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Abstract. Tetrahedral Zamolodchikov algebras are structures that occupy an interme-
diate place between the solutions of the Yang-Baxter equation and its generalization
onto 3-dimensional mathematical physics - the tetrahedron equation. These algebras
produce solutions to the tetrahedron equation and, besides, specific "two-layer" solu-
tions to the Yang-Baxter equation. Here the tetrahedral Zamolodchikov algebras are
studied that arise from L-operators of the free-fermion case of Baxter's eight-vertex
model.

Introduction

The tetrahedron equation is a generalization of the Yang-Baxter equation, which is
fundamental in studying the exactly solved models in 1 +1-dimensional mathematical
physics, onto the 2 + 1-dimensional case. Nontrivial solutions of the tetrahedron
equation do exist. They were found by Zamolodchikov [1, 2] for the tetrahedron
equation "with variables on the faces" and by this author [3,4]- for the equation "with
variables on the links". In the latter case, the solution consists of the commutation
relation matrices of the so-called tetrahedral Zamolodchikov algebra - a structure
designed to span the gap between the Yang-Baxter and tetrahedron equations.

The existence of a large family of the tetrahedral Zamolodchikov algebras was
shown in the papers [3, 4]. However, there are some difficulties here: firstly,
the explicit calculation of the commutation relation matrices and, secondly, the
verification of whether those matrices really satisfy the tetrahedron equation. These
difficulties have been overcome in the mentioned works only in one particular
"trigonometrical" case. In addition to the solutions of the tetrahedron equation, the
tetrahedral Zamolodchikov algebras produce by themselves the "two-layer" solutions
to the Yang-Baxter equation, and here again only the trigonometrical case has been
studied [5].

In the present paper, the commutation relation matrices S are calculated in a more
general case, with the trigonometrical functions replaced by elliptic ones. The key role
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is played by so-called "vacuum covectors" (or vacuum row vectors) - the covectors of
a specific tensor product form that retain this form under the action of S. Somewhat
unexpectedly, the result is that the commutation relation matrices, in a sense, do not
depend upon the modulus k of elliptic functions. This result has two sides: we do not
obtain new solutions of the triangle equation but, due to this very fact, we obtain a
lot of new "two-layer" solutions of the Yang-Baxter equation.

Now some words about the contents of the following sections. In Sect. 1, the
commutation relation matrix S of the tetrahedral Zamolodchikov algebra is shown to
have, even in the most general situation considered in [4], a rather large family of
vacuum covectors transformed by S into themselves, so that this 8 x 8-matrix has 6
eigencovectors with an eigenvalue 1. The definition of the tetrahedral Zamolodchikov
algebra is recalled in Theorem 1.2. In Sect. 2, we show that some symmetry imposed
on the algebra makes S have one more family of vacuum covectors, in many respects
very similar to the former one. This enables us to find 2 more eigencovectors of 5,
with an eigenvalue —1. The matrix elements of S may now be found rather easily.
Moreover, the needed calculation turns out to have been already done in papers [3,
4]. The "two-layer" solutions of the Yang-Baxter equation are constructed in Sect. 4.
Some discussion is given in Sect. 5.

1. General Properties of the Tetrahedral Zamolodchikov Algebras Arising
from the Felderhof L-Operators

We will need some 2-dimensional complex linear spaces. They will be denoted by
the letter V with subscripts. Let us fix the bases in these spaces and regard them as
consisting of column vectors. The tensor products of such spaces will also consists
of column vectors, so that, in the usual way,

( xzs

:
yt.

The linear operators we will deal with are thus identified with square matrices.
Definition. The Felderhof L-operator [7] is a linear operator acting in a tensor spaces,
given by a matrix of the form

(a+ 0 0 d\

0 b_ c 0

0 c b+ 0

\ d 0 0 α_ /

with the condition
a+a_ -f b+b_ = c2 + d2 . (1.2)

The first of the two spaces in whose tensor product a Felderhof L-operator acts
will be from now on the same for all of them. We denote it as Vo. The second space
may be different for different operators, and is denoted as Vj, V2,

The Felderhof L-operators are solutions to the Yang-Baxter equation. To be exact,
let L = L0 1 and M = M02 be Felderhof L-operators acting in Vo <g> Vj and Vo ® V2

respectively. Each of them may be considered as acting in Vo ® Vj ® V2 if multiplied
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by an identity operator in the lacking space. Generally, let us identify a linear operator
with its product by an identity operator. The Yang-Baxter equation is

RuLQlM02 = M02L0lRι2 , (1.3)

the linear operator Rl2 acting, of course, in Vλ <&V2.

Theorem 1.1. The existence of a non-zero operator Rι2 that satisfies Eq. (1.3) is
equivalent to the fact that each of the values

r= ™ , fr=α- + 6 + - α + - b 2 -
α+6_ -I- a_b+ 2(α+6_ + a_b+)

is the same for L0 1 and M 0 2 . With this, R has the same form (1.1, 1.2).

Proof is given in papers [6-8].

Now let us recall some results from Sects. 5 and 6 of [4]. If L-operators L and
M satisfy Eq. (1.3), then there exists, in addition to R12, an operator R\2 such that

(Rι2) L0lM02 = M02L0lRl2 ,

and

(the superscript T denotes matrix transposing). As to the operator ϋ 1 2 , let us rename
it as R°l2.

Let one more Felderhof L-operator TV = iV03 be given with the same Γ and h
as L and M (the subscripts denote, as before, the numbers of the spaces in which
an operator acts). Consider symmetrical operators R®3 and R23 and non-symmetrical

ones R23 and R\3 that satisfy equations

^01^03 = ^03^01^13 '

with a = 0,1. The tildes are here due to the fact that each pair of L-operators has, of
course, its own jR-operators. However, to avoid bulky notations, we allow ourselves
to omit these tildes and distinguish the _R-operators by their indices.

Theorem 1.2. The constructed R-operators are generators of a tetrahedral Zamolod-
chikov algebra, i.e. the equalities

1

d,e,/=0

a,b,c = 0,1, hold. These equalities, with general L,M,N, determine the matrix
S = (Sfe

c

f) uniquely.

Proof can be found in [4]. It is based upon the fact that both the products R^R^R^
and R23Rf3R\2 transform the so-called vacuum vectors of the operator LMN into
those of me operator NML. As is shown in Sect. 5 of paper [4], linear operators
that perform such a transformation of the vacuum vectors form a 8-dimensional
linear space. So, for the two mentioned types of i?-operator products, their linear
spans are bound to coincide (each being 8-dimensional, too). This leads to the linear
dependences (1.4).
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Note that the "trigonometrical" case of the paper [5] is degenerate - there the
linear spans are 6-dimensional. However, they coincide as well.

Theorem 1.3. The symmetrical R-operators introduced above satisfy by themselves
the Yang-Baxter equation:

pO pO pθ _ pθ pθ pθ
i X 1 2 i t 1 3 Π 2 3 — Λ 2 3 Λ 1 3 Λ 1 2 .

Proof cm be drawn immediately from the parametrization of the Felderhof L-operators
given in paper [8] (see formulae (3) therein).

Now introduce the Felderhof L-operators

a, /?, 7 being complex numbers. This means, for example, that if L is given by (1.1),
then

0

0

ad

0

b_

ac

0

0

ac

a2b+

0

ad

0

0

a

\

/

The newly constructed operators have the same values Γ as L, M, N do. The value
h, for the matrix La, is replaced by

_ al - bl + a\b\ - a%)

and analogous values L , h (with their own α ± , b±) correspond to the matrices M*,

Obviously, there exists a one-parameter family of triples (α, /?, 7) such that

ha = hβ = hΊ. (1.7)

We will sometimes denote such triples by one letter ζ = (α,/?,7). Under conditions
(1.7), one can construct the .R-operators for La,Ma,NΊ in the same way as it was
done for L, M, N. Consider symmetrical ^-operators (but omit the superscript 0)

Raβ — (Raβ)\2 5 ^ α 7 — (^α 7 ) l3 ' ^ / 3 7

 = C^/37)23 '

so that, e.g.,

RaβLaMβ = MβLaRaβ. (1.8)

From (1.5), (1.6) and (1.8) follows

Rj2(ζ)LM = MLRn(ζ), (1.9)

wherein
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Further, from Theorem 1.3 with L, M, N replaced by L α , M^, NΊ follows

and this leads to the equation

^12(0^13(0^23(0 = ^23(0^13(0^12(0, (1.11)

with i? 1 3 (0 and R2^{ζ) defined by the formulae analogous to (1.10).

Theorem 1.4. The commutation relation matrix S of the tetrahedral Zamolodchikov
algebra possesses a one-parameter family of "vacuum covectors" mapped into them-
selves:

1

Σ xa(QYb(Q zc(Ost) = xd(OYe(Q Zf(O,
α,6,c=0

or simply
(X(ζ) <g> Y(ζ) <g> Z(ζ))S = X(ζ) <g> Y(ζ) 0 Z(O . (1.12)

The linear space generated by the covectors X(ζ) 0 Y(ζ) 0 Z(ζ) is, in the general
position, 6-dimensional.

Proof. As follows from Sect. 5 of paper [4], the operators Rn(Q that satisfy Eq. (1.9)
lie in a 2-dimensional linear space, i.e.

a=0

In this way the covector X(ζ) arises, and Y(ζ) and Z(ζ) are constructed analogously
from Rl3(ζ) and R23(ζ). The equality (1.12) follows then from (1.11) and (1.4).

As to the space generated by X(ζ) <g> Y(ζ) 0 Z(ζ) being 6-dimensional, this fact
is examined in detail in the following section for the operators L, M, N possessing
some special symmetry. In the general case, nothing essentially new arises, so we
will allow ourselves not to write down the corresponding formulae.

2. The Case of Baxter's L-Operators

2.1. Vacuum Covectors Mapped into Themselves

Consider now the Felderhof L-operators (1.1, 1.2) with α + = α_, b+ = b_. Such
Felderhof L-operators are, at the same time, a particular case of the Baxter 8-vertex
model L-operators. We will use the following parametrization:

a
±
 = cnλ , b± = snλdnλ ,

c = dnλ , d = ksnλcnλ .

Herein k is the modulus of the elliptic functions, λ is the so-called spectral parameter.
Evidently, Γ and h from Theorem 1.1 take now the values

Γ = fc, h = 0.

Taking this into account, let us fix k and denote the L-operators as LOi(λ), 0, i being
the numbers of spaces.
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Let us choose the L-operators from the previous section in the form

L = L^iλ,), M = L 0 2 (λ 2 ), N = L 0 3 (λ 3 ),

λ l 5 λ2, λ3 being complex numbers.

Then Rfj = R^iX^ λj) (a = 0,1; 1 < i < j < 3) can be chosen in the form

/ α0

—dγ

d,

Herein
α0 = cn(Xi - λj)

c0 = ^n(A4 - λ̂  )

αj = cn(λ2 + λ^)

C! = dn(λ + λj)

do = ksniλi — λj)cn{Xι —

6j = sn{\ -f λ^dn^ H- λ

dj = ksn(Xi + \j)cn{\i +

foiλ^Xj) and fι(X^λj) are arbitrary multipliers that will be written also as simply
/o and/! .

Theorem 2.1. //t owr "Baxterian" case the operator S has two invariant subspaces -
the "even" subspace and the "odd" subspace, generated by the products R^^π^h
with the even and the odd sum a + b H- c, respectively.

Proof. Let us introduce the matrix σ — Consider the products of R-

operators that stand in the left-hand side and right-hand side of the definition (1.4) of
S. They commute with σ 0 σ 0 σ if the sum a + b + c is even, and anti-commute
if the sum is odd. Therefrom the invariance of the corresponding subspaces is easily
drawn. Q.E.D.

Remark. As concerns the action of S upon the covectors (i.e. "from the right"), here,
of course, the "even" and "odd" invariant subspaces also arise. As we will show
in the end of this subsection, the 6-dimensional subspace generated by the vacuum
covectors, from Theorem 1.4 contains the whole "even" subspace.

Let us examine how the covector X(ζ) = (Xo X{) and the numbers a and β
from the previous section are connected in our "Baxterian" case. Consider the matrix
elements from the secondary diagonal of the operator i?12(O> o n m e one hand, as
expressed by the formula (1.13), and on the other hand, as obtained from the elements
of the symmetrical operator Raβ according to formula (1.10). This symmetry leads
to two conditions:

x- fιdι
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where

Certainly, by eliminating x from (2.2) and (2.3) one would get the old condition
ha = h0 (1.7).

Now let us choose
ff = M (2.5)

and express a and β through x according to (2.2, 2.3). The result is as follows:

1 - α 4

β )

1 -

where

the ratio under the square root composed, of course, of matrix elements of the operators

Let us do the same for the operators Rb

n and R^3. Denote

as in (2.4). The result is

-r—^i = (013 + Qΰl) ~^~, (2-9)

1_ 7 4 z

4 = (023 ~~ 023 ) ~2 Γ ' (2.12)

ρl3 and ρ23 constructed from matrix elements of the corresponding i?-operators
according to the same formula (2.8). Eliminating α, β and 7, one gets

Ύ 11

(ί?13 " eΓ/) 7 2 3 T = (ί>23 " fe') - 2 3 T ( 2 1 5 )

Equation (2.13) determines an elliptic curve in the space of the variables x, y.
The two other equations, given a point (x, y) in this curve, determine uniquely the
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corresponding value of z (without contradicting each other - see Subsect. 2.3 for
details). Each of the functions x, y, z has 2 poles in the elliptic curve. Consequently,
the components of the covector (1 x) 0 (1 y) 0 (1 z), which is proportional to
X(ζ) 0 Y(ζ) 0 Z(ζ), have altogether 6 poles. Therefrom the last statement of the
Theorem 1.4 follows in our "Baxterian" case.

Among the triples (x,y,z) that satisfy (2.13-2.15), there are (0,0,0), (0, oo,oo),
(oo, 0, oo), (oo, oo, 0). The corresponding products X(ζ) 0 Y(ζ) 0 Z(ζ) (wherein if,
say, x = oo, then X(ζ) = (0 1)) form a basis in the "even" subspace of covectors.
This proves the remark following Theorem 2.1.

As to the eigencovectors in the "odd" subspace with an eigenvalue 1, they can be
obtained in explicit form by projecting the other solutions of the system (2.13-2.15)
onto the "odd" subspace, so as to get (0, z, y, 0, x, 0,0, xyz). Such solutions are, e.g.,

X ~ £ l 2 ' V = #13 ' Z ~ ^23 >

_ _ - 1 _ - 1
X — Qγ2 •> y — £?i3 > Z — £?23

and so on.

2.2. One more Family of Vacuum Covectors

On more one-parameter family of vacuum covectors has been found out due to the
symmetry α + = a_, b+ = b_. Let us construct from the L-operators L, M, N given
by (2.1) the new ones,

L' = ( l 0 σ ) L (

wherein, as before, σ = ί 1. The following way of writing down these operators
will also be used: V1 °/

L' = σ^σo , M ; = σ 2 Mσ 0 , N' = σ3Nσ0 ,

the subscript of σ meaning the number of the space in which it acts.
The adding of the prime to L-operators is equivalent to replacements

b+ = b_ ^> d.

Recalling a well-known transformation of the elliptic functions, one can say also that
the L-operators remain the operators of the same form, while their spectral parameters
and the modulus of the elliptic functions take new "primed" values

Λ^ — ΓCΛ^ , k, — k.

Hence, one can perform all the constructions already done for L,M,N, also for
L', M', N\ with adding primes to all the letters. In particular, the equation analogous
to (1.11) holds

# 1 3 ( 0 ^ 3 ( C ) = i*23

with which the covectors X'(ζ'\ Yf(ζ'), Zf(ζ') are associated.
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On the other hand, the "primed" i^-operators are connected with the "unprimed"
ones by formulae analogous to (2.16). To be exact,

( ί ) ? - ^ - ^ , (2.18)

(R% = σ3R\jσι = -σιR\JσJ . (2.19)

Now rewrite (2.17) in the form

σ2R[2(ζf)σι σ ^ ί C V s ^ 2 3 ( C V 2

σ3i?
/

13(C
/)σ1 - σ ^ C ' K . (2.20)

According to (2.18-2.19), each of the factors separated by dots is a linear combination
of "unprimed" Λ-operators. For example,

a=0
1

a=0

wherein if X' = (x0 xx) then X'_ — (x0 - xx). Thus, the relation (2.20) provides
one more family of the vacuum covectors of the (unprimed) operator S, in addition
to that constructed in Theorem 1.4:

(X'(C') ® YL(C) <g> Z'(ζ'))S = Λ^(C') (8) y7(C7) ® ZL(C7) (2.21)

Let us introduce the ratios x',y',z' of the first coordinates of the covectors
X'(ζ'),Y'(ζ'\Z'(ζ') to their zero coordinates, as in formula (2.4). What is the
connection among x7, y1 and z'Ί The answer is given, of course, by the old formulae
(2.13-2.15), with the primes added to x, y, z, and ρ [see (2.8)] replaced by

Here in the right-hand side there are, of course, the matrix elements of Rfj. Note
that the interchange a ^ c, b ^> d of the matrix elements of the ^-operator that
corresponds to the adding of the prime, does not change the ratio fo/fλ (2.5).

The next theorem summarizes these considerations.

Theorem 2.2. If the operator S is constructed from the Baxter's L,M,N, then it
has, in addition to the vacuum covectors of Theorem 1A> one more one-parameter
family of vacuum covectors that has been described in this subsection. S is determined
uniquely by its action upon the vacuum covectors (formulae (1.12) and (2.21)). S is
an involution: S2 = 1, the eigensubspace with an eigenvalue —1 being 2-dimensional
and lying in the "odd9 subspace.

The last statement in the theorem, of course, applies to the action of S upon the
vectors as well as upon the covectors.

Proof It follows from (2.21) that if one decomposes
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into the sum of its "even" and "odd" parts according to the decomposition of
the covector space into the direct sum, then under the action of S the "even"
part remains unchanged, while the "odd" part changes its sign. These "odd" parts
sweep a 2-dimensional subspace, while the "even" parts sweep the whole "even"
subspace as well as covectors of Theorem 1.4 do. Thus, the two families of
vacuum covectors sweep two 2-dimensional subspaces in the "odd" subspace, the
corresponding eigenvalues of the operator 5 being +1 and — 1. Q.E.D.

The explicit expressions for the eigencovectors with the eigenvalue —1 can be
obtained in the same manner as those for the eigencovectors with the eigenvalue
+ 1 were obtained in the end of Subsect.2.1. With the eigenvalues being -hi and
eigencovectors known, it is not very hard to calculate the matrix elements of S.
However, the author prefers to profit by calculations already done in papers [3, 4].
The possibility of this is shown in the next subsection.

2.3. Further Properties of S, and its Matrix Elements in Explicit Form

We have seen that S is determined by its vacuum covectors, while the covectors are
determined by the values ρ^ (2.8) and ρ'^ (2.22), 1 < % < j < 3. Let us reconsider
the system of Eqs. (2.13-2.15). It has, of course, an infinite set of solutions (x, y, z),
each solution corresponding to a vacuum covector.

Lemma. The system (2.13-2.15) has an infinite set of solutions provided one of the
two following equalities holds:

012 - 013 + 023 - 012013023 = ° > ( 2 2 3 )
2 2 2 2 2 2 r\ /<~> ^ Λ\

012 ~~ 013 ~J~ 023 ~~ 012 013 023 = ^ ' ( 2 . 2 4 )

Proof After being raised to the power —2, each equation of the system (2.13-2.15)
becomes linear with respect to

x2 + χ-2 , y2 + y~2 , z2 + z~2 . (2.25)

This system always has a solution, e.g. x = ρ12, y = ρ13, z = ρ23. Thus, the system
has an infinite set of solutions if and only if its determinant, made up of the coefficients
at the unknowns, vanishes. The determinant, in its turn, vanishes if (2.23) or (2.24)
holds. So, the lemma is proven.

One can verify that the values ρτj defined as in (2.8) satisfy Eq. (2.23). Further,
the system (2.13-2.15) has the following evident property: it does not change when
the triple (0i2> 0i3> 023) *s replaced by any solution (xo,yo,zo) of the system. Thus,
the solutions of the system (2.13-2.15) possess by themselves one of the properties
of the type (2.23) or (2.24), namely (2.23) because of the possibility to continuously
deform (x, y, z) into (ρ 1 2, ρι3, ρ23):

x2 - y2 + z2 - x2y2z2 = 0. (2.26)

The left-hand side of Eq. (2.26) may be viewed as a scalar square of the covector
(0, z, 7/, 0, x, 0,0, xyz), if we define a scalar product between two "odd" covectors by
the formula

1(0 ΊI ?/ 0 ?/ o n 1/ ^ (0 i) ?; 0 i) 0 0 7; \)

= uxvx — u2v2 + u3υ3 — u4υ4 . (2.27)
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Then Eq. (2.26) means that the "odd" parts of the covectors X(ζ) <g> Y(ζ) <g> Z(ζ) lie
in a 2-dimensional isotropic (i.e. that coincides with its orthogonal complement with
respect to the scalar product) subspace. It is easy to count that 2-dimensional isotropic
subspaces in a 4-dimensional space form a 1-dimensional submanifold in the manifold
of all the 2-dimensional subspaces. From all that follows that the eigensubspace of
the operator S with the eigenvalue 1 (in the "odd" covector space) is determined by
merely one complex number. Of course, the same is true for the eigensubspace with
the eigenvalue — 1. Thus, S actually depends on two parameters instead of the four:
X{, λ2, λ3 and k. The following calculations are in full agreement with this conclusion.

According to Eqs. (2.8) and (2.22),

sn - cn
1

dn
sn • dn

^ sn - dn

en

Define the quantities

. (2.29)

en

C • • : = :

pηn

dn J

One can verify by standard means that

^ ^ = C ^ 2 X t , (2.30)
cij ~ s y d n

1 + s.;Cu en
TLJ1 = ^2λJ. (2.31)

ctj + 8ij dn :>

For the given pair (i,j), the equalities (2.30, 2.31) enable one, as well, to express
en en

s- and c,_ through —- 2λ, and -— 2X-. There is no need to write down the explicit
13 lJ dn ι dn J

formulae; note only that they contain a square root, but this little non-uniqueness
doesn't influence our conclusions. Finally, the ratios (2.28, 2.29) are expressed through
si3 and cl3.

Thus, one can change the modulus k of elliptic functions without changing the
operator S. For this, it is sufficient that the values

Cn ?\ Cn ?λ CU ?λ
dn dn dn

remain invariable. This permits one to take k —> 0, the case in which S has been
already found in the previous author's works [3, 4] (by direct calculation, according
to Definition (1.4) of S).
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The explicit expressions for the matrix elements of S, with our choice (2.5) of the
ratio / 0 // 1 ? are

QOOO _ oOll _ olOl _ QllO _ -,
°000 ~ °011 ~ °101 ~~ °110 ~ i '

- Ψi),

the other matrix element equal to 0. Here the values φλ, φ2, φ3 are given by

1 - ^ 2 Λ Z

= ^ — . (2.32)

Thus, we can conclude this section by formulating its results as the following theorem.

Theorem 2.3. The commutation relation matrix S of the tetrahedral Zamolodchikov
algebra corresponding to Baxter s L-operators L^X^ depends actually on only 2
differences of the values φi (2.32) (while a priori S depends on 4 arguments k, Xlf λ2,
λ3). The explicit form of the matrix elements is as given in the preceding paragraph.

3. The "Two-Layer" Solutions to the Yang-Baxter Equation

Solutions to the Yang-Baxter equation of a specific "2-layer" form can be constructed
out of the i^-operators described in Subsect. 2.1, as well as it was done in paper [5]
for the trigonometrical case.

Such an ^-operator depends on three variables: R% = R(lJ{Xi1 λ , fc). Consider the
4-dimensional spaces

Wx = Vx ® V{, W2 = V2 ® V2 , W3 - V3 0 V3

and the operators

1

Rtj(\JXΓkvμι,μΓk2) = Y^R^j(Xi,XJ,k0^Rl(μ^μJ^2) (3.1)
a=0

acting in Wi^Wy What must be the arguments λ2, μτ, kl9 k2 for the Yang-Baxter
equation

-^12^13^23 == ^23^13-^12 (3-2)

to hold (for each R^, the corresponding arguments are implied)?
Using (1.4), one can verify that Eq. (3.2) holds if

S(XV λ2, λ3, kι)ST(μvμ2, μ3, /c2) = 1 .

Then, from the expressions for the matrix elements of S (Subsect. 2.3) one sees that
S transforms into Sτ under the change

φi -> const - φ%,

with y/th((/?1 — φ2) and y/\h{φ2 - φ3) multiplied by Λ/-Ϊ> and yjGthiφ^ — φ3)
multiplied by (—y/--ϊ). Taking into account that, besides, S — S~ι, we get the
following theorem.
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Theorem 3.1. The "two-layer" operators Ri3 given by (3.1) satisfy the Yang-baxter
equation (3.2) if the sum

with φτ determined by (2.32), does not depend on i — 1, 2, 3.

It is seen from Theorem 3.1 that if one fixes 5 independent arguments of the
operator Rl2, then the operators Ru and R23 satisfying Eq. (3.2) form a one-parameter
family.

4. Discussion

In this work, the commutation relation matrix S of the tetrahedral Zamolodchikov
algebra is calculated in a more general case than in papers [3, 4]: the tetrahedral
algebras now depend upon the modulus k of the elliptic functions, while in the
mentioned works it was equal to zero. The main result is that, actually, no new
matrices are obtained in this way, the "old" matrices thus demonstrating a sort of
universality. This reminds us of the uniqueness of the "static limit" solutions to the
tetrahedron equation with variables on the faces ([10], Sect. 6).

It is worth mentioning that if one imposes upon the Felderhof L-operators the
condition d = 0, but not the conditions α + = α_, b+ = b_ [see formulae (1.1, 1.2)],
then the operators S obtained starting from such L-operators will again coincide with
the already known ones. This may be concluded from a simple consideration that
will be presented elsewhere. Thus, only the case of the most general L-operators still
remains unstudied.

As concerns the already constructed 5-operators, it would be very interesting to
know whether there exists any 2-dimensional "exactly solved" spin models connected
with them, like the 1 -dimensional spin chains are connected with the solutions of the
Yang-Baxter equation.
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