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Abstract. Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through
local reductions of Hamiltonian flows generated by monodromy invariants on the
dual of a loop algebra. Following earlier work of DeGroot etal., reductions based
upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We
show that, in the case of the nontwisted loop algebra £(gln), graded regular elements
exist only in those Heisenberg subalgebras which correspond either to the partitions
of n into the sum of equal numbers n = pr or to equal numbers plus one n = pr -f 1.
We prove that the reduction belonging to the grade 1 regular elements in the case
n — pr yields the p x p matrix version of the Gelfand-Dickey r-KdV hierarchy,
generalizing the scalar case p = 1 considered by DS. The methods of DS are utilized
throughout the analysis, but formulating the reduction entirely within the Hamiltonian
framework provided by the classical r-matrix approach leads to some simplifications
even for p — 1.

0. Introduction

The generalized KdV type hierarchies of Drinfeld and Sokolov (DS) are among the
most important examples in the field of integrable evolution equations [1]. They
also play an important role in current studies of two-dimensional gravity [2] and
in conformal field theory [3]. The "second Gelfand-Dickey" Poisson bracket of these
bihamiltonian systems is a reduction of the affine current algebra Lie-Poisson bracket,
and it gives an extension of the Virasoro algebra by conformal tensors. Such extended
conformal algebras are called ^-algebras and have received a lot of attention recently
[4-6].

The motivation for the present work was to gain, from a purely Hamiltonian
viewpoint, a better understanding of the reduction procedure used in [1] and the
generalizations proposed in a recent series of papers [7-9] aimed at the construction
of new integrable hierarchies and ^"-algebras.
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In the DS construction [1] one starts by considering a first order matrix differential
operator of the form

£g = d + μ , with μ = q + A, (0.1)

where A is a matrix representing a grade 1 regular element of the principal Heisenberg
subalgebra of a loop algebra, and q is a smooth mapping form Sι into an appropriate
subspace of the loop algebra represented by "lower triangular matrices." The crucial
step of the construction is to transform μ into the Heisenberg subalgebra by a
conjugation of S§. That this can be achieved by an algebraic, recursive procedure is
due to the fact that the grades in q are lower than the grade of A and A is regular. The
fact that A is regular also implies that the stabilizer of the transformed operator is given
by the Heisenberg subalgebra. The compatible zero curvature equations are obtained
from the positively graded generators of this Heisenberg subalgebra by transforming
them into the stabilizer of S% and applying a splitting procedure. The system exhibits
a gauge invariance under a nilpotent, "strictly lower triangular," gauge group.

The authors of [7] realized (see also [10, 11]) that the DS construction can be
applied in more general circumstances. They proposed to derive new hierarchies by
replacing A in the above by any positive, graded regular element of any graded
Heisenberg subalgebra, and correspondingly modifying the DS definition of the
variable q and the gauge group. However, apart from some very simple examples,
they did not investigate which systems can be obtained on the basis of this rather
general proposal. We shall see here that the number of new hierarchies arising from
this approach, which in [7] were termed type I hierarchies, is in fact rather limited,
since graded regular elements do not exist in most Heisenberg subalgebras. For
simplicity, we shall investigate here the case of the nontwisted loop algebra based
on the general linear Lie algebra gln, in which case the inequivalent Heisenberg
subalgebras are classified by the partitions on n [12]. By using the explicit description
of the inequivalent Heisenberg subalgebras given in [13], we shall prove that graded
regular elements exist only for the special partitions

n = pr and n — pr + 1. (0.2)

After explaining this observation, we shall give a detailed analysis of the first
series of "nice cases" under (0.2). The graded 1 regular elements of the corresponding
Heisenberg subalgebra are the n x n matrices of the form Λrp = Ar 0 D, where D
is a p x p diagonal matrix such that Dr has distinct, non-zero eigenvalues, and Λr

is the usual r x r "Drinfeld-Sokolov matrix" containing Γs above the diagonal and
the spectral parameter λ in the lower-left corner. The "constrained manifold" of the
generalized DS reduction will be taken to be the space of J^'s of the form (0.1), where
now A = Ar^p and q is a mapping from Sι into the block lower triangular subalgebra
of gln, withpxp blocks. As in thep — 1 case considered by DS, the "reduced space"
will be obtained by factorizing this constrained manifold by the group of nonabelian
gauge transformations,

\ (0.3)

where g is now block lower triangular, having pxp unit matrices in the diagonal
blocks. We shall place the construction in a Hamiltonian setting from the very
beginning, from which it will be clear that the reduced space is a bihamiltonian
manifold that carries the commuting hierarchy of Hamiltonians provided by the
monodromy invariants of S§. It will also be clear that the locality of the reduced
system is guaranteed by construction.
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In order to describe the reduced system (i.e., the generalized KdV hierarchy) in
terms of gauge invariant variables, we shall prove the following facts, which extend
the p = 1 results of [1]. First, the reduced space is the space of "matrix Lax operators"
of the form

L = (-DΓrdr + uλd
r-γ + . . . + ur_xd + ur , (0.4)

where the u% are now smooth mappings from Sι into the space oί p x p matrices.
Second, the reduced bihamiltonian structure is that given by the two compatible (ma-
trix) Gelfand-Dickey Poisson brackets; the second Poisson bracket algebra qualifies
as a classical 2F-algebra. Third, the hierarchy of commuting flows is generated by
the Hamiltonians given by integrating the componentwise residues of the fractional
(including integral) powers of the pseudo-differential operators obtained by diago-
nalizing the matrix Lax operators. In short, the DS reduction extends in this case to
yield the p x p matrix version of the well-known (e.g. [14]) Gelfand-Dickey r-KdV
hierarchy.

The main additional step required in computing the Hamiltonians in the pxp matrix
case consists in the diagonalization of L. Those Hamiltonians which are obtained
from the integral powers of the diagonalized Lax operators generate bihamiltonian
ladders whose first elements are the Hamiltonians given by integrating the diagonal
components of uv which are Casimirs of the first Poisson structure. The number of
these bihamiltonian ladders (which are missing in the scalar case) is p - 1 since the
integral of \τ(Druι) is a Casimir of both Poisson structures. The other Hamiltonians
can also be described as integrals of trace-residues of independent fractional powers
of L, without diagonalization.

The KdV type hierarchies based on matrix Lax operators of the type (0.4) have
been investigated before in [15-17] and more recently in [18]. In [15-17] the matrix
(—D)~r (i.e., the coefficient of the leading term of L) was required to be regular
because this implies the existence of the maximal number of independent r t h roots of
L and corresponding commuting flows. It is interesting to see this condition re-emerge
here from requiring that the matrix A used in the reduction procedure be a regular
element of the Heisenberg subalgebra In these papers, the additional assumption was
made that the diagonal part of ux vanishes. Setting [u j^g = 0 is consistent with the
equations of the hierarchy resulting from the DS reduction and in fact corresponds to
an additional Hamiltonian symmetry reduction (see Remarks 2.5-2.7).

The recent preprint [18] deals with the hierarchy defined by the fractional powers of
"covariant Lax operators," which are equivalent to operators of the form (0.4). More
precisely, the case of the Lie algebra sln was considered, which in our approach
corresponds to imposing the constraints tr(Druι) = 0. However, instead of taking
a regular matrix for (—D)~r, the unit matrix was used. As a result, the hierarchy
obtained is much smaller than the one following from the DS reduction using a
regular element.

To emphasize the link between the approach used in [1, 7] and that based upon
the Adler-Kostant-Symes (AKS) construction as presented in the present work, we
give the following elementary lemma.

Lemma 0.1. Let ̂  be a Lie algebra. Let μ0 e ^ * be given and X e cent(stab(μ0)) C
,A be an element in the center of its stabilizer. Then there exists an element
φ G I(Λ>*) of the ring of ad*-invariant functions on ,f&* such that ^φ\μo = X>
where, as usual, an identification has been made between the cotangent space to J&*
atμ0 and(Λ*Ϋ ~ ,A. Conversely, if φ e J ( ^ * ) , then V<p|μo := X e cent(stab(μ0)).
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The point of this lemma is that, when applied to the loop algebra j& = ί($¥) of
a Lie algebra S ,̂ with the splitting *A = J^+ -f ^ _ into the sum of subalgebras
consisting of positive and negative powers in the loop parameter λ, it implies that,
starting from any X G cent(stab(μ0)), with μ0 G (*A_Ϋ ~ C^*) + , the flow induced
in ( ^ _ ) * by exponentiation and factorization in the group is given by integration of
a Lax type equation

^ = ± ( a d * ( V y > | μ ) ± ) ( μ ) (0.5)

with φ G / ( ^ * ) . Taking the Lie algebra W itself as a centrally extended loop
algebra in the space variable x, Eq. (0.5) becomes a zero-curvature (Zakharov-Shabat)
equation. The commutativity of such flows is part of the AKS theorem.

The above lemma underlies the equivalence between the DS approach [1,7], which
is based essentially upon cent(stab(μ)), and the AKS approach, based on / ( ^ * ) . This
equivalence is certainly known to specialists, but in this paper it will be taken as the
starting point and all results will be derived from the AKS Hamiltonian point of view.

This paper is organized as follows. In Sect. 1 we collect results that are relevant
for understanding the DS type construction of compatible zero curvature equations in
a Hamiltonian setting. In particular, in Sect. 1.1, we recall the relevant aspects of the
AKS construction of commuting flows. In Sect. 2.2 we discuss a sufficient condition
that can be used to obtain local ad*-invariant Hamiltonians from the asymptotic
expansion of the monodromy matrix of an appropriate first order matrix differential
operator. These two sections naturally lead us to look for the graded regular elements
of the Heisenberg subalgebras of a loop algebra as the starting point for obtaining
generalized DS hierarchies. The solution to this problem is given in the case of the
nontwisted loop algebra £(gln) by Theorem 1.7 in Sect. 1.3. Section 2 is devoted
to the generalized DS reduction yielding the matrix Gelfand-Dickey hierarchy. The
description of the reduced space is established in Sect. 2.1, the Hamiltonian structures
are described in Sect. 2.2 and the Hamiltonians themselves are given in Sect. 2.3.
The Poisson brackets and the first few Hamiltonians are computed explicitly for an
example in Sect. 2.4. The main results of Sect. 2 are Theorem 2.4 which identifies the
reduced Poisson structures as the first and second Gelfand-Dickey Poisson structures,
and Corollary 2.11 of Theorem 2.10 which gives the generating set of commuting
Hamiltonians. The paper concludes with remarks relating the matrix Gelfand-Dickey
hierarchies to nonabelian "conformal" and "affine" Toda systems, comments on W-
algebras and on the case n = pr + 1, and further remarks concerning the literature
and some open problems.

1. The AKS Construction and Local Reductions

In the first two sections we review some well-known results about the AKS approach
in loop algebras. We shall naturally be led to considering the problem of finding all
the graded regular elements of the Heisenberg subalgebras of gln (g> C[λ, λ " 1 ] , which
are given in Sect. 2.3.

1.1. The AKS Construction

Here we summarize those points of the AKS (or r-matrix) aproach which we shall
need. Readers unfamiliar with the construction could consult, for example, [19-21]
for further details.
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Let ./^ be a Lie algebra with Lie bracket [, ]. Suppose that R is a classical r-matrix;
that is, R G E n d ^ and the bracket [X, Y]R\τβ x ^S -» y& given by

[X,Y]R = \ [RX,Y] + i [X,flΠ (1.1)

is also a Lie bracket. For a function </? in C°°(<yβ*) we define its differential V^φ G ^
at a point a G ,A* by

^Lφ(a + tβ)\t=0 = (βyaφ) V/3 6 .4* , (1.2)

where (,) is the dual pairing. Let

/(Λ?*) = fa G C°°(^*) I 0 = ((ad* X) (α), Vαγ>) - (α, [Vαp, X]) VX G Λ?}, (1.3)

be the set of ad*-invariant functions on ^ * . Note that in many cases we can think
in terms of the Ad*-action on ^ * of a Lie group G corresponding to ̂ 4, in which
case

/(Λf) = {φ G C°°(^*) I φ(Aάl a) = φ(a) V 5 G G } . (1.4)

Here ad* means the action dual to the original Lie bracket, [, ] on yS; to refer to the
action of ,Λ on ,/£* dual to that given by the bracket [,]R, we write ad* .̂

A surprisingly large number of integrable systems arise as consequences of the
following result [20], which is the r-matrix version of the AKS theorem, and whose
proof is a direct application of (1.1) and (1.3).

Proposition 1.1. The elements of I(Λ*) are an involutive family in C°°(Λ*) with
respect to the R Lie-Poisson bracket on J&*. That is, if φ,ψ G /(^€*) then

{φ,ψ}R(a)Ξ(a:[Vaφ,VQψ]R)=0. (1.5)

The dynamical equation generated by the Hamiltonian φ G / ( ^ * ) through the R
Lie-Poisson bracket has the generalized Lax form

ά = (ad* \RVaΨ){a). (1.6)

Consider now the special case that will be of interest in what follows (see [21]). Let

be a Lie algebra and set ,A = ί(&) = &® C[λ, λ"1] = j Σ Xiχ= j Σ X ι

Let ,A+ = &® C[λ], ,yβ_ = & 0 λ - ^ t λ " 1 ] , so that ,Λ = Λ>+ + ,Λ_. We let P±

be the projection operators defined by this splitting and set R — P+ — P_. For any
η G Ctλ^λ""1] we define ή:Λ -> j& by (ήX)(X) = η(\)X(\). Then

Rη:=Roή (1.7)

defines a classical r-matrix for any 77, and the corresponding Lie-Poisson brackets for
different η are compatible.

We can identify t(&)* with £(5?*) = &* 0 C[λ,λ~ι] by means of the pairing
(,) given by

!, i.e. / ]Γ α2λ\ ]Γ jςλΛ := ]Γ αt(Xp . (1.8)
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Remark 1.1. An equivalent procedure would be to keep the r-matrix fixed and define
a dual pairing for each η e C[λ,λ~ι] by inserting a factor η into the definition
(1.8). In view of this, we see that in this case there is no essential difference between
the r-matrix formulation and the original AKS splitting procedure. In what follows,
the collection of commuting Hamiltonian systems determined by the elements of
I(l(&*)), together with the compatible Poisson brackets { , }R will be referred to
as the AKS system.

The ad*-action of ί(3?) on ί ( ^ * ) is given by pointwise evaluation in λ. This
implies that one can in general obtain elements of I(£(S?*)) in the following way.
Let φ e / ( ^ * ) be an invariant polynomial; choose any element p G C[λ, λ " 1 ] . Then
φp e C°°tf(S?*)), given by

φp(a) := (p(A)<p(a(A)))|_! , a = 2^aiX% e i(& ) > ( L 9 )

is in I(£(S^*)). If J ( ^ * ) is generated by polynomials φ then I(i(^*)) is generated
by the corresponding functions φp. The Hamiltonian vector fields determined by these
invariant functions on £(%?*) obey the following relations,

px^ PRηx ~1]. (1.10)

Notice [21] that the space

- Σ where m > 0 , n > - l , (1.11)

is a Poisson subspace for any of the r-matrices Rk := R o ήk, where τ)k(λ) := λfc,
if — ?77, < k < n + 1. Furthermore, if /c < n then un is a Casimir element; i.e.,
constant under any Hamiltonian flow of the Rk Lie-Poisson bracket. Hence the affine
subspace y/ό_Ύn n C - ^ _ m n having un fixed has n -f- m + 1 compatible Poisson
brackets, and the restriction of the elements of I(£(^*)) provides a commuting family
of Hamiltonians with respect to any of them. Note that the same computation which
shows ^ t L m n is a Poisson subspace of £(G*) justifies restricting ourselves to ^ ( ^ * ) ,
which is strictly speaking only a subspace of ί{&Ϋ. In both cases one simply has to
check that an arbitrary Hamiltonian flow determined by

^ (1.12)

does not leave the space.

From now on we take W to be gl£9 the central extension of the algebra of smooth

loops in gln\ i.e., W = {(X,α) | X:Sι -* gln,a£ C} with ι

XY -YX, f dxtrX'(x)Y(x) j . (1.13)

1 The periodic space variable parametrizing Sι is usually denoted by x G [0,2τr], and tilde signifies
here "loops in x"
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As usual, we represent (a dense subspace of) the dual space S^* as the space of first
order matrix differential operators

S% — {ed + μ) <-> (μ, e) G .^* , (1-14)

with μ G gln ~ #/*, e G C and dual pairing

2τr
/

((μ, e), (X, α)> = eα + / dxtrμ(x)X(x). (1.15)
«/
o

Upon introducing the spectral parameter λ, the elements of £(SP) and ί(S?*) are given

by pairs (X, α) and (μ, e), where X = ]Γ X^λ 9f, μ = Σ M^2 a r e n o w mappings from

S[ into % / n ) , and a = Σ α j λ J > e = Σ e ; λ * a r e elements of C Ί Λ λ " 1 ] . The ad*-

action on ί(j?*) is given by

ad*(X, α):(μ, e) *-+ (Xμ - μX - eX', 0). (1.16)

The Ad*-action is given by "nonabelian gauge transformations"; that is, by

S§ = ed + μ κ+ g^g~ι = ed + (gμg~ι - eg'g~ι), (1.17)

where g is an element of the loop group £(Gln) associated to £(gln).

The ring of ad*-invariant functions 7(^(3^*)) can be specified as follows. Consider
the linear problem

(edx + μ(x, λ))Φ(x, λ) = 0, (1.18)

where Φ(x, λ) G Gln. Then the eigenvalues of the monodromy matrix

Γ(λ) = Φ(2π, λ) (Φ(0, λ))" 1 , (1.19)

viewed as functions on ̂ (5^*), generate the ring 7(^(3^*)).
The number of invariants is infinite due to the parametric dependence of T on

λ. In general these are not local functionals of μ; i.e., they cannot be expressed as
functions of a finite number of integrals of local densities in the components μ{(x)
of μ(x, λ) = Σ μi(x)Xι and their derivatives. However, under certain conditions (see

i

Sect. 1.2), it is possible, using the asymptotic expansion of T(λ), to determine an
infinite set of local, commuting Hamiltonians on appropriate Poisson subspaces of
£(S?*)9 or reductions thereof.

Following the above, let us take η in (1.7) to be of the form

η(X) = η0 + rji λ , (1.20)

and consider the subspace, ^Mo j C ̂ So ι consisting of elements of the form

where C1 G gln, eo,e{ G C are constants and J:S1—* gln is arbitrary. Since this is
a Poisson subspace of £(&**) with respect to the Rη Lie-Poisson bracket, the Poisson
bracket can be restricted to functions that depend only on J, giving

' δφ\ δψ\
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6φ
The functional differential — : Sι —> gln is defined here by the usual formula,

o o

J*Kjj VK:Sι-,gln. (1.23)

From now on we choose the values of the Casimirs e0 and e{ to be e0 = 1 and
eλ = 0. The space of Poisson brackets given by (1.22) has a basis given by the
choices η(X) = 1 and by η(X) = λ. A common way of describing the above is to say
that the space of functions of J has two compatible Poisson brackets:

(1.24a)
j - ιoj oj ]

and

We have denoted the Poisson bracket belonging to η = λι as { , }2+1 in order to be
consistent with the traditional terminology of KdV systems later. Note that the first
Poisson bracket is just the Lie derivative of the second Poisson bracket with respect
to the vector field that generates translations of J in the direction — Cx.

In general, "interesting" examples result from appropriate further reductions of a

space ^ 0 x. A key observation in this respect is that the group consisting of those

λ-independent nonabelian gauge transformations g\Sλ —» Gln for which

gCxg-1 =CX (1.25)

is a symmetry group of the AKS system restricted to ^ # 0 x. Indeed the transformations

, obtained from (1.17) by using this group preserve both the compatible Poisson
structures and the monodromy invariants. Thus one can use this group or any of its
subgroups when searching for "nice symmetry reductions" of the AKS system.

Remark 1.2. The apparent generalization obtained by considering yM_rnn with

n + m > 1 instead of ̂ 0 { does not add any new interesting structure, since the
reduction only affects un_x and un\ the other terms remain generic.

1.2. How to Obtain Local Invariants

Let us consider the operator S% = (d + μ), where μ:Sι —> £(gln). There is a fairly
well-known sufficient condition on the form of the function μ that one can impose
in order to guarantee the locality of the monodromy invariants of 5§. This condition
involves the graded regular elements of the affine algebra i(gln), and we shall explain
a variant of it below.

Consider a fixed element A £ i(gln) and denote its kernel and image in the adjoint
representation by

and ^ = Im(adτl). (1.26)

Of course, 3£ is a subalgebra of ί(gln). For A a regular element one has

(1.27)
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We are interested in regular elements that are homogeneous with positive degree with
respect to some integral grading. An integral grading of £(gln) can be defined by the
eigenspaces of a linear operator dNH:i(gln) —> i(gln) of the form

dNH = Nλ-^-+<idH, (1.28)
' CLΛ

where N is a non-zero integer and H is a diagonalizable element of gln with integral
spectrum in the adjoint representation. This formula in fact defines a derivation on
£(gln) with integral eigenvalues and finite dimensional eigenspaces.

The following proposition, which generalizes the corresponding well-known result
for the homogeneous grading case [1, 19, 22], states the existence of a solution of
the linear problem given by a series that can be computed by an algorithm involving
only linear algebraic operations and integrations.

Proposition 1.2. Let a grading (1.28) of £(gln) be given. Let A be a regular
homogeneous element of grade I > 0. Consider a function μ:Sι —» i(gln) of the
form

Λ), (1.29a)

where
Yk{x) with dKH(qk) = kqk. (1.29b)

Then the linear problem

(dx + q(x) + Λ)Φ(x) = 0 (1.30)

has a unique solution of the form

Φ(x) = (J + W(x))eF{x)(I + W(0))~ιΦi0), (1.31)

where

F{x) e 3G, W(x) e 9, and Wix) = ] Γ Wkix) with dNHiWk) = kWk . (1.32)
fc<0

Here the Wk's are uniquely determined differential polynomials in the components of
q and F is given by

X

F(x) = - I dy[qM(y) + (q(y)Wiy))^ + Λ], (1.33)

o

where the subscript 3& refers to the 3& component in the decomposition £(gln) =

Corollary 1.3. The monodromy matrix of S? = (d + q + A) is conjugate to

exp(F(2π)) = exp ί - j dx[qπ{x) + {q{x)W{x))π + A] J , (1.34)

and thus its invariants are functions of integrals of local densities in q(x).

Proof The procedure is essentially the same as given in a special case in [22]. By
substituting the ansatz

Φ — (I + W)eFΨ, (1.35)
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where / is the unit matrix and Ψ is a constant, into (1.30) we obtain

W + (/ + W)F' + (q + Λ)(I + W) = 0. (1.36)

If we decompose this equation according to £(gln) = ^ + J £ Γ by using (1.32) together
with 93& C ^ and J^£^ί c 3&, then the ^-component gives

F ' + fo(I + W%ϊr + Λ = 0, (1.37)

which (up to a constant) can be integrated to give (1.33), since 3& is abelian. By
substituting (1.37) into (1.36) the ^-component gives

[A, W] + W - W(q + qW)<# + (q + gW>V = 0 . (1.38)

One can solve this equation recursively for the Wk's by using the grading assumptions
of (1.29) and (1.32) together with the fact that adΛ maps & to & in a one-to-one
manner since Λ. is regular. This procedure obviously yields the Wk9s as differential
polynomials in q. Finally, the integration constant Ψ in (1.35) is fixed by the initial
condition, giving (1.31). D

Note that the recursive procedure appearing in the proof, combined with the
diagonalization of the generators of J%Γ, is also useful for computing the monodromy
invariants in practice. It should also be noted that in the above we have not considered
the convergence of the series solution at all. It is well known that such series do not
convergence in general, and are to be considered as asymptotic expansions in λ (or
alternatively as formal series).

13. The List of Graded Regular Elements

We have seen that the graded regular elements of £(gln) can be used to impose
constraints on the form of S§ = (d -f μ) leading to local monodromy invariants.
The suggestion of DeGroot etal. [7] was to use the graded regular elements
of the inequivalent graded Heisenberg subalgebras of the loop algebras [12] to
construct generalizations of the Drinfeld-Sokolov hierarchies. The graded Heisenberg
subalgebras of the loop algebra ί(gln) (maximal abelian subalgebras that acquire a
central extension in ί(gln)

A have been given an explicit description recently in [13],
where the authors were interested in the related vertex operator constructions. By
using this description, we shall show that graded regular elements exist only in some
exceptional Heisenberg subalgebras. The complete list is given by Theorem 1.7 at the
end of this section.

The graded Heisenberg subalgebras of £(gln) can be associated to the partitions of
n in the following way [13]. First, for m any natural number, we define the following
m x m matrices:

ra-l

Λm = Xernl + 2_^ ek,k+ι >

fc=i (1.39)
m — 1

Hm = diag[j, (j - 1), . . . , -(j - 1), -j], j = —j— ,

and

σm =
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where ei is the standard elementary matrix with entry 1 in the ijth place and 0ei
elsewhere. Let a partition of n be given by

n — nx + n 2 + . . . + nk , where nι > n2 > . . . > nk > 1. (1-40)

We associate to this partition the n x n matrix

= diag[σn σn . . . . , σ n l , (1.41a)

and denote by AT the order of the inner automorphism of gln acting through
conjugation by σ. If we let

N1 = lcm(n1,n2, . . . , nk), (1.41b)

we have

iV;, if iV7 ί 1 I is even for all i, j

(1.41c)

2Nf, if N'l 1 is odd for some i, j .

N =

We then introduce the n x n diagonal matrix H via the equation

σ = exp[2πiH/N],

and consider the grading of £(gln) given by the eigenvalues of

4r
αλ

(1.42)

The Heisenberg subalgebra corresponding to the partition (1.40) is spanned by the
n x n "block-diagonal" matrices A of the following form:

Λ = (1.43)

where the l^i — 1,2, . . . , k) are arbitrary integers and the yi are arbitrary numbers.
This maximal abelian subalgebra of £(gln) is invariant under the grading operator
(1.42). An element A of the form given by (1.43) is regular if 3& — Ker(adτl) is
exactly the Heisenberg subalgebra (and not a larger space). We next investigate the
existence of the graded regular elements for some simple partitions, from which we
shall then be able to read off the answer for the general case.

The simplest case is that of the homogeneous Heisenberg subalgebra, which

belongs to the partition n = 1 + 1 + .. . + 1, when d — λ — and the graded regular
elements are of the form dλ

vy2, . . . , yn], (1.44)

The principal Heisenberg subalgebra belongs to the other extreme case when n is

"not partitioned at all". In this case d = n\ —- + ad Hn and the graded generators
d\

are the powers of the "Drinfeld-Sokolov matrix" Λn. We have

Al+mn \m\mAι

n

n) = (l+rnn) ΛιJlΛ-mn 0 < I < ( n - 1 ) , Vm. (1.45)
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It is obvious that Λ1^™71 is regular if and only if Aι

n is regular. The Drinfeld-Sokolov
matrix Λn itself is regular since its eigenvalues are the n distinct nth-roots of λ, and
from this one also easily verifies the following by looking at the eigenvalues of Λι

n.

Lemma 1.4. The element Λι

n{\ < I < (n - 1)) is regular if and only if n and I are
relatively prime.

Consider now a partition of the type

n — nι+n2, with n 1 > n 2 > 1. (1-46)

Lemma 1.5. In the case (1.46) there is no graded regular element in the Heisenberg
subalgebra.

Proof. As candidates for graded regular elements, it is enough to consider the matrices
of the form

Λ=\Vl "ι . j with 2/^2^0, ί^Omodn,. (1.47)

Case (i): Assume that nx and n 2 are relatively prime. We can check from the definition
of the grading that there is no graded element of the form (1.47), since

(1.48)
L u n 2 J L /i;2

2J

have different grades.

Case (ii): If Πγ and n 2 are not relatively prime and m > 1 is their greatest common
divisor then the graded elements of the form (1.47) are those for which

I = k—L and L = fc — , k : any integer. (1-49)
m m

This implies by Lemma 1.4 that neither of the Λι£.(i = 1,2) is regular, and therefore
there is no graded regular element of the type (1.47) either. D

Let us also note the following rather obvious fact.
Lemma 1.6. There is no graded regular element in the Heisenberg subalgebra if the
partition is of the type

72 = r n + l + . . . + l , 1 < ra < (n — 1) (1.50)

i.e., if it consists of a "non-singlet", m, and more than one "singlets" (Vs).

It follows from the "block structure" of the Heisenberg subalgebras given by
(1.39)—(1.43) above that graded regular elements do not exist for any of those
partitions which contain a subset of the type appearing in Lemmas 1.5 and 1.6. Hence
the only cases not excluded are the "partitions into equal blocks",

p times

n _ rpγ. __ rγ _|_ _^_γ (151)

and the cases "equal blocks plus a singlet",

p times

n _ p^ _|_ γ _ r

r _|_ _|_ r _j_i Q 52)
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On the other hand, by inspecting the eigenvalues of the generators of the Heisenberg
subalgebras, we can establish that graded regular elements do indeed exist in the cases
(1.51), (1.52), and the following theorem gives the complete list.

Theorem 1.7. Graded regular elements exist only in those Heisenberg subalgebras of
£(gln) which belong to the special partitions (1.51) or (1.52). In the equal block case
(1.51) with r > 1 the graded regular elements are of the form

\vA

(1.53)

VpAlr-

where

l < Z < ( r - l ) , 2 / i ^ O , ylφy], i,j = 1, ...,p, iφi,

with I relatively prime to r and m any integer. The element A is of grade (I -f τrιr)
with respect to the grading operator given by (1.42), where N = r and

p times

H = άiag[Hr,Hr,...,Hr]. (1.54)

In the equal-blocks-plus-singlet case (1.52), the graded regular elements are those
nxn matrices which contain an (n — 1) x (n — 1) block of the form given by (1.53) in
the "top-left corner" and an arbitrary entry in the i( lower-right corner." The relevant
grading operator is given by (1.42) with N — r,

p times

H = diag[# r, Hr, . . . , Hr, 0] if r is odd; (1.55a)

and with N — 2r,

p times

H = diag[2Hr,2Hr1 ..., 2iϊ r ,0] if r is even. (1.55b)

Remark 1.3. Let us designate the ordered eigenvector basis of the matrix H in (1.54)
as

(1.56)

Here j = (r - l)/2, the first index is the eigenvalue and the second one orders the
r x r blocks. It is often convenient to use the re-ordered basis

.̂7,15 .̂7,25 5 ̂ ',p» ^.7-1,15^7-1,25 5 Xj-\#\ \ X-j,\ 5 X-j,2-> ' ' ' 5 X-j,p '

(1.57)

When expressed in the new basis the matrix H of (1.54) may be written as Hr 0 lp

and the graded regular element A given by (1.53) takes the form

λ m 4 ® £ > , where D = d i a g ^ , ^ , . . . , yp). (1.58)

In the following section we shall consider reductions based on the grade 1 regular
elements belonging to the equal block case.
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2. Equal Block Reduction of the AKS System
to the Matrix Gelfand-Dickey Hierarchy

We have seen that graded regular elements exist only in those Heisenberg subalgebras
of i(gln) which correspond to partitions into equal blocks or equal blocks plus a
singlet. The purpose of this section is to study in some detail symmetry reductions
of the general AKS system that are based upon the grade 1 regular elements of
the Heisenberg subalgebras belonging to the partitions into equal blocks, n = pr,
generalizing the p = 1 case considered in [1]. The final result of the analysis below is
that the reduction of the bihamiltonian manifold ^/S := ^ 0 , i carrying the commuting
family of ad* -invariant Hamiltonians yields the p x p matrix version of the well-known
Gelfand-Dickey r-KdV hierarchy. More exactly, we shall establish the following:

1. The reduced phase space is the space of r t h order, pxp matrix differential operators
carrying the first and second Gelfand-Dickey Poisson brackets. The second Poisson
bracket algebra is an example of a classical ^-algebra.

2. The commuting hierarchy of Hamiltonians resulting from the monodromy invari-
ants is given by the componentwise residues of the fractional (including integral)
powers of the pseudo-differential operators obtained by diagonalizing the matrix
differential operators.

The exact statements are given by Theorem 2.4 and Corollary 2.11 in Sects. 2.2 and
2.3. These results generalize the analogous results proven by Drinfeld and Sokolov
for the scalar case p= 1. We shall in fact use many of their methods, but at the same
time introduce some simplifications (at least to our taste) in the proofs.

Remark 2.1. For p > 1 the subhierarchy provided by the trace-residues of the
fractional powers of the matrix differential operators is not exhaustive, since it does
not include the Hamiltonians obtained form the integral powers of the corresponding
diagonal pseudo-differential operators, which also appear in Corollary 2.11.

2.1. A Local Symmetry Reduction of the AKS System

After reordering the basis as explained previously, the generators of our Heisenberg
subalgebra are the n x n matrices of the form Λ* <8)D, where Λ^ is the kth power of the
r x r DS matrix, k is an arbitrary integer, and D is an arbitrary pxp diagonal matrix.

The generator A* <g> D is of grade k under the grading defined by d — rλ — + ad H
with d λ

H = Hr®lp = diag[jlp,(j - l ) l p , . . ., -0 ' - Dip, -jlp], j ^

(2.1)

Choose a grade 1 regular element of the Heisenberg algebra, [cf. (1.53), (1.58)];
i.e., an element

Λ:=Λr®D (2.2)

such that Dr has distinct, non-zero eigenvalues. Define the λ-independent constant
matrices CQ and Cγ by the equality

A = Λr 0 D := Co + \CX. (2.3a)
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More explicitly, these matrices are given in block form by

Λ =

- o

0

.XD

D

0

0

0

D

... o -

'•. o

'•. D

0 -

•— Cr\ + AC) . (2.3b)

We start reducing the general AKS system carried by
to the space Λ& consisting of elements of the form

^>Z? \J ~\ O \~ / \ W i « tJ kj

^Ϋ by confining ourselves

(2.4)

This is an example of a Poisson subspace of the type ΛSoι considered in Sect. 1.1,
and therefore it carries the two compatible Poisson brackets given by (1.24a, b).

Consider the decomposition

gl — gl -f- gl -\- gl (2.5)

induced by the eigenvalues of a d i ί , Eq. (2.1), where the summands are the subalge-
bras of block lower triangular, block diagonal, and block upper triangular matrices
(with p x p blocks), respectively. On account of the relation

the group J^ of transformations

, with f:Sλ-*gl-,

(2.6)

(2.7)

is a symmetry group of the AKS system carried by yM\ i.e., these transformations
preserve the two Poisson structures and the monodromy invariants. Next we define
a symmetry reduction of the AKS system using yV* in such a way as to ensure the
locality of the reduced system. That is, consider the following two step reduction
process, which is an obvious generalization of the one used in [1]. First, .we restrict
our system to the "constrained manifold" ^Sc c JM, defined as the set of i^ 's of the
following special form:

q'.S1 gl°n). (2.8)

Here Co is the constant matrix given by (2.3), and q is required to be block lower
triangular. (Note that with respect to the second Poisson structure (1.24b), this is
just fixing a level set of the moment map generating the Hamiltonian group action
(2.7), and the reduction procedure is essentially that of Marsden-Weinstein at the level
of a Poisson manifold rather than a symplectic one. With respect to the first Poisson
structure (1.24a), the constrained quantities determining the form of S§ in (2.8) are all
Casimirs and hence this just determines a Poisson submanifold.) Second, we factorize
this constrained manifold by the symmetry group JV, defining the reduced phase
space

jί^jίjjr. (2.9)

To put it another way, we factorize out the "gauge transformations" generated by JY*
by declaring that only the .yf-invariant functions of S% are physical. The nice features
of this reduction are that



196 L. Feher, J. Hamad and I. Marshall

i) The monodromy invariants of S? E ^Mc can be computed algebraically as
asymptotic series in λ which depend on q through integrals of local densities formed
form its components and their derivatives.
ίi) The compatible Poisson structures on J$ induce compatible Poisson structures

on ^ r e d .
iii) The gauge orbits in ^Mc allow for global, differential polynomial gauge sections,
which give rise to complete sets of gauge invariant differential polynomials.

Statement i) follows immediately since we have chosen ^Mc so that the conditions
of Proposition 1.2 are satisfied. Statement ii) means that the compatible Poisson
brackets carried by JM can be consistently restricted to the gauge invariant functions
in C°°(^MC), whose space can be naturally identified with C°°(*sMτeά). This can be
seen as a consequence of the Dirac theory or reduction by constraints as follows. We
first note that, by choosing some basis {jτ} of gl~, the constraints defining ^Mc c *J&
can be written as

χi(x) = 0 where χ.(x) = t r 7 i ( J ( z ) - C o ) . (2.10a)

It is easy to verify that these constraints axe first class; i.e.,

r = 0 , (2.10b)

for any of the compatible Poisson brackets on ^M. We next notice that the functions
Xi(x) are the generating densities (i.e., components of the moment map) of the JV"
symmetry transformations with respect to the second Poisson bracket (1.24b). Thus
the theory of reduction by constraints (which in this case is just the Poisson version of
Marsden-Weinstein reduction) tells us to factorize the constrained manifold by these
transformations; the second Poisson bracket algebra closes on the gauge invariant
functions on ^Mc, inducing a Poisson structure on the factor space. On the other
hand, the χi do not generate any transformations on ^M under the first Poisson
bracket (1.24a); i.e., they are Casimir functions. Therefore the first Poisson bracket
can in principle already be restricted to C°°(^MC) without any factorization by JV.
Then JV* becomes a group of Poisson maps with respect to the restricted bracket,
which can further be reduced to a Poisson bracket on the invariant functions. In
this way, we naturally obtain two induced Poisson brackets on ^ r e d from those on
yM, and the induced Poisson brackets are compatible because the original brackets
(1.24a, b) were compatible.

One is always interested in gauge invariant objects and convenient gauge fixings
when describing systems with gauge symmetries. In the present example, as in the
p = 1 case of [1], a convenient gauge section is defined by the subspace

vk:S
[-^glp}, (2.11)

.=i

i.e., the space of J^ί's in which the matrix function q is allowed to have non-zero
(p x p block) entries only in the last row. This global section of the gauge orbits
can be reached from an arbitrary point 3S = (d -f q + Λ) e ^Mc by a unique gauge
transformation that depends on q in a differential polynomial way. It follows that the
components of the vi provide a basis (free generating set) for the gauge invariant
differential polynomials which can be formed from the components of q.
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Remark 2.2. A distinguished gauge invariant differential polynomial is obtained by
restricting

7/H = \ tr(J2) + trCff J') (2.12)

from yM to Λ6C. The density Ύn satisfies the Virasoro algebra under the second
Poisson bracket, and therefore it generates an action of Diff^1) on ^M that survives
the present reduction. Since it contains this Virasoro density, the second Poisson
bracket algebra of the gauge invariant differential polynomials can be regarded as
an extended conformal algebra; that is, a classical ^-algebra. This S^-algebra is a
member of a natural family of extended conformal algebras that recently has been
studied in [4, 5]. The reader is referred to [5] for a detailed description of differential
polynomial gauge fixings, like the gauge (2.11), and for the related construction of a
generating set for the ^'-algebra consisting of 9# and conformal tensors.

In the next section we shall also need the "block diagonal gauge" given by

(2.13)

i=\

It should be noted that θ defines only a partial gauge fixing, which has a finite
dimensional residual gauge freedom. Of course it is nevertheless true that any gauge
invariant element of C°°(.^#c) can be recovered from its restriction to θ. In particular,
the Poisson bracket of any two gauge invariant functions in C°°(y£c) can be recovered
from its restriction to θ , and the nice feature is that for the second Poisson bracket
this restriction can be computed in terms of the "free current algebra" of the θ^s. For
later reference we summarize this fact as a lemma. The proof is similar to that for
the p — 1 case [1].

Lemma 2.1. Let φ,ψ e C°°(^MC) be gauge invariant functions and consider ξ =
{φ, ψ}2 £ C°°(tyMc), which is well defined and is also gauge invariant. Let us denote
the restriction of these functions to θ by φ,ψ and ξ, respectively. Then we have

δθ'δθ* ' » - ' - ' • ( 2 1 4 )

Proof We consider the decomposition J = J_+Jo+J+ defined by means of (2.5) and
write out formula (1.24b) in terms of the partial functional derivatives corresponding
to these variables. We then compute the value of {φ,φ}2

 a t a n arbitrary point on the
"gauge slice" θ of the block diagonal gauge, where J_ = 0, J o = diag[0l5 . . . , θr],
J+ = Co. (For this computation we can extend φ and φ from ^ C c to ^ # in an
arbitrary way since they are invariant under the gauge transformations generated by
the first class constraints specifying this constrained manifold.) Using the grading
structure, we find that

= J t r ( J
0

δφ δi

_<5J0' δJ0_

δφ

~δΣ

Σ/"
V -" ' (2.15)
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δφ Sφ
where — , —- are understood as the p x p blocks constituting the block diagonal

oθi bυ%

δφ δφ
——, - — . This immediately gives (2.14) since at the point J = J o + Co we have
δJ0 δJ0^
δφ δφ
—— = ——, and similarly for φ. D
όθi δθi

Now let M be the space of p x p "matrix Lax operators" of the following form:

r

L = {-D-χ)rdr + Σuτd
r~ι, u{ :Sι -> glp . (2.16)

2 = 1

As in the p = 1 case [1], M can serve as a natural model of the reduced space
Λ&Jjy. To see this let us consider the linear problem

= 0, (2.17)

for 5§ given by (2.8), where the entries φi of Ψ are p-component column vectors.
This system of equations is covariant under (2.7) if we let Ψ transform as

Ψ-^esΨ. (2.18)

Denoting the ijth p x p block of q by qij9 the system (2.17) can be recast in the
following form:

Lφλ = \φγ,

ψ2 = (-DΓι(d + qn)ψι ,

φ3 = (-DΓ1 [q2l + (d + q22) (-DΓ1 (d + qn)]φx , ( 2 ' 1 9 )

where L is an operator of the form (2.16) whose coefficients u% are uniquely
determined differential polynomials in q. Notice now that the component φγ is
invariant under (2.18), because / is a strictly block lower triangular matrix. This
implies that the potentials ui — u{[q] entering in Lφλ — λψι must also be invariant
functions of q under (2.18). In other words, the operator L attached to 2$ by the
equivalence of (2.17) and (2.19) actually depends only on the ./^-orbit of 3§ in ̂ # c .
Thus it gives rise to a map ra:^ίίred —> M. It is easy to see that this is a one-to-one
map. The inverse m~ι can be given by attaching to an arbitrary operator L in (2.16)
the unique orbit in J%>c which intersects the gauge section V (2.11) in the point

r

J^ = 0 + ] ζ e r ϊ i ® υ r _ i + 1 + Λ , where vτ = (-l)r+1-<

JDtx<Z)r-<. (2.20)
i=\

This equation provides an identification of the space M with the gauge section V and
hence with the reduced phase space ^Mτ^,

M^V^ ^ r e d . (2.21)
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It follows from the above that the natural mapping π:Θ —» M is given by the

factorization formula:

L = (~D-ι)rdr + u{d
r~ι +.. . + ur = (-D-\d + θr))... (-D-^d + ΘJ), (2.22)

generalizing the scalar case [23, 1]. Lemma 2.1 can be reformulated as saying that
π, which is the usual Miura map when p = 1, is a Poisson mapping if the space θ
carries the Poisson bracket appearing on the right-hand side of (2.14) and M carries
the Poisson bracket induced from the second Poisson bracket on yM via the reduction
and the identification M = ^ r e d .

2.2. The Gelfand-Dickey Form of the Reduced Poisson Structures

In this section we prove a theorem that establishes the equivalence of the Poisson
structures naturally carried by the spaces MXQά and M. This theorem will rely on
the preliminary Lemma 2.2 which follows 2. This concerns the Poisson Lie group
property of the so-called Sklyanin bracket as pointed out by Semenov-Tian-Shansky
[20].

Let yέ be an associative algebra. Suppose that Tr : Λ —• C is a non-degenerate
trace-form on yi\ i.e., a linear mapping with the property that the formula (α, b) =
Tr ab defines a non-degenerate, symmetric bilinear form on y&. As usual, identify the
space Λ? with its dual ^ * (or a subspace thereof) by means of the pairing defined
by Tr. Suppose that A and B are disjoint subalgebras of y& such that ^S = A -f- B
and that with respect to the pairing (,) we have A1- = A and B1- = B. Let PA and
PB be the projection maps on j& defined by the splitting y& = A + B. Since A and
B turn into Lie subalgebras of yS with respect to the natural Lie algebra structure on
^4 given by [α, b] = ab — ba9 then R = PA - PB is a skew-symmetric r-matrix on
^ , and the AKS construction applies here too.

For any function φ 6 C°%^), we define Vα<£, its gradient at the point a G y&,
by

^ ( α + ί6) | t = 0 = (6,Vo ¥>)=Tr6Vo ¥>, V t € ^ . (2.23)

In addition to the R Lie-Poisson bracket given by

{φ1φYι\a)-Ίx{a[X,Y]R)1 where X = V a ^ F = Va^, (2.24)

we can also define a second Poisson bracket on yS\

{φ, φ}(2) (a) := \ Ύr(YaR(Xa) - aYR(aX)). (2.25)

This Poisson bracket is known as the quadratic r-bracket, the Skylanin bracket, or
the second Gelfand-Dickey bracket. The proof of the Jacobi identity for the Poisson
bracket (2.25) is easy if we remember that because of the derivation property it is
sufficient to check it for linear functions; i.e., functions of the form fx(a) = Tr(αX),
X G y&. In the proof we also use the fact that R satisfies the modified Yang-Baxter
equation,

[RX, RY] = R([RX, Y] + [X, RY]) - [X, Y] VX, Y e ^ . (2.26)

Note that the R Lie-Poisson bracket and the quadratic r-bracket are compatible.

This lemma was explained to us by A. G. Reyman
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Lemma 2.2. With respect to the quadratic r-bracket on Λ, the mapping m: ̂
<j& given by ra(a, b) = ab is a Poisson mapping when ,/& x *Λ has the product Poisson
structure corresponding to the quadratic r-bracket on each of its components.

Proof. For a pair of elements X, Y G ̂ 4, consider the linear functions on ,Λ given
by

Then

m*fx(a, b) = ΊrabX and m* fγ(a, b) = ΊxabY .

Variation of ra* fx with respect to a for fixed b gives

similarly

Thus

m Jχ ,m jγigχf(a,υ)=2 LΪ(OYaR(bXa) — aoYR(abX))

+ I Tr(Fα6#(Xα6) - bYaRφXa))

= I Ύr(YabR(Xab) - abYR(abX))
z

We shall apply this lemma to the following example:

iV

:Sι ->pxp matrices, V7V > 0 } := GDM , (2.27)

the space of pseudo-differential operators with p xp matrix coefficients. We call this
space GDM for "matrix Gelfand-Dickey." Multiplication of matrix pseudo-differential
operators is defined in the usual way [14, 16]. The trace form, Tr :GD M —> C, is given
by

ίtrres(X)=
J J

TrX:= ίtrres(X)= ΛrX_!, (2.28)

where tr is the ordinary matrix trace. The two subalgebras A and B in this case are
given by

A := GDM+ = ίx = Σ Xsd
s\, B := GDM_ = (x = ^ XSA. (2.29)

It is usual to write PA(X) = X+ and PB(X) = X_. One sees by inspection that for
any k > 0, the space

MQk := {X = Xoa f c i l ^ + .-. + I J I o fixed} c GDM (2.30)

is a Poisson subspace with respect to both Poisson brackets (2.24) and (2.25).



Generalized Drinfeld-Sokolov Reductions 201

In particular, the space M of operators L defined by (2.16) is such a subspace, on
which the two Poisson brackets take the form

X_]), (2.31)

= J trres(YL{XL)+ - LY{LX)+), (2.32)

where X := VL(/?, Y := V L ^ for </>, ̂  G C°°(M). It is now easy to prove the
following corollary of Lemma 2.2.

Corollary 2.3. 77z£ mapping π:θ —* M given by Eq. (2.22) is a Poisson mapping
where the Poisson bracket of f , h G C°°(θ) is given by

<>•*>« • - > - α 3 3 )

and the Poisson bracket of φ,φ G C°°(M) /s g/vew by the second Gelfand-Dickey
bracket (2.32) on the manifold M.

Proof. It is sufficient to check that on the Poisson subspace {—D~[(d + θ)} of GDM

(a subspace of type Mo {) the Poisson bracket (2.25) becomes just the r — 1 case of
(2.33), that is, if φ, ψ G C°°({6>}), then

^ S i } {%)%) U .234,

We may now state the main result of this section.

Theorem 2.4. Under the identification . ^ r e d = M given in (2.21), the Poisson
brackets on the space ,MYQά = yMc/Jr obtained by reduction from the Poisson
brackets (1.24a) and (1.24b) on ,/M are equal respectively to the first and second
Gelfand-Dickey Poisson brackets given by (2.31) and (2.32).

Proof. Consider the one parameter group of transformations on .M defined by

gτ:&v->(&-τCι), r G R . (2.35)

These transformations preserve ^Mc C ,/M and commute with the action of JV\
Thus we have a corresponding one parameter group of transformations {gτ} on
M = ^Mc/J/\ operating as

gτ: (L ^> L + r l p ) (lp: the p x p unit matrix). (2.36)

We now recall that { , }x given by (1.24a) is the Lie derivative of { , }2 given by
(1.24b) with respect to the vector field generating the flow (2.35). It follows that a
similar relation holds for the corresponding induced brackets on M = . ^ r e d with
respect to the generator of the projected flow (2.36). On the other hand, one also sees
by inspection that the first Gelfand-Dickey bracket on M; i.e., the restriction of (2.24)
given by (2.31), is the Lie derivative of the second Gelfand-Dickey bracket (2.32)
with respect to the generator of (2.36). Therefore the equality of the "first brackets"
claimed in the theorem follows if we prove the equality of the "second brackets."
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This latter is obtained as an immediate consequence of Lemma 2.1 and of the above
corollary to Lemma 2.2. D

Remark 2.3. It is clear from the proof that Theorem 2.4 remains valid if we let D
be any invertible p x p matrix in the construction. The choice of a graded regular
element for A in (2.2) is made in order to guarantee the existence of local monodromy
invariants by Proposition 1.2. In the next section this assumption will be fully used
in determining the Hamiltonians of the reduced AKS system.

Remark 2.4. Let RC\GΌM —» GDM be the mapping defined by right-multiplication
by the invertible (constant) matrix c; i.e., Rc(a) = ac for any a G GDM . This is a
one-to-one mapping that preserves the second Gelfand-Dickey bracket and carries the
first Gelfand-Dickey bracket into the Poisson bracket { , }^ on GDM given by

{Ψ,ψγc

ι\a) = Ίr(ac-ι[cX,cY}R), where X = Vaφ,Y = Vaφ, (2.37)

which is compatible with { , }^ for any c. By means of this mapping, with c — {—D)r,
we can map the space M of L's in Eq. (2.16) onto the space M consisting of the r t h

order differential operators of the form

Σ Ui S1-* glp (2.38)

This is the reduced space we would have obtained by replacing the matrix D by the
unit matrix in the reduction procedure described in the previous section. (The results of
Theorem 2.10 and Corollary 2.11 below, which characterize the reduced monodromy
invariants, would not then be applicable.) The one-to-one mapping between M and
M provided by Rc can be made into an isomorphism of bihamiltonian manifolds
if one lets M C GDM carry the restrictions of the two Gelfand-Dickey brackets,
while M C GDM carries the restriction of the "modified first bracket" { , }^ with
c = (—D)r, plus the restriction of the second Gelfand-Dickey bracket.

2.3. Computation of the Hamiltonians

In the previous section, we identified the Poisson brackets carried by the reduced
space SSred = M a s the first and second Gelfand-Dickey Poisson brackets. In this
section we establish a description of the Hamiltonians of the reduced AKS system in
terms of the reduced-space variables ux, ..., ur. This will result from a computation
of the eigenvalues of the monodromy matrix of the linear problem 2oΨ — 0 for an
arbitrary ^ e F ; i.e., for

/ 0 . . . 0\

. (2.39)
0 . . . 0

\vr ... vj
Define the matrix A by

A := (-D)~ι. (2.40a)

Note that Δr is a nondegenerate and invertible diagonal matrix, by Eq. (2.2). Let

L = Δrdr + uxd
r~l + . . . + ur (2.40b)
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be the element of M corresponding to 3% G V. If {φa}a=ι,..., Γp *s a complete set of
independent (p-component column vector) solutions to

Lφ = λφ, (2.41)

define the n x n matrix Φ by

\Ψ\ '•• Ψrp

Δφ\ . . . Δφ'rp

Φ:= (2.42)

Then the columns of Φ are a complete set of solutions to S?Ψ = 0 and T =
Φ(2π)Φ(0)~1 is the monodromy matrix, whose invariants will be computed.

Since Δr is nondegenerate and diagonal, we can, through the usual, recursive
approach, find an operator g of the form

d-\ (2.43)
1

with g^x 4- 2π) = #/#) for all z, such that

L = gLg~ι (2.44)

with L a diagonal matrix pseudo-differential operator; i.e., with L of the form

L = zΓ<9r + J ^ α x ^ r ~ ' , aτ: all diagonal matrices . (2.45)
i=\

For example, if we require the ̂ ' s to be off-diagonal then we can recursively uniquely
determine both the #/s and the aτ's as differential polynomials in the u^s, by
comparing the two sides of Lg = gL term-by-term according to powers of d. Later
we shall need that

al = fai]diag ( 2 4 6 )

Fix —ζ to be any r th root of λ,

(-CΓ = A . (2.47)

Consider the p x p diagonal matrix asymptotic series

^ ( x , O - e C D x ( ^ o ( x ) + Γ 1 0 i ( ^ ) + . ) for C ~ o o (2.48)

satisfying the equation

(xX) (2.49)

in the following sense (see e.g. [24]). Using the definition

ζD )~ s eζDx (2.50)

for s any integer, and extending this in the obvious way to pseudo-differential
operators, we can write

φ(x,ζ) = (^eζDx), (2.51a)
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where
& = dQ(x) + dx{x)d'1 + . . . (2.51b)

is a uniquely determined diagonal pseudo-differential operator. Then the action of any
pseudo-differential operator P e GDM on φ is defined by multiplication of pseudo-
differential operators,

(Pψ)(x,ζ):=((P^)e<Dx). (2.52)

The left-hand side of Eq. (2.49) is understood in this sense. If we assume that
detφo(x) ^ 0 in (2.48), then ψ is uniquely determined up to multiplication by an
x-independent diagonal matrix of the form

c(ζ) = c0 + C" ι q + . . . , with detc0 φ 0. (2.53)

At this point we make use of a result given in [1, Theorem 2.9, pp. 1986-1987].
The proposition below states the result in terms of the diagonal pseudo-differential
operator L, and therefore we are dealing with p different copies of the scalar case.

Proposition 2.5. If L is of the form (2.45), d may be expressed as:

oo

d=- Dl\/r + J2 Fτ(-DL\/ryι, (-D = Δ~ι), (2.54)

with

Fo = -- {-D)raγ and ί(kFk + {-D)k res(Z^/r)) = 0 , for k> 0 , (2.55)

o

where L{'
r is the unique diagonal pseudo-differential operator such that

oo

L\/ J2d~l a n d (L\/r)r^L. (2.56)
ΐ=0

A further argument from [1] can be applied directly to deduce from (2.49)

Lemma 2.6.

L\/r X). (2.57)

Applying d to ψ and making use of Proposition 2.5 and Lemma 2.6, we get

(2-58)
i=Q

This equation can be solved, giving

ψ(x, 0 = exp j ζDx + ^ ( C ^ ) " f c / Fk ) ̂ (0,0 (2.59)
V k=o { Jk=o {

It follows that

φ(x + 2π, 0 = $(* , C)7(C), ( 2 6 °)
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where

7(0 = ̂ (0,0
\ - l 2πζD

fc=o

k Fk]ψφ,ς). (2.61)

Define the p x p matrix asymptotic series ψix,ζ) by

ψix, ζ) '.= igφ) (x, C) 5 (2.62)

where # is the pseudo-differential operator appearing in (2.43). We then have the
self-evident

Lemma 2.7. The columns of φ defined by (2.62) are solutions 0/(2.41).

If we expand g in descending powers of —Lx instead of descending powers of

-L\/ryι +m2(-L\/ry2 + ...
d we have

9 = 1 +

for some mι,m2, . , with mτ(x + 2π) = m^x) for all i. Then (2.57) gives

, 0 = , 0 = m(x, ζ)ψ(x, 0 ,

where
mix,0 : = (/ + m 1 ( x ) C " 1 + m2(x)ζ~2 + . . . ) .

From this we obtain

Lemma 2.8.

Now consider the set of r independent roots of λ, given by

iCk = ~ e C}fc=0, . . . , r-1 '

and define φ% by

Ψiix, C ) : = Φ ( χ > ζ{) — m i x , ζ i ) ψ i x , ζ z ) , 2 = 0 , 1 , . . . , r — 1 .

The point of this construction is:

Lemma 2.9. The columns of the n x n matrix

ί Φθ ••• Ψr-\ \

Φ =

(2.63)

(2.64a)

(2.64b)

(2.65)

(2.66)

(2.67)

(2.68)

are a complete set of solutions to 5?Ψ = 0.

Proof. We only have to prove that detΦ φ 0. This follows by checking the leading
term for ζ ~ oo. Using (2.48), (2.64a, b) and (2.67) we have

/I . . . 1

—C —C
SO * S r - l

V(-Co)r

(2.69)
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for ζ r^ oo. The determinant of the matrix on the right-hand side of Eq. (2.69) is
non-zero. D

From Lemma 2.8 we obtain

Φ(x + 2π, 0 = Φ(x, 0 AC) , (2-70)

where

Γ(ζ) = diag(7(Co), . . . , 7(Cr-i)) ( 2 7 1 )

It follows that T = Φ(2π)Φ(0)~ι is conjugate to Γ. By combining this with (2.61),
(2.55) and (2.46), we arrive at the main result of this section.

Theorem 2.10. The monodromy matrix of S? is conjugate to the diagonal matrix SΓ
given by

— exp r

= / (-DY[Wl]dia

(2.72)

where
2 °° 2

es(if r), (2.73)

0 / c ~ i 0

and L is the diagonalized form of the operator L G M corresponding to 21 G «^#c.
Corollary 2.11. All Hamiltonians of the reduced AKS system carried by M are
generated by the ones in the following list:

2-τr

(2.74)

SβkΛ% = T - j res(Lf / r)u , i = 1, . . . , p; k = 1,2, . . . .j f ) u
o

corresponding flows are subject to the relations

{/. ^ c , J ( 2 > = {/' Mk+r,J(1) V/ e C°°(M), Vi, fc. (2.75)

The first Hamiltonians in each of the bihamiltonian ladders belonging to fixed kmoάr
and fixed i are Casimirs of the first Gelfand-Dickey bracket,

{ / ^ M } ( 1 ) = 0 ' V / G C ° ° ( M ) for fc = 0 , l , . . . , ( r - l ) . (2.76)

number of independent bihamiltonian ladders in (2.75) /s pr — 1 = n — 1 5in

i=\

f m r J i = 0 > for any m= 1,2, . . . , (2 .77)

o t /j β Casimir with respect to both Gelfand-Dickey Poisson brackets.
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Proof of Corollary 2.11. It is clear from the form of the matrix ^ in (2.72) that the
Hamiltonians of the reduced AKS system; i.e., those obtained by reduction from the
ad*-invariant Hamiltonians on the dual of the loop algebra, are generated by those
in the list (2.74). The relations given by (2.75) and (2.76) can be traced back to the
"general recursion relation" given by (1.10), but can also be verified directly by using
the expressions of the Gelfand-Dickey brackets, (2.31), (2.32), and the Hamiltonians

v
(2.74). That Σ MQi is a Casimir of both Poisson brackets also follows by direct

z = l

verification. As for (2.77), note that

2π 2π

(2.78)
0 0

2π 2π

ri% = / t r r e s Lm= ί tr res Lm = 0,

where the second equality follows from (2.44) and the third equality holds because
L is a differential operator. D

Remark 2.5. Let p be a p x p diagonal matrix whose entries are all r th roots of 1,

p = diagί/?!, . . . , pp) with ( ^ ) r = 1. (2.79)

There is a unique r th root of L whose leading term is given by pΔd. We denote this

pseudo-differential operator by LιJr. By using (2.43), (2.44), and (2.56) we can write

LιJr = gpL\/rg~ι , (2.80)

which implies that

I Ίx{Lk'r) = 1 Tr(/Lf/r) = V p ^ f c i i . (2.81)

For the Hamiltonian S$k := — ΎτLp' (k φ Omodr) we have
rυ

ζ = Lk

p

/r'i. (2.82)

From this we obtain, as in the scalar case [1],

L = {L,^Π ( 2 ) = {L,Mp

k+r}
{X) = l(Lk

ph+,L]. (2.83)

There are rp possible choices of the matrix p in (2.79) and it is possible to single
out p of them in such a way that the corresponding J^f 's form a basis for the linear
space spanned by the β^k /s, for any fixed k φ Omodr. Thus for k φ Omodr the
relations (2.75) and (2.76)'follow from (2.83).

Remark 2.6. Note that the diagonal terms of the potential uλ of L in (2.40b) are
constant along the flows of the hierarchy. This is obvious for flows of the type
(2.83), and follows for all the flows generated by the ad*-invariants by combining
the following two facts, which are easy to verify. First, the function

= (-D r f
2π

^w^ 7 1 - 1 ), (2.84)
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where K is any glp valued function on Sι

9 generates via the second Gelfand-Dickey
bracket the following one parameter group of transformations:

ft:L^etKLe~tK. (2.85)

Second, these transformations leave the Hamiltonians (2.74) invariant for arbitrary
diagonal K. For example, if K — diag(K1, . . . , Kp) is a constant diagonal matrix
then

iMo,i (2-86)

is one of the Hamiltonians of the hierarchy. It generates the evolution equation

L = {L,SffκY
2) = [K,L], (2.87)

whose flow (2.85) indeed leaves [wj^g invariant (but not the full matrix ux). Finally,
we could also consider symmetry reductions of the hierarchy under the abelian group
action given by (2.85) with diagonal K9s. The simplest reduction would be defined by
setting tr(Druι) = 0. In this case, the reduced system is the same as the one obtained
by using the Lie algebra sln instead of gln throughout the construction. Another
symmetry reduction, which in a sense is maximal, is obtained by setting [u^^ = 0.
This leads to the system studied previously by Gelfand-Dickey [14], Manin [16] and
Wilson [17].

2.4. Some Explicit Formulae in the Case r = 2

Here we consider the simplest example r = 2 in order to make our general results
more concrete. We shall display the explicit form of the Poisson brackets and the first
two Hamiltonians for each bihamiltonian ladder in our reduced AKS system.

Denote the general element of the phase space M as

L = Δ2d2 + ud + w. (2.88)

We can easily write out the evolution equations generated by an arbitrary 3$ £
C°°(M) via either of the two Gelfand-Dickey Poisson brackets by using

The Hamiltonian equation generated by means of the first Poisson bracket (2.31)
is given by

^ ] (2.90a)

and

( l ) 2 j { ) ftrJ + rΊϊrJ (2 90b)

Observe that M ^ g is in the centre of the first Poisson bracket since it does not
change under any Hamiltonian flow. In the scalar case p = 1 all the commutator
terms drop out of (2.90), and for u = 0 we would recover the first Poisson structure
of the standard KdV hierarchy.
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The Hamiltonian equation generated by 3@ through the second Poisson bracket
(2.32) is given by

ύ = {u,J¥}{Z) = Z r — — u - u — — z r + I Δz —— w - w — — z r

4 Z , (2.91a)
\ OW J \ OU J \ OW J

and

A2^ w \ +w ^
ow ) \ δw

δw J \ δu

+ Δ — — w ~ w — — Δ \ -\- [ u —— w — w — — iM — ΪZ
δu δu J \ δw δw ) \ δw

\ δw J \ δw J \ δu
By straightforward computation from (2.43-2.45) we obtain

2τr 2π

res(L)M = / h2ι, (2.92a)

o o
with

,VΓ uikukluli ,

where the Δ^s are the components thepxp diagonal matrix Δ. The above formulae
may be checked by verifying that the first evolution equation belonging to the
bihamiltonian ladder containing M2 i can be written as

t 2τr \

3VOii(u,w) = J^y (2.93)
o ι '

consistently with (2.75), (2.86) and (2.87). The equation generated by 3%^ via the
second Poisson bracket can now be obtained by substituting the expressions for

the functional derivatives —-—- and —-—- into (2.91a, b). The result is somewhat
δu δw

lengthy, so we do not display it here.
We next give the first two Hamiltonians in the bihamiltonian ladder of Eq. (2.83);

i.e.,
2τr 2τr

ιp

k for fc=l,3, (2.94)
i = 1 o o
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where the entries of p — άia.g(pι, ..., pp) are ± Γ s [see (2.79)]. To write down the
result, it is useful to define the diagonal matrix σ by

σ = diag(σ 1 , ...,σp):=pΔ, (2.95)

and to associate to any p x p matrix v the matrix v given by the formula

Using this notation, we have

h{ = Xxσ~xw - t r σ " 1 ^ 2 , (2.97)

and

h% = tΐw(w — ̂  ΰfσ — 2σv! — 2ή2) + trv! (σu σ + ^ σ2u)

+ tr ΰ2 (W) + 2σu + I uσ2) . (2.98)

The first case of Eq. (2.83) is given explicitly as follows:

ύ = {u, Mξ}{2) = {u, J ί f }(1) = σuf - 2σ2v! -f [ΰ, u] -f- [σ, w], (2.99a)

^ = {w, Mζ}{2) = {w, Mξ}{ι) = σwf - σ2ΰ" - uv! -f [ΰ, w]. (2.99b)

These equations simplify to the free chiral wave equation in the scalar case p = 1
after putting u = 0, as they should. The analogue of the KdV equation is generated
by 3%ζ through the second Poisson bracket (2.91a, b). It is straightforward to derive
it from the above, but the final expression is quite long.

Remark 2.7. There is no singularity in the formulae (2.92b), (2.96-2.98) above since
the diagonal matrix Δ2 = (-D)~2 has distinct, non-zero eigenvalues. This goes back
to choosing A = Λr <g> D as a regular element of the Heίsenberg subalgebra at the
beginning of the construction. In general, for any r, if we continuously deform D to
the unit matrix, which represents a singular case (type II in the terminology of [7]),
then the Hamiltonians 3$Ύnv% in (2.74) (ra = 1,2, ...) may be expected to become
oc and thus disappear from the hierarchy. In addition, it follows from a result in [16]
that in the D = I case there exists only a single r th root of L, up to a scalar multiple.

3. Discussion

This paper was aimed at further exploring the integrable systems that can be associated
to graded regular elements of loop algebras by the method of Drinfeld and Sokolov.
We have concentrated on the simplest case, given by the nontwisted loop algebra
i(gln), and have shown that graded regular elements exist only in those Heisenberg
subalgebras that correspond to partitions into equal blocks n — pr or equal blocks
plus a singlet n — pr + 1. We further analyzed the first case by taking the grade 1
regular elements and proved that the generalized DS reduction results in the matrix
version of the r-KdV hierarchy of Gelfand-Dickey. We wish to close by mentioning
some other interesting models, which are related to this KdV type hierarchy in a way
that is familiar in the scalar case p = 1.

First of all, one has the modified KdV type hierarchy which is obtained from
the general AKS system by using the block diagonal gauge. This means that the
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Hamiltonians of the modified hierarchy are still given by the functions of L listed in

(2.74), but L (and consequently L) is considered to depend on

^ = d + θ + A, where θ := diag[6>1? . . . , θr], (3.1)

through the Miura map (2.22). The evolution equations of the modified hierarchy are
generated by means of the free current algebra Poisson bracket carried by the 0/s,
which are the basic fields of the modified hierarchy.

The nonabelian affine (periodic) Toda field equation may be defined as follows.
Take the basic Toda field to be a Gln-valued block diagonal matrix g(x, £),

g = diag[^, . . . , gr], (3.2)

where the g^s (i = 1, . . . , r) are GL-valued functions, periodic in the space variable
x. In addition to the grade 1 regular element A, choose also a grade —1 regular
element A and define the Toda equation to be the zero curvature equation

[ J ^ + Ϊ ^ L ] = O, (3.3a)

where
Sζ\ := d+ + g~ιd+g + Λ, S%_ := d_ + g~ιΛg , (3.3b)

and d± — (dx ± dt). Here, 2?+ is obtained from the modified KdV operator S$
in (3.1) by substituting d+ for d and g~1d+g for 0, and therefore we have the same
relationship between the conservation laws of the present Toda model and the modified
KdV hierarchy as is familiar in the abelian case [1, 10, 25]. In particular, by the same
arguments as in [1], we can construct an infinite number of conserved local currents
for the Toda equation by transforming J2ί+ into the Heisenberg subalgebra. Note also
that another infinite set of conserved currents can be constructed by utilizing the fact
that the Toda equation can equivalently be written as

[^+,i?_] = 0, (3.4a)

with
&+ : = d++gΛg-1, ^_ : = cL - d_g -g~ι+Λ, (3.4b)

and transforming J?_ into the Heisenberg subalgebra.
The nonabelian affine Toda model defined above was proposed originally by

Mikhailov [26] and further studied, e.g., in [27]. More precisely, these authors took
A = Ar 0 l p and A = Λ~ι 0 l p , where l p is the p x p unit matrix. These are
not regular elements of the Heisenberg subalgebra and therefore the DS construction
of local conservation laws corresponding to graded generators of the Heisenberg
subalgebra would not be applicable with this choice without modifications.

A related nonabelian conformal (open) Toda model can be obtained by omitting
the λ dependent terms from Jz?±(c5ί±) in the above. This model is a member of
a family of models described in [28] and can also be obtained by a Hamiltonian
symmetry reduction of the Wess-Zumino-Novikov-Witten (WZNW) model. By using
the WZNW picture it is clear that the ^-algebra given by the second matrix Gelfand-
Dickey Poisson bracket can be realized as the algebra of Noether currents in the
nonabelian conformal Toda model. Details can be found in [4, 5, 18]. Note that in
these papers the group Sln was used instead of Gln9 but one can impose the Sln

constraints tτ(Druι) = 0, Xxθ = 0 and detg = 1 without changing the essential
features of the KdV, modified KdV or Toda systems, or their relationship.
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It seems plausible that the nonabelian affine Toda model (as well as an appropriate
"conformal affine" variant of it) can be viewed as a Hamiltonian symmetry reduction
of the affine WZNW model, generalizing the abelian case [29]. This Toda model
is also known to be a reduction of the multicomponent Toda lattice hierarchy [30].
Similarly, the matrix r-KdV hierarchy should be related to the multicomponent KP
hierarchy [30, 31].

The other case in which a graded regular element exists in the Heisenberg
subalgebra, corresponding to the partition n — pr + 1, has not been pursued in
the present work. By taking an arbitrary regular element of minimal positive grade
it may be verified that the generalized DS reduction proposed in [7] leads to a W-
algebra which is again equal to one of those studied in [4, 5] in the context of
WZNW reductions. In these papers a family of ^"-algebras was associated to the sl2

subalgebras of gln (sln). The ^-algebra arising from a regular element of minimal
grade corresponds to the sl2 subalgebra under which the defining representation of
gln decomposes into p copies of the r-dimensional sl{2) irreducible representation
plus a singlet.

Recall that both the sl2 subalgebras of gln and the Heisenberg subalgebras of
i(gln) are classified by the partitions of n. It is unclear whether there is a general
relationship between the ^-algebras associated to sl2 embeddings and KdV type
hierarchies or not, since there is a ^-algebra for any partition, but graded regular
elements exist only in exceptional cases.

The present work was based entirely on the Hamiltonian AKS approach to
integrable systems. The Grassmannian approach [32, 34] has also been generalized to
other Heisenberg subalgebras than the principal one in [33, 31, 9]. It is clear that the
integrable systems associated to graded regular elements in arbitrary loop algebras
would deserve further study from both viewpoints. The starting point could be the
explicit description of Heisenberg subalgebras recently worked out in [34].
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