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Abstract. A representation-free approach to the g-analog of the quantum central limit
theorem for &~ = SU,(2) is presented. It is shown that for certain functionals ¢ € 7

one can derive a version of a quantum central limit theorem (qclt) with /[N] as a
scaling parameter, which may be viewed as a g-analog of qclt.

1. Introduction

Limit theorems in quantum probability are related to the notion of independence.
Depending on its kind we obtain various approaches to quantum limit theorems, in
particular quantum central limit theorems (qclt).

The study of qclt’s originated with the works of Giri and Waldenfels [4] for
commuting independence and Waldenfels [11] for anticommuting independence.
Those works gave boson and fermion versions of qclt. A general approach for
coalgebras with independence introduced through the coproduct was presented by
Schiirmann [7]. In [2] Accardi and Lu proved a qclt for weakly dependent maps.

Voiculescu [10] developed a general theory for free products (free independence).
Following his ideas, Speicher [9] proved a general limit theorem giving the free
analogues of Gaussian and Poisson distributions. A g-example of Brownian was
considered by Bozejko and Speicher [3].

Recently, a g-version of quantum central limit theorem (g-independence) and a g-
version of white noise was presented by Schiirmann [8]. His qclt was based on the qgclt
for coalgebras. He assumed that ¢ agrees with § on @, where & = 7@ @z Va. ..
is a N-graduation on % that is compatible with the coproduct and 6§ is a counit.
Independently, in [6] we studied a g-analog of qclt for SU ,(2) for g real positive. Our
approach was group-theoretic and related to a certain group contraction of SU,(2).

In our work the scaling g-qclt constant was not VN but vVIN1, where [N] is the
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PN — g2

2 _ g2
two-dimensional spin representation gf S(}J (2). In [6] we showed that the algebra of
g-commuting spins converges in law (see [1]) to the ¢-harmonic oscillator algebra in
the way that corresponds to the group contraction introduced by Kulish [5].

The aim of this paper is to provide a representation-free version of a g-qclt for
SU,(2) using a functional approach in the spirit of Waldenfels and Schiirmann and
show a connection of such an approach with out previous work. At the same time it
is more general since it is representation free. It can be also viewed as a first step to
the generalization for other quantum groups.

g-analog of N, namely [N]. = . Our proof was carried out for the

2. Preliminaries

Let be given a Hopf algebra over C generated by {J,,J_,1, t=1} which satisfy the
following relations:

ttl=t"lt=1,
tit ' =gJ,, tJt'=q%J_,
where ¢ € C, endowed with the coproduct A and the counit § defined by:
AD=1®1, AW =txt, At H=t"'®t !,
AU =J,0t+t7'®J,, AJ)=J_ot+t'eJ_,
s(H=6W)=6¢"H=1, &J)=6J_)=0.

Note that our ¢ would be ¢ or ¢* in some other works. For any a € C — {1, —1} we

N _ N
a”’ —a

denote [N], = ————.
a—a

The N™ iteration of the coproduct A satisfies the following equation Ay =
Md®AN_)o A= (Ay_ ®Id) o A. Thus, it is easy to see that

Ay &=tV Ay ¢™H=¢"HeY,

N
Ay @) = G, y®),

i=1

whereve 7' =7 7. =CJ_®CJ_ and
Jin@ =YV @ o g t¥N Y
N
are canonical embeddings of v into (X) Z". They neither commute nor anticommute,
but g-commute, i.e. for i < k, we have
FinC DTN = ¢, v D5 N (L)
03 N Ve N T = G n (T v (),

and j; n(J,) commutes with-j, n(J_) for i # k. The N — 1" iteration of A represents
the sum of NV random variables. We call the independence introduced through such
coproduct by the g-independence. Note that A is a homomorphism of % into & ® %

N
and Ay _, is a homomorphism of % into Q) &
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Now, let us define the N'™ convolution of ¢ € Z*,i.e. & = ¢®NoAy_,. The gclt

will consist in evaluating the limit of ¢ (v ... v)) for oY, ..., 0}l € 7’07 U7 7!,
where .7 = {t} and.7 ~! = {¢t~!} and the superscript N denotes appropriate scaling.
In the usual qclt’s those scaling constants are equal to 1/ V/N. We shall assume
that
(1/y/[Nlpv, if v, €7°
v =14 a~ N, ifv, €7
aNu, if v,e7 !

where ¢(t) = a (see [6]).

3. Partitions and Convolutions

Let us start with the notions related to the combinatorics of the problem. By an ordered
partition S of an index set I = {1,...,p} [the set of such partitions will be denoted
Z7°(I)] we shall understand a sequence of nonempty disjoint subsets (S|, ...,S,) of I,
such that I = 5,U...US,.. By a signature of partition S we will understand an r-tuple
(af,...,a?), where o denotes the number of elements in S;. For this r-tuple we
shall use the abbreviated notation o or « if no confusion arises. By 7°¢(I) we shall
understand partitions into subsets, each of which has an even number of elements.
The signature of such a partition will be called even.
For a given partition S we define the following family of homomorphisms:

T‘S(U’C):{:E' iiZiguusr
t ifkeSU...US,_,
Sy ={ v ifkeS,
= if ke S, U UV,

t ifkeS U...US
S _ 1 r—1
”wﬁ_{% if kes, ’

)

where v, € 7. Moreover, 7-75 ) =t, Tjs (t~!) = t~!. Another family of homomor-
phisms is given by ' ‘

t ifkeSuU...US |
od(w,) = : !
3k t=' ifteS;u...US,

where j = 1,...,7+ 1 and v, € 7. Again, we assume that they are identities on
t, e

Now, we can state the following
Lemma 1. Let ¢ be any functional on % . Let ’T]S , ajS be the homomorphisms defined

above. Then, for any vy, . .. yUp € 7" we have

p
(i)*N(vl...vp):Z Z Z

r=1 1< <...<ir <N S=(5y,...,Sp)e2(I)
s i —1 s N—i
X ¢loy (v .. .vp))" POy () )T

X QTP v)) TSy ).
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Proof. We have

N
¢*N(v1...vp)=¢®N< > jil’N(vl)...jip’N(vp))

2 yeeytp=1

We shall translate it now into the language of partitions. Let S = (S},..., 5,) be an
ordered partition of 1,...,p into r nonempty subsets. Using the explicit form of the
canonical injections we get each term in the above sum in the following form:

((t—-l)®(i1—l) QU ® t®(N—i1)) o ((t—-l)@(ip—l) ® v, ® t®(N—1p)) .

If we rearrange each p-tuple (7, . . ., %,) in the ascending order, we get, say, an r-tupfe
(ky,..., k), where 1 < k; < ... <k, <N. Then the above term can be written as

@ @N*F Vorf ). . @5 @)*Fr Fn1 Do ®. .. @@L, @)PN ),

where S is the partition in which S; consists of indices j such that v, appears at site
k; and we abbreviated v = v, ... vp,. Applying the N h tensorial power of ¢ ends the
proof. O

When we introduce certain assumptions on ¢ we can get rid of the factors involving
o’s. Thus, we get the following

Corollary 1. Assume that ¢(t) = a = ¢t~ )7L, where a € C and that ¢ is a
homomorphism on C[t,t™']. Let vy, ...,v, € 7. Then

P
Pn ;... v,) =aP NN > > a=2e®i=(a% )

r=1 1< <...<ir <N S=(S},...,Sr)
.
< [[eaf@,...v)
Sy ... v,),
j=1

where i = (iy,...,3,)andr = (r — 1,r = 3,...,—(r — 1)) denote r-tuples and (-, ")
is the usual scalar product.

Proof. The proof rests on the evaluation of factors involving ¢’s using the homomor-
phism assumption. Thus,

(CCIC))) RN (7 N ())) ks

_ a—-p(il—l)a(iz—ll—l)(a'ls—.‘.——af) o a(N—zr)(a15+...+a§)
— gPN+D=2(a® i) ~(a® r)
- bl

which ends the proof. [

Let us now introduce two different graduations on % . Namely, let d (J_) =
d,(J,)=1land d (t) = dc(t_l) = d,(C) = 0. We denote the N-graduation obtained
by natural extension to all free products in Z by #" = @@ #D@. . .. It is compatible
with the coproduct. Another graduation (not compatible with the coproduct) is the
following Z-graduation: d(J_) = d,(J,) = 1, d;@) =1, df(t_l) =—1,d,(C)=0.
It is also extended to all free products in & in the usual manner.

Extending the arguments in the preceding corollary to monomials involving ¢, ¢~
we easily get
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Corollary 2. Letv,,...,v, € 7U7UT ~L Letd (v, ...v,) = pandd;(vy...v,) =

m. Let ¢(t) = a = (¢t~ 1))~!, where a € C. Assume that ¢ is a homomorphism on
C[t,t™']. Then

P
¢*N(Ul L) = PN +D+N(m—p) Z " @—m Z Z

r=1 <4 <...<ir <N S§=(81,-.-,Sr)eI")
T
S S
% g—205 i) —(a ’T>H¢>(7'J'S(”1 S0y),
j=1

where it is understood that in the summation over partitions we take into account
partitions of the index set I' of subscripts of those v,’s that are in 7.

Proof. In the product of v,’s we have s — p elements from .7~ or.7 ~!. Each ¢ gives
rise to an a in each tensorial slot whereas each t~! produces an a~!. This results in
the factor of ™ P =" That finishes the proof. [

If we assume that the functional ¢ vanishes on monomials that have an odd number
of elements of d, degree equal to one, we get immediately the following

Corollary 3. Let ¢(2®*V) = 0 and let all assumptions of Corollary 2 be satisfied.
Then

k
* 2k(N+1)+N(m—2k Z 2h—
¢N(U1“'Ds)=a (N+1)+N(m ) aT( m) 2 : Z
r=1 1<y <...<wr <N S=(Sy,...,Sp)ereI’)
s s\
—2(a”,i)—(a”, s
x q 2@ i =(a?r) H¢(TJ (v ...vy)
J=1

if p = 2k and equals zero otherwise, where in the sum over partitions we take into
account partitions of even signature of the subset I' as in Corollary 2.

When, in addition, we assume that a functional vanishes on %@, we get the
following

Lemma 2. Assume that 1) € %* is such that (7' ©) = Y(&@*+Dy = 0. Let all
assumptions of Corollary 2 be satisfied. Then

PEw, .. v,) = > | GRS

S=(Sy,...,Sr)€re(l") j=1

if1 <r <k, d(v,...v,) =2k, where the sum runs over partitions of even signature
of the index set I' and equals zero otherwise.

Proof. If d (v, ...v,) =2k and r > k, then in each term of A__,(v) there is at least
one slot in the tensorial power that is of degree d, equal to O or 1 and thus makes
the whole term vanish by assumption on . The remaining part of the proof rests on
the proof of Lemma 1. Namely, if 1 < r < k, then by assumption on 1 nonzero
contribution comes only from partitions into r subsets, each of which is of even and
positive d, degree. For other partitions, a factor of type 1(t”) with y a nonzero integer
appears, which makes the term vanish. O
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4. Limits of Sums of g-Independent Variables

In this section we prove our main result. Contrary to [8] and the usual clt’s, we choose
the following scaling on : v}y = 1/,/[N] v, if v, € 7, vl =a Ny, ifv, €7

and v} = a™v, if v, € .7 . Thus, we shall evaluate the limits of ¢% (v"), where
oN =N N

=l ..ol
Theorem 1. Let (7 %+V) = 0, ¢(1) = 1 and ¢ be a homomorphism on #[t,t~']
with p(t) = a € RY — {1}. Let vV = ol .. .o where v,,...,v, € Z7U.7 UT L.

Let d (v™) = p, df(vN) =m. Then, if p is odd, Nlim o @MY =0.If p= 2k, then
—00

k
Jim gR@M) =3 Y el @ om0 4, ) @),

r=1 ap,...,ar€2N
a)+...+ar=2k

where o € % is such that Y(Z'©) = p(Z@tV) = 0 and agrees with ¢ on
Z@), CM(ay, ..., a,|a) are constants and T(ay,...ar) IS @ canonical projection onto
Fa)g.. . g,

Proof. Tt is immediate for p odd. For p = 2k > 0 we rewrite the expression from
Corollary 3 in the following way. We split the summation over partitions from

Corollary 3 into two sums: first over even signatures and second over partitions
of the same signature. Thus, we obtain:

k
*x N
ZCUED DD > >
r=1 ay,...,ar€2N S=(S1,‘..,ST)6.//’€(I’) 1<i1<...<ip <N
aj+..tar=2k s

a =
-
g P2RIN+HDHN 1) (m—2k)=2(r,i) (a7 Hqﬁ(ff(vN)).
j=1
Now, we need to evaluate the limit

qt2E(IN+D+HN —r) (m=2k)—(a,r)

m o
Cilay, ..., ala) = ngnoo (NI )Fa om0 Fy(ay, ..., a.la),
where 4
Fy(ay,...,a.la) = Z a~Hed),
1<i1<...<wr <N
One can derive the following recurrence formula for Fy’s:
Fylay,. . a]a) = fe,) (Fy_ (o, .. 0, +a)—a 2 NFy (a0, )
) 1— a—ZaIN a—Za

— g —
and Fy(o) =a T a2 where f(a) = T—a2a Assume first that a < 1.
Then we get

L(ay,...,a.la) = f(a,) @) Loy, .. 0 +a,)

—a¥ertter O, ),
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where Fo )
_ . N al, e ,ar
L(Ozl, . ,ozT]a) = ngnoo Fm
and L(a) = —f(«;). From this one can prove by induction the following formula:
Liay,...,aa) = Z (=1 H (ZMlka )agl(o" """ ar|M)
MeMA i=1

where M2 denotes block-diagonal r x r matrices built of blocks having 1’s on and
above the main diagonal and zeros otherwise, (M) denotes the number of blocks in
the matrix M and

T T
gy, | M) =2 (r—j—Da;+ > Ma;.

Jj=1 ,J=1
Notice that MTA has 2! elements. Thus, we finally get
O ey, ..y a,lr) = (1 — a*yFa M2 Lo o ayla).

That finishes the proof for ¢ < 1 by Lemma 2 (or, rather its version, in which
each signature produces a certain weight factor). For a > 1 we put b = 1/a.
Then we can rewrite Corollaries 1-3 using b and we change the summation over
1 <4 <...<i, <N to the summation over j, = N —¢.+1,...,j, =N—4¢,+1.
Then the whole proof is analogous and we get

CMay, ..., o a) = (1 —a~Hkg rm=2Hen Lo . ala™). O

Let us notice, that if we proceeded in the same way as above with a = 1, (assuming
that v,’s are from 7”) then we would obtain the result of [8] and the only nonvanishing

1 . .
constants would be C2%(2,...,2|a) = o which would enable us to write the result
in the convolution exponential form.

Example. To disentangle the statement of the theorem let us consider the lowest
degree moment for which the calculations are different from the case a = 1. Thus,
let vy,...,v, € 7”. Then we obtain
]\,li_rjloo PN vy v} ) = O3 (4layp(v,v,030,)

+ C3(2,2]a) (WW(tPvyu, ) (v, vyt ™2

+ w(tvztv4)zb(vlt“lv3t_l)

+ w(tv2v3t)1/)(vlt“2v4) + w(v1t2v4)w(t_lvzv3t_l)

+ zb(vltv3t)1/)(t_lv2t”lv4) + w(vlvztz)ib(t_z%m)) ,

here CHdla) = X Gaogley = 1 g I and Ci(4la) =
where C5(4la) = e 2(,[(1)—-1—+a—_4 or ¢ < 1 and C5(4ja) =
(™% — 2)2 . 1

—, 52,2 _— .

e (2,2|a) = T+ o fora > 1

To estabhsh a connection with our previous work (see [6]) we need a number of
additional assumptions. Note that we have not commuted .7~ and .7 —! with 7" yet
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(except when making a comment on g-commutation in Preliminaries). If we do that,
we obtain each moment that appears in Corollaries 1-3 in the form:

H(r8 ) = R LTEM),

where v(S|v) is an integer that depends on the partition S and v’ is an element of
€ on which d; and d, agree. If, in addition we assume that ¢ is (,.7” ~Y)-right
independent, i.e.

P't7) = p()p(t7)

then, together with the homomorphism assumption on ¢, we obtain a version of
Theorem 1, in which 1 is also (7,.7 ~!)-right independent. Let’s also assume that

I3 = ¢((J2) =0,

where (v) denotes the two-sided ideal generated by v. This assumption corresponds

to the spin two-dimensional representation of SUq(Z) (see [6]). Then, the result of
t2 . t—2

[6] can be obtained if we add the relation [J,,J_] = ———— and put ¢(t) = q. As

q” —q

it was shown there we then get convergence in law of SU, 4(2) to the g-oscillator and
in that sense the result obtained therein is a special case in this investigation.
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Note added in proof. The form of coefficients L(c, ..., c,.[a) given in the article was derived by
induction irrespective of f(«). Prof. M. Rahman indicated to me, which I gratefully acknowledge,
a—2a

. 1 . .
that in the case of f(a) = —a2e ~ a1 a much simpler formula can be given:

a—2a+..+ar)

— 1)(a—2a1—2a2 _ 1) “(a—2al—.4 —2ap _ 1) :

L(ah ceey Oé2|q) = (a_2a1
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