value, W(0). Thus the flow for
a particular Heisenberg element σ on the whole of the Grassmannian does not arise
in this way from a single Hamiltonian. However, this description of the flows does
give a collective Hamiltonian version that generalizes to the case of a general base
curve X. To justify these remarks we now give a brief excursion into the geometric
proof of the AKS theorem (see e.g., [RSTS, GS2]).

Recall from Sect. 3 that the cotangent bundle T*(G/K) of the homogeneous
space G/K is symplectically equivalent to the Marsden-Weinstein reduction of
T*G under the right action of K. We now consider Hamiltonian flows on this
cotangent bundle arising from Ad*-invariant functions on g*.

If/is a function on g* we can pull it back via the moment map for the left action
of G on Γ*G to form a function F on T*G which is invariant under the left action of
G on Γ*G. In the case that / i s invariant under the Ad* action then F is also
invariant under the right action of G on Γ*G, in particular, F is invariant under the
right K action and so reduces to a function F on T*(G/K).

To compute the Hamiltonian flow of F on T*(G/K) we follow the prescription
of [GS2] for computing flows for collective Hamiltonians: For (g, μ)eGx g*, let

Q. (8.4.9)

Then the Hamiltonian flow of F through (g, μ) is given by

) . (8A10)

Now, as in chapter 3, we let JRK denote the moment map for the right K action
on Γ*G, so that we may identify T*(G/K) with J£ti(0)/K. If (g9 μ) is in JR~i(0) then
the flow for F through the point (gK9 μ)eΓ*(G/K) is just the projection of the
above flow, i.e.

(gK9μ)-+(exp{tξ)gK9μ). (8.4.11)

If the algebra g splits into two subalgebras, g = ϊ © £, then there is a left L action
on T*(G/K) with moment map

(gK9μ))-+Ad*μe&*. (8.4.12)

In this case, the Hamiltonian on T*(G/K) is just the pullback by this map of the
restriction of/to £*. Thus the Lax pair flow for/on £* given by the AKS theorem
is just the image of the flow (8.4.10) under the moment map (8.4.11).

We now apply this construction to our situation where G = Gl(n, Hλ) and
K = Gl(n, AY) SO g = gl(n, Hλ) and ϊ = gl(n, Aψι), Again, we begin with the case
X = P 1 so that Ap°* = Hλi + and (8.4.3) gives a splitting of gl(n9 Hλ) into two
subalgebras. The above construction suggests we consider AKS flow on £*
= gl{n,λ'1(£{λ~ι}Y ~gl(n9Hλt + ). In order that Eq. (8.4.2) be considered as

a Lax pair flow on gl(n,Hλ+) we must find a function f(λ) such that
L(λ)=f{λ)R{λ)egl{n,Hλ,+). In this case, s = g-L{λ)gZ1 =f(λ)Σ A ^ e
Swl n 2tf-. If F is the Ad*-invariant function on gl(n9 Hλ)* which gives the flow
(8.4.2) as an Hamiltonian flow on gl(n9 Hλ> + )*, then we must find a new Hamil-
tonian F such that dF{L(λ)) = dF(R(λ)). For instance, if F = Ftj so
F(R(λ)) = jtrWRW) then F will be given by

F(L(λ)) = § tiifWλWΓ^Wy) . (8.4.13)
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Example (The non-linear Schrόdinger flows). Take n = 2, n = (1, 1), and X = P 1 .
We choose W = gH^hol) = gH$t + eGr\ and s0eS^. We assume that Wis in the
"big cell" so that we may take g = g-ELgl-(n, C). Then s0 = g~ L{λ)gZ1 for some
matricial polynomial L(λ\ by Lemma 3.3.4, (6.1.2), and the fact that Λx = C[2].
Since the leading order term in #_ is the identity matrix, s0 and L(λ) must have the

same leading order terms. Assume this to be λk ( . I. Furthermore assume

that L(λ) is traceless. Then sQ is also traceless and hence has the form
fi 0

where p(λ) = λk + P k - i ^ " 1 -f . . . is in C((A~ 1)). Then we have

1 fi 0
2 *,2 Pfc-1 fc-1.2 S 0 - ^ Q _ .

and

1 2 Λ
2 * + 1 . 2 Pfc-1 k,2 Pfc-2 P * - l fc-1.2 5 0 ^ Q _ .

These give the x and ί flows respectively on Gr\ that give rise to solutions of the
non-linear Schrόdinger equation. So we see in this example that the Hamiltonians
for the flows in the cotangent bundle to the Grassmannian depend on the initial
condition (viz., s0) chosen in the fiber.

Finally we remark that when X is more general than P 1 , the Lie algebra
splitting from chapter 3 is not a splitting into two subalgebras but only into
a subalgebra plus a linear subspace. Thus we cannot apply the AKS theorem in this
setting. However, the Heisenberg flows may still be realized as Hamiltonian flows
on T*Grn

x with Ad*-invariant Hamiltonian, as in Eq. (8.4.11). Indeed, if we choose
a flow generator σ e Jf-, it is then necessary to find SES-^ and an Ad*-invariant
function/on gl(n, Hλ)* so that the Hamiltonian flow for/through (W, s)ET*GrXi

given by (8.4.11) is just (exp(ίσ) W, s). This is achieved by finding/and s so that
(df(s))+ = σ. This may not be possible for all choices of σe Jf- but since SEJ^- it
follows that df(s) e J f - as well so that at least some of the Heisenberg flows may be
realized in this way.

9. Remarks

9.1. According to Theorem 7.5.1 we obtain for every point W of Gr\ and every
choice of Heisenberg algebra, i.e., for every choice of partition n of n, a curve
Y^ covering X. We have not discussed the relation between these curves for the
various choices of Heisenberg algebra. In fact this is rather mysterious to us. The
first idea that one has is that somehow the curves corresponding to a single
W should be the same. This can however not be literally true since for the principal
Heisenberg algebra one obtains always an irreducible curve while, as we have seen
in Sect. 6.4, for other Heisenbergs one can get reducible curves. Also note that if we
consider the flows Wv-* W(t) of type n on Grn

x, i.e., the flows corresponding to the
Heisenberg algebra Jf-, the curve Y^ remains invariant, while the curves obtained
from the choice of other Heisenbergs will change.
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9.2. In Sect. 8 we derived differential equations coming from Heisenberg flows on
the Grassmannian by embedding Grn

x into a universal Grassmannian, thereby
exhibiting these equations as subsystems of multicomponent KP systems.

Now in case X = P 1 the equations corresponding to the various Heisenbergs
can be formulated entirely in terms of the representation theory of the loop algebra
oϊgl(n, (C) (cf. [KaW, BtK]). These representations involve a decomposition of the
loop algebra in elements containing only positive or only negative powers of λ, i.e.
the decomposition of Proposition 3.3.1 for X = P 1 . One can also formulate these
equations in terms of Lax equations on the dual of the loop algebra, again using the
decomposition in positive and negative parts related to the Riemann sphere.

This makes one think that it should be possible to formulate the equations of
Sect. 8 intrinsically in terms of constructions related to the Riemann surface X,
without using the embedding into a universal Grassmannian. However there are
a lot of things apparently still unknown. For instance the representation theory
seems not to be developed yet (see however the papers [CEH, Che, DJM]). One
way of constructing representations related to X would be to consider the sections
of a determinant bundle over Grx as in for instance [PrS] for the case of X = P 1 . In
[Br] noncommutative theta functions related to vector bundles on curves are
constructed using this determinant bundle. The connection to differential equa-
tions remains to be worked out. If one wants to get Lax equations on the dual of
the loop algebra related to the curve X one runs into the problem that the
decomposition of Proposition 3.3.1 is not, as is usual in AKS theory, into two
subspaces but that there is a finite dimensional piece in the middle. Lax type
equations coming from such decompositions into three subspaces have been
studied in [Mi]. Of course there is also the theory of Poisson-Lie groups, R-
matrices etc. (see e.g., [Lu, LuW, STS1, STS2]) that could be developed in the
context of Grn

x, see alo [KS].

9.3. The Grassmannian Grn

x that we have used in this paper depended on choosing
a point p on the Riemann surface X. Of course it is possible to extend the theory by
choosing a finite number of points {pt} on X, so that the elements of the
generalized Grassmannian consists of equivalence classes of vector bundles on
X together with trivializations at {pj . To obtain an inverse Krichever map
analogous to the one described in Theorem 7.5.1 one should then choose at every
point in {pi} an Heisenberg algebra. The case of two points is relevant for the study
of harmonic maps. For instance in [Hi2] one can find that both the homogeneous
and the principal Heisenberg algebra of the loop group of s/(2, <C) are relevant for
the construction of all harmonic maps from the 2-torus to the 3-sphere, using
spectral curves.

Acknowledgements. We would like to thank Robert Varley, Kevin Clancey, Mitchell Rothstein,
and Emma Previato for interesting and instructive discussions.
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