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Abstract. We consider random one-body operators that are analogs of the statistical
mechanics Hamiltonians with a varying interaction radius R, the dimensionality of
space d and the number of the field components (orbitals) n. We prove that all the
moments of the Green functions for nonreal energies of these operators converge as
R, d, n —» oo to the products of the average Green functions, just as in the mean
field approximation of statistical mechanics. We find in particular the self consistent
equation for the limiting integrated density of states and the limiting form of the
conductivity, which is nonzero on the whole support of the integrated density of
states.

1. Introduction

The spectral and related properties of random operators have attracted considerable
interest in both physical and mathematical literature. It is believed, in particular, that
under suitable conditions the spectrum of these operators is pure point and dense.
This has been proven under various circumstances (in the one-dimensional case or
in any dimension near the edges of the spectrum or for a sufficiently large random
potential). Therefore, although many important problems still remain open here (two-
dimensional localization, calculation of the low frequency conductivity and other
physical quantities, etc.), the strong disorder (or low energy) regime in the spectral
theory of random operators can be regarded as rather well understood rigorously,
especially in comparison with the weak disorder (or high energy) regime. This regime
is almost unexplored rigorously despite extensive numerical and theoretical physics
studies. In particular, the weak localization theory (see e.g. review [19]) allows us
to calculate the so-called quantum corrections for many important physical quantities
and, being supplemented by some renormalization group ideas, predicts complete
localization in one and two dimensions, a mixed spectrum in higher dimensions and, as
a result, the metal-insulator transition. The latter is largely similar to phase transition in
statistical mechanics. Thus, based on the statistical mechanics experience it is natural
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to try to develop some versions of the selfconsistent approaches that are widely
accepted tools of study of difficult phase transition problems. In statistical mechanics
the most widely accepted selfconsistent schemes, such as numerous versions of the
molecular field approximation or the spherical model, can be obtained as the limits
of the infinite interaction radius, dimensionality of space or the number of field
components (dimensionality of the spin space). An important feature of these limits
is that they are nonperturbative in the sense that the interaction responsible for the
phase transition is not assumed to be small in corresponding models. Small (or at
least suppressed) in these limits are the fluctuations of the order parameter and other
important physical quantities.

In this paper we study some random operators that can be regarded as analogs of
statistical mechanics models with a large interaction radius R, a large dimensionality
of space d or a large number of components n. We calculate the integrated density of
states (IDS) of these operators and the conductivity in the limits of infinite R, d and
n. In fact, the latter model was introduced and studied at the physical level of rigour
by Wegner [31] (for some rigorous results on the IDS of this model see also [7]).

We use the method which is analogous to the method of correlation equations (or
cluster expansion) of statistical mechanics and allows us to calculate the IDS and
the conductivity (more exactly, the measure which is naturally associated with the
conductivity) in all three limits.

In principle, our method can also be used to construct the respective R~1-, d~x-
and n~ι-expansions for which our limit expressions are the leading terms. We hope
to discuss these expansions in subsequent publications (see however [33] where
the physical n~ι-expansion scheme was developed for the conductivity and [7] for
rigorous expansion for the IDS).

The paper is organized as follows. In Sect. 2 we introduce the models and formulate
the main results, according to which the IDS and the conductivity are practically the
same for all three models and can be calculated from some selfconsistent equation.
The former fact should be contrasted with statistical mechanics, where the limits
R = oo and d = oc coincide with the mean field approximation, while the limit
n = oo coincides with the spherical model. In Sect. 3 we derive infinite systems of
equations for the moments of the Green functions of the respective operators that
are our main technical tools. In Sect. 4 we solve these equations in the limits R, d,
n = oo, derive a selfconsistent equation for the limiting IDS (see Eq. (2.15) below)
and in Sect. 5 we study some properties of the IDS (existence of the bounded density,
location of the support, the form of singularities at the edges of the support). In Sect. 6
we calculate the conductivity of the respective disordered system in the same limits.
Section 7 is devoted to discussion of our results, in particular their relation to the
random matrix theory and their possible interpretations.

2. Models and Results

We start from the random operator containing an analog of the interaction radius. Let
HR be the self adjoint operator, acting in £2(Σd) and defined by the matrix

HR(x, y) = h(x -y) + R~d/2φ((x - y)/R)W(x, y). (2.1a)

Here x,y G Z d ,

h(-x) = h*(x), Y* \h(x)\ < oo , (2.1b)
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R > 0, φ(t), t e Rd is a piece-wise continuous, nonnegative and such that

\φ(t)\ < φ0 < oc , φ(t) = 0, |ί| > 1, ί φ\t)dt = 1, (2.1c)

Rd

and
) (2. Id)

are identically distributed and independent (modulo the above symmetry condition)
random variables such that for all x, y G Z d ,

E{W(xvyι)W(x2,y2)} = w2{δ(xι - x2)δ(yι - y2) (2.1f)

+ δ(x! -y2)δ(yι -x2)}.

Our second random operator Hd contains explicitly the dimensionality d of the
space ΊLά'. It acts also in £2(Zd) and is defined by the matrix

ffd(α;, y) - hd(x - y) + (2φ- 1/ 2W 1(x, y). (2.2a)

where

hx(x3) J | 6(xfc), ft^O) = 0 , (2.2b)

δ(x) is the Kronecker symbol and hx(x) ,x G Z 1, satisfies (2.1b),

Wi(x,2/) = < π , i / 1 (2.2c)

and W(x,y) are as in (2.1d)-(2.1f).
The simplest and quite important example of the operator hd is the discrete

Laplacian for which
ft1(x) = 0, | x | ^ l (2.2d)

We will see later that the form (2.2b) of the unperturbed operator hd in (2.2a), which is
more special than (2.1b), is dictated by the requirement to have the nontrivial d = oo
limit for the IDS. We note that the d = oo limit is technically most complicated to
derive among the three considered.

The third operator Hn acts in f(Zd) 0 C n and is defined by the matrix

H(a, x\ β, y) = h(x - y)δaβ + rΓ'^δix - y) Waβ(x), (2.3a)

where x,i/G Z d , α, β — 1,. . ., n, /ι(x) is the same as in (2.1), δ(x) is the Kronecker
symbol in Z d ,

Waβ(x) = W^α(a;) (2.3b)

and Waβ(x) are identically distributed and independent for 1 < a < β < n random

variables such that (cf. (2.1e,f)) for all x e Zd and 1 < α < β < n,

aβ 0, (2.3c)

ιβ{ Wa2β2(x2)} = w ; 2 ^ ! - x2){δaιQ2δβιβ2 + δa{β2δa2β{} . (2.3d)

The random operator (2.3) is a special case of the operator introduced by Wegner
[31] (the case of the site-diagonal disorder, according to Wegner's terminology). It
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can be regarded as the n-component analog of the discrete Schrόdinger operator (the
Anderson model) or as the Hamiltonian of a disordered system in the dimensions
d + dx, dx = n, in which the random potential in n "transverse" dimensions is
considered in the "mean field" approximation.

In all three cases we consider "maximally random" operators with independent
(apart from the Hermitian symmetry) entries (see however the end of this section, in
particular, Eq. (2.30)). Note also that in (2.If) and (2.3d) we assume that the variance
of the diagonal random entries is twice large as that of the off-diagonal ones. This
assumption is very convenient and simplifies considerably many of our formulae. On
the other hand our main results are independent of the diagonal entries and coincide
with those for the zero diagonal entries. We demonstrate this in the Appendix.

All three families of random matrices (2.1)-(2.3) define the essentially selfadjoint
metrically transitive operators in the sense of [25]. They have the form of a nonrandom
translationally invariant part and a fluctuating random part explicitly containing the
parameters R, d or n that we are going to send to infinity. The random parts are such
that the larger these parameters are, the more "extended" and smaller randomness is.
Similar scaling of the interaction is widely used in the mean field and the spherical
approximations of statistical mechanics (see [3,12,15,20,26-28]).

Our intention is to study, first of all, the simplest, though rather important in several
respects, spectral characteristic of random operators known as the integrated density
of states (IDS). It is defined as the measure

Na(dλ) = Έ{^a(0,0;dλ)}, (2.4)

where a is R or d and c?a(dλ) is the resolution of identity of the operators Ha,a = R,
d, and ^a(x, y\ dλ), x, y E Zd are the respective matrices. For the model (2.3),

Nn(d\) = E jn" 1 ] Γ grn(α, 0; α, 0; d\)\ , (2.5)
^ α=l J

where ^ n ( α , x\ β, y; dλ) is the matrix of the resolution of identity of the operator Hn.
For another definition of the IDS, which is based on a kind of the thermodynamic
limiting transition, and for equivalence of definitions, see [25].

The natural condition of there being nonzero and noninfinite IDS in these limits
fixes the normalization factors Rrχl2,dΓλl2 and n " 1 / 2 in (2.1)-(2.3). In full extent
this will be seen below. Here we give simple arguments. Indeed, according to (2.4)
and the spectral theorem for a = R, d9

oo

JJ a a(0,0)}> (2-6)
— OO

and for a = n,

oo

X2Nn(dλ) = EJn- 1 £(*£)(<*, O α, 0)1 . (2.7)ί

Now, calculating the r.h.s. of these relations from (2.1)-(2.3), we find that it is nonzero
and finite in the limits R, d, n -> oo.
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For an arbitrary nonnegative measure μ(dt) on R, such that

μ(dt) = 1, (2.8)

we define its Stieltjes transform

oo

/(*)= ί (t - zΓxμ(dt), lmzyίO. (2.9)

— oo

It is an analytic function for Im z Φ 0, having asymptotics

f(z) = -z~ι + o(z~ι), z -> oc , (2.10a)

and such that

Imf(z) Imz > 0 , imz^O. (2.10b)

The Stieltjes transform uniquely determines the respective measure, since due to the
Stieltjes-Perron inversion formula for any interval A = (λ1? λ2) whose endpoints are
continuity points of μ(dt),

A

7μ(Δ) = lim(2πi)-' / [/(A + iη) - /(A - iη)} dλ . (2.11)
77JO J

Denote by N0(dX) the IDS of the unperturbed operators in (2.1)-(2.3). It is easy
to show that for these Toeplitz operators,

N0(dX) = mes{h(k) edX,keΊd}, (2.12)

where T^ = [0, l]d is d-dimensional torus and

h(k)= V h(x)exp(2πikx) (2.13)

is the symbol of these operators.
Our result for the IDS is (see Theorem 1 below) that the measures Na(dX),a =

R, d, n converge weakly as a —> oo to the limit N(dX) whose Stieltjes transform

r(z) = ί(X - zΓιN(dX) (2.14)

can be found as a unique solution in the class (2.10) of the equation

r(z) = ro(z + w2r(z)) (2.15)

in which ro(z) is the Stieltjes transform of the IDS (2.12) of the unperturbed
(nonrandom) operators in (2.1)-(2.3).

Note that for the operator Hd of (2.2) the unperturbed operator and its IDS depend
also on the parameter d. Therefore, unlike HR and Hn, in the case of Hd the limiting
transition d —> oc affects N0(dX) also. More precisely, in this case N0(dX) is given
by the limit of (2.2b), (2.12) and (2.13) and is

N0(dX) = (2πh2y
ι/2exp(-X2/2h2)dX, (2.16)
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where

Equation (2.15) was found by Wegner for the operator (2.3) in the limit n —
oo (infinite number of the orbitals in the terminology of Wegner). In fact, this
equation had appeared before Wegner's paper as the equation for the limit eigenvalue
distribution of some nxn random matrices in the limit n = oo [24]. This distribution
is known as the deformed semicircle law. The situation here is similar to that in
statistical mechanics, where selfconsistent equations of the Curie-Weiss model (the
mean field approximation) and the spherical model had been proposed long before it
was understood that these are the limits of an infinite interaction radius [20] and an
infinite number of components [15,28] of the classical Heisenberg (n-vector) model.

Note also that the Wegner model (2.3) seems to be the closest to the model with
pure diagonal randomness, i.e. to the discrete Schrodinger operator with a random
potential. Nevertheless it has the same limiting IDS as the seemingly much more
"off-diagonal" disorder models (2.1) and (2.2).

Now we shall outline the strategy of derivation of (2.15). Consider the family

r k
 Ί

Έ< Y\G{xi^yi)>^k > 1, of the moments of the Green function of the random
L 2 = 1 J

operators (2.1)-(2.3). By using the resolvent identity, we derive for this family an
infinite system of linear relations (that can be regarded as analogs of the BBGKY
or the Kirkwood-Salzburg equations in statistical mechanics). Some terms in these
relations contain the small parameter a~ι in front of them. Treating these relations
as an infinite system of equations for the moments and neglecting the small terms,

k

we observe that the truncated system admits the factorized solution f| (^}{xi — y^),
i=\

k > 1, where ^(x — y) is the Green function of the Toeplitz operator which is the
sum of the nonrandom part of Ha and the effective coordinate-independent potential
w2δ(x — y)S?(0). This yields Eq. (2.15) which is in this scheme the solvability
condition for the truncated system.

To justify this procedure, we act again as in statistical mechanics. Namely, we
consider our infinite system as a linear equation in some Banach space containing, in
particular, our family of moments. We prove that if the imaginary part of the energy
is large enough, then the nonsmall part of the equation defines the contracting linear
operator and that the norm of the remainder is small.

Thus, our central technical result (see Theorem 4.1) is that in the limit a — oo
the moments of the Green function of our random operators (2.1)-(2.3) are factorized
into the products of the first moments, and these first moments are to be found
self consistently, by solving the nonlinear functional equation (2.15). This result is
fairly similar to the main technical result of the mean field approximation (R, d — oo
limit) and the spherical limit (n = oo limit) in statistical mechanics, where the
correlation functions of all orders are factorized into products of the correlation
function of order one (mean field approximation) or of orders one and two (spherical
model). We refer to the papers [12, 13] for some form of the latter results and for
references.

Consider now the conductivity of a disordered system, described by the Hamilto-
nians (2.1)-(2.3). According to the Kubo formula, the conductivity of d-dimensional
ideal Fermi gas at a temperature T, described by a one-body Hamiltonian H and
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subjected to an external alternating electric field of the frequency ι/, is [21]

(2.17)ί p-\nF(E + u) - nF(E)]σ(u,E)dE .

Here e is the electron charge, nF{E) = (exp{(£ - EF)/T} + I ) " 1 is the Fermi
distribution function, EF is the Fermi energy,

σ(y, E) = m(E + v,E), (2.18)

and m(Xι, λ2) is the density of the measure

d

M(dXudX2) = ̂ 2E{[ϋk^(dXι)vk^'(dX2)](0,0)} (2.19)
fc=l

on R2 in which
v = i[H, x] (2.20)

is the velocity operator, £ = ( # ! , . . . , xd) is the coordinate operator and %\dX) is the
resolution of identity of the Hamiltonian H.

For T = 0, (2.17) has the form

EF+v

σa>,0) - v~ι ί σ(v,E)dE, (2.21)

and for low frequencies v <C EF,

σac(vy 0) = 2e2iτ~~ιm(EF -f z/, E F )(1 + o(l)) , i/ -> 0, (2.22)

i.e. the low frequency conductivity (dc conductivity in particular) can be expressed
through the density m(Xι, λ2) itself.

Consider first the case of a = R. According to (2.19), (2.20) and (2.1),

M(R 2) = ] Γ x2(\h(x)\2 + w2R-dφ2(x/R)). (2.23)

Thus, to obtain a finite and nontrivial answer in the limit R = oo, we have to consider
the normalized measure

M(R\dXι, dΛ2) = R~2M(dXι, dλ 2 ), (2.24)

and with this normalization we can set without loss of generality the nonrandom part
of (2.1) to be zero (h(x) = 0).

Similar arguments show that for a — n, d the properly normalized measures are

M{d\dXλ, dX2) = M(dXx, dX2) (2.25)

and (cf. (2.5))

n d

M^ίdλ^dλj) = n"1 Y] Y]^{[v1%
{n\dXι)v.%{n\dX2)}{a^\a,Q)} , (2.26)

respectively.

vdX2 ^Y
α=lj=
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n

One more reason to introduce the normalized sum n~ι Σ in the definitions of

the IDS (2.5) and the conductivity (2.26) corresponding to the hamiltonian (2.3) is
that both these quantities are thermodynamic limits of the corresponding quantities
for the finite system confined to the box Λ c Z d . Namely, if HA is the Hamiltonian
of a finite system, i.e. the restriction of (2. 3) to Λ, then

N^\dλ) = (n\A\Γ[Ύr %£\d\), (2.27)

d

Λ4n)(dλ1,dλ2) = (n\A\rιTrY/vj&in\dXι)ϋj&in\dX2). (2.28)
3 = 1

The presence of the traces in these formulas follows from the general principles
of quantum statistical mechanics and the normalization factor (nlΛI)"1 is just the
inverse total number of the degrees of freedom. Thus, (2.27) and (2.28) are the
quantities per one degree of freedom. It can be shown that after performing the
thermodynamic limiting transition Λ —> oo, (2.27) and (2.28) take the forms (2.5) and
(2.26), respectively. For the IDS the corresponding proof can be found in [25], for
the conductivity it can be obtained by similar arguments.

According to (2.17)-(2.22), the conductivity is determined by the densities of
the measures (2.24)-(2.26). The existence of bounded densities of these measures in
the generality which we need here has not been proved. We will not discuss here
this important general question of mathematical physics of disordered systems and
will not study the convergence of these densities. Rather, we will consider the weak
convergence of measures (2.24)-(2.26).

Since calculation of the weak limit of measures is equivalent to calculation of their
Stieltjes transforms for a nonzero imaginary part of the energy (spectral variable), we
can regard this imaginary part as an analogue of a nonzero symmetry breaking field
amplitude in statistical mechanics models. Symmetry breaking field is widely used
in statistical mechanics calculations of various physical quantities, their infinite R, d
and n limits in particular. Thus, our procedure of calculation of the same limits
of the density of states and the conductivity via calculation of the respective limits
of their Stieltjes transforms can be regarded as application of an analogue of this
statistical mechanics technique. By using this procedure, we prove in Sect. 6 that the
measures M^a\dλι,dλ2) converge weakly as a —> oo to the limiting measures with
the densities

m(\ι,λ2) = ρi

w2 I \ x 2 ' \x)dx, a = R, (2.29a)

w2, a = d, (2.29b)

4 ί \\7h(k)\2dk
w4 / ! —4) , a = n, (2.29c)

J |Λ(fc)C(λ+i0)| 2 |ft(*)C(λ + 0)|2'

X <

where ζ(z) — z + w2 r(z). Results (2.29a) and (2.29b) are obtained for the zero
translational-invariant parts of (2.1) and (2.2). According to (2.23) and (2.24) in the
former case this part does not contribute to the conductivity, while in the latter case this
assumption simplifies considerably the calculations. The result (2.29c) was obtained
by Wegner [31] by perturbation theory arguments.
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We discuss these formulae in Sect. 7. Here we mention three more variants of our
results.

In the first variant we consider correlated entries in the random part of (2.1)-(2.3)
restricting ourselves for definiteness to the case of a = R. Assume that W{x, y) in
(2.1) are Gaussian-distributed random variables which satisfy (2.1e) and

E{W(xι,yι)W(x2,y2)} = B{xx - x2,Vl - y2) + B(xx - y2,yx - x2) (2.30)

instead of (2.If). Here B(x,y) is a positive definite function on Zd x Zd such that
B(x, y) = B(y, x) = B(-x, y) and

]Γ \B(x,y)\ <oo.

In other words, now we introduce the statistical correlations of each W(x, y) with
W's in its neighbourhood and in the neighbourhood symmetrical with respect to the
principal diagonal. However we restrict ourselves to the Gaussian-distributed W's.

By the same approach based on the moment equations, it can be shown that in
this case [16]

r(z)= / r(p,z)dp, (2.31)

Ύd

and r(p, z) is the unique solution of the equations

r(p,z) = [h(p,z) - z - Δ(p,z)Γ\ (2.32)

Δ(p, z)= ί 5(p, q)r(q, z)dq , (2.33)

Ίd

in which h(p) and B(p, q) are the Fourier transforms of h{x) and B(x, y) given by
(2.30), respectively. Besides, the solution of this equation should be sought in the
class of functions continuous in p e Ύd for each z, Im z Φ 0, analytic in z, Im z φ 0
for each p eTd and such that for any φ(p) e J&2(Td) with unit norm we have

Im Γ / r(p, z)\ψ(p)\2 dpi - Im z > 0, Imz Φ 0,Γ /
J

sup sup η
<ψ η>\

/ r(p,iη)\ψ(p)\2 dp < 1.

The result of this type, including Eqs. (2.32)-(2.33) was first obtained by Wegner
[31] for the case of a = n by perturbation theory arguments.

In the second variant of the above results we replace the translational-invariant
"unperturbed" part in (2.1)—(2.3) by a diagonal one. More precisely, restricting
ourselves again to the case of a = R, we assume that the Toeplitz operator h(x - y)
in (2.1) is replaced by the diagonal operator δ(x — y)h(x), where now h(x),x G Zd

is an ergodic field independent of all W's. Thus, we consider the random operator

δ{x - y) h(x) + RΓdl2 φ((x - y)/R) W(x, y) (2.34)

instead of (2.1). This operator is again the metrically transitive operator in the sense
of [25] and admits the IDS. If F(dh) = P{h(x) e dh} is the probability distribution
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of h(x) (which coincides with the IDS of the diagonal part of (2.34)), then the R — oo
limit of the IDS of (2.34) exists and can be found from the same Eqs. (2.14)-(2.15)
in which the role of N0(dλ) is played by F(dλ).

In the third variant we consider Hermitian random matrices instead of symmetric
ones with real-valued entries. In this case (and for a = R again) W(x, y),x,y eZd,
are complex-valued random variables with the zero mean value and such that
W(x,y) = W(x,y), W(xι,yι) is independent of W(x2,y2) for all pairs (x2,y2) φ
(xuyx), (yux2) and

E{ W\x, y)} = 0, Έ{\W(x, y)\2} = 2w2. (2.35)

We can set W(x,y) = Wλ(x,y) + iW2(x,y), where W {x,y), j = 1, 2, are two
independent copies of real-valued random variables entering into (2.1). Our results
are also valid in this case (with w2 replaced by 2w2). The method of proof is here
also based on the technique of the moment equations which was used in all previous
cases.

3. Equations for the Green Function Moments

Since derivation of the infinite system of the linear relations for the moments of the
Green functions is rather cumbersome, we divide the problem into two parts. First, we
will derive these relations for the operators (2.1)-(2.3) with the Gaussian-distributed
random variables W's. After that we will give the derivation for arbitrarily distributed
W's with finite third moment. However, for a = d we will restrict ourselves to the
case of h(x) Ξ 0 in (2.3a). Derivation of the respective relations for the nonzero
nonrandom part in (2.3) will be published elsewhere.

Definition. Let f(Xk', Yk) be a complex-valued function of Xk = ( x 1 ? . . . , xk), Yk —
(yu .. ,yk\xί,yι G Zd,i = 1,..., fc, fc > 1. Then,

sup \f(Xk;Yk)\, a = R,n

i/2 (3.1)
, a — d..sup) \f(Xk;Yh

Proposition 3.1. Let Ha, a — R,d,nbe the random operators, defined by (2J)-(2.3)
with the Gaussian-distributed random variables W's,

Hn —z) (α,x;α,y), a = n,
a=\

η =\lmz\φQ, and

be the Green function of the Toeplitz operator h, defined by the nonrandom part in
(2.1)-(2.3). Introduce the moments

flGix^yΛ. (3.4)
2 = 1 ^
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Then,

2 Σ - 2/1)

(3.5a)

fcFfe), (3.5b)

where

ί R~dφ2{x/R), a = R

δ(x), a = n, (3.6)

(2d)~lS(x-l), a = d

δ(x) is the Kronecker symbol, and for some η0 > 0 independent of a and η = \lmz\ >

Vo>

115 IU <Ckη | α _ 1 / 2 α ^ (3.7)
Remark. We use here and below the common symbol (7 for quantities, independent
of α, &, η, but dependent, generally speaking, on the moments of W(x, y), the function
φ(x) and η0.

Proof We will need several simple auxiliary facts.

(i) Let A, B and A + B be selfadjoint operators and B be bounded. Then, for
I m ^ ^ O ,

(A + B- z)-χ =(A- z)~{ -(A + B- z)-χB(A - z)~\ (3.8)

\\(A-zΓι\\<η-\ η = \Imz\. (3.9)

Therefore, if G(x,y) = (A — z)~ι(x,y) is the Green function of a selfadjoint
operator A acting in £2(Zd), then

\G(x,y)\< \\(A -zΓι\\<η~\ (3.10)

] Γ |G(xi/)|2 - (G*G)(xx) < η-2 ^ |G(xy) | 2 < η~2

(ii) Let /ι be the selfadjoint Toeplitz operator in £2(Zd) defined by the matrix h(x — y)
with a function h(x), that satisfies (2.1b), and g(x - y) be the Green function of this
operator. Then,

^ Ξ ^ \g(x)\ < 2η~ι < I/ft (3.12a)
X

if _ _
(x% η>ηo>2h. (3.12b)

Indeed, the resolvent identity (3.11) with A = 0 and B — h yields

#(#) = -z~ιδ{x) + 2" 1 y ^ ^ - 2/)ft(2/),
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where 6(x) is the Kronecker symbol. Thus, g < η~ι ~{-η~ιgh. This inequality implies
(3.12).
(iii) Let ξ be a Gaussian random variable with E{ξ} = 0 and /(ί), t e R be a
bounded function. Then,

= E{ξ2}E{f(ξ)} . (3.13)

This formula can be proved by integrating by parts.
(iv) If G(x, y) is the Green function of a selfadjoint operator Ho + V acting in £2(Zd),
and the matrix V(x, y) of V is real-valued, then for s φ t,

2/). (3.14)

This formula follows easily from (3.8).
We start our derivation of (3.7) from the case of a = R.
Consider F^x^y^ = E{G(xι,yι)}, where G(x,y) is the Green function of (2.1).

By using the resolvent identity (3.8) with A and B equal to the nonrandom and
random parts of (2.1) respectively, we have

v ^ r ^ t ^ i y ) — y y . ^ y ) •*• ̂  / V J Γ ^ ^ O ^ o ^ v r v ^ 5 ^ ) τ \ y ) I )yv^ ί// v — ' • * - - ) /

s,t

Notice that, rigorously speaking, (3.15) is not just the matrix form of (3.8). Indeed,
the latter was written only for a bounded B, while in our case we have an unbounded
operator because of the Gaussian nature of W(x,y) in (2.1). However, we will not
justify this step here. This will be done later for arbitrary distributed W s , having a
finite second moment (see Lemma 3.1 below).

By averaging (3.15) and using (2.1e), (3.13) and (3.14), we obtain

F{(xύ yλ) = g(x{ - yλ) + w2R~d ] Γ φ2((s - t)/R)
s,t

x E{G(Xι,t)G(s,s) + G(xus)G(t, s)}g(t - Vι). (3.16)

In view of (3.4) this relation can be written in the form (3.5a) with

S,(z i ; yλ) = w2R-d Σ Φ2((s - t)/K)Έ{G(xί,s)G(t, s)} g(t - yλ). (3.17)
S,t

But according to the Schwarz inequality and (3.11),

y^G(xι,s)G(t,s) < V \G{xλ,s)\2 V|G(ί,s)|2 < V~2- (3.18)
s L s s J

This bound, (2.1c) and (3.12) yield for η>η0:

IS^x^yOl^w^lR-^lgit-yOl ]ΓG(Z 1 ) S)G(M)
t S

ΛR~d. (3.19)

We have arrived at (3.5a).
The two simple inequalities (3.18) and (3.19) are the essence of all subsequent

derivations of (3.5)-(3.7). They show that terms which contain sums with Green
functions, having noncoinciding arguments, vanish in the limits a —> oo.
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We demonstrate now the same mathematical mechanism by deriving higher
equations (3.5b). To this end, we replace again the last factor G(xk,yk) in (3.4)
by the resolvent identity (3.15) and use again (3.13) and (3.14). We obtain (3.5b)
with

fc-l

Sk(Xk; Yk) = Stι\Xk; Yk) + ] Γ Sf \Xk; Yk), (3.20)

where

S(ι\Xk; Yk) = w2R-d
~ t)/R)

S,t

x Έ{G{... Gk_λ G(xk, s) G(ί, s)} g(t - yk), (3.21)

fc; Yk) = w2R~d Y2 Φ2((s ~ ιVR)EίGi G%-\
s,t

\x%, s) G(t, y.) + G(xt, t) G(s, y.)]

+ 1 . . . Gk_λ G(xk, s)} g(t - yk),
x

x (3.22)

i i y i

Using (3.10), (3.11) and (3.12), we have:

(3.23)

The i th term in (3.22) can be estimated similarly by using the bound

η-k+ιΈ{\G(xt, s) G(xk,s)\ + | G ( s , Vi) G(xk, s)\]

for the expectation. The resulting bound for (3.20) is

\Sk\ <4w2φ2

okη-k~2R-d (3.24)

and satisfies (3.7).
The same arguments are valid also in the cases of α = n, d. We demonstrate them

by deriving (3.5a) for α = n, d. For α — n we have from the respective resolvent
identity:

ύ yx) = n " 1 , xx;α, yλ)

α=l

= ^i-2/i)-^~ 3 / 2

By applying the analogs of (3.13) and (3.14), we obtain (3.5a) with

-yι). (3.25)

α,β,s

Now [cf. (3.18)]

/5

1/2

(3.26)
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Denote by Px the orthogonal projection projecting our space £2®Cn onto the subspace
spanned by vectors ψ(a,t) = ψaδ(x — t), concentrated at x. Then the n x n matrix

R(x, y) = {G(α, x; β, y)}2,β=i (3.27)

can be represented as follows:

Thus, if \R(x,y)\ denotes the matrix norm of (3.27), we have from (3.10),

\R(x,y)\<η-\ (3.28)

Besides, since the r.h.s. of (3.26) can be written as

(\R(τ ς^/?*fς rYl ΓRfs ς^/?*Γς ςYI W 2 Π 9QΊ

it admits the bound
|Λ(ar,s)| |i?(s,s)| <η~2. (3.30)

As a result (cf. (3.19)), we obtain the inequality

|<?(ί)| < 2w2η^n-1 ,

coinciding with (3.7) for a = n.
The case of a = d is more complicated. The reason is that due to the presence

of the normalization factor d~xl2 in (2.2b), introduced to obtain the nontrivial limit
(2.17) for the IDS of the translationally invariant part of (2.2), the quantity h in (3.12)
has the order dχl2 and η0 cannot be chosen to be independent of d. Therefore we have
at our disposal only the general and weaker bound

that is a particular case of (3.11).
The analog of (3.21) is

= w2(2dΓι Σδ(s-t- l)E{Gx... Gk_xG(xk, s)G(fy s)}g(f - yk). (3.32)
s,t

While working with the case of a = d, we will often use the inequality

Σ u(t)g(t - y) <η-z}^\u(i)\z. (3.33)
t

This inequality follows from the fact that its l.h.s. is ||g?x||2, where g is the resolvent
of the nonrandom Toeplitz part of (2.2), and therefore

\\9u\\2<\\g\\2\\u\\2<η-2\\u\\2,

where we have again used inequality (3.9). Setting

u(t) = w2(2dΓι Y]δ(s-t- l)E{Gx...Gk_xG(xk,s)G(t,s)} , (3.34)
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we have, according to the Schwarz inequality for expectations,

u(t)\ < w2(2dΓιΈι/2{\Gι .. .Gk_{\
2}Έι/2

x l\Σδ(s-t-l)\G(xk,s)G(t,s)\Λ. (3.35)

Now, applying the Schwarz inequality to the sum over s, we get

2

δ(s - t - l)\G(xk, s)G(t, s) fc, s)\2

<η-2Σδ2(s-t-l)\G(xk,s)\2. (3.36)

Combining (3.33), (3.34), (3.35) and (3.36), we obtain

Σ
Vk

(3.37)

where we have also used (3.6) and (3.11).
Now, again taking into account (3.11), we obtain for the norm (3.1), a — d:

f /2η~k-2. (3.38)

Similarly, to estimate the analog of (3.22) for a = d, we write for the sum over s
in the first term, containing G(xi: s) G(t, y^:

φ(s - t)E{Gλ... Gx_xG{χτ, s)G(t, yτ)Gi+ι... Gk_{G(xk, s)}

Since the second factor in the r.h.s. is bounded from above by η 2 we see after
applying (3.33) that the ί2- norm with respect to yk of the corresponding term does
not exceed

~ t -

l/2

Now, calculating the norm (3.1) for a = d of this expression with respect to the
variables yXixv..., yk_λ, xk_{ by using (3.10) and (3.11), we find that this norm is
bounded by the r.h.s. of (3.38). The same bound is valid for the second term containing
G(xi,t) G(s, yt). Combining all these bounds, we get (3.7) for a — d. Proposition 3.1
is proved.

Proposition 3.2. Let Ha, a = R,n, d be defined in (2.1)-(2.3), where the arbitrarily
distributed i.i.d. W's satisfy (2.1 ef) and (23c,d) and, in addition,

, E{\Waφ(x)\3} < oo . (3.39)
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Assume also that h(x) = 0 in (2.2a). Then, the moments (3.4) satisfy (3.5) and (33.6),
where

sup \Sk(Xk\Yk)\ < Cka~1/2η-k (3.40)

XkΎk

with η > ηQ, some η0 and C being independent ofk, η and a.

We prove first our basic relation.

Lemma 3.1. The Relation

= Fk_ι(Xk_ι;Yk_ϊ)g(xk - yk)

-Σ
s,t

χa(s - t)E{G(xι, , s)W(s, t)}g(t - yk) (3.41)

is valid for the moments (3.4) of the quantities (32), with the convention that F O Ξ 1
and χa given by (3.6). For a = n the factor G(xk,s)W(s,t) in (3.41) should be
replaced by

δ(s - t)n~2 Σ G(α, xk\ β, t)Wβa(t). (3.42)
ccβ

Proof. We give a detailed proof only for a = R, because other cases are quite similar.
Note first of all that all terms of this relation are well defined under the conditions
(2.1e,f). Indeed, according to [25], (2.1) is an essentially self adjoint operator with
probability 1 on a linear manifold, consisting of £2-vectors with finitely many nonzero
components. Thus, the Green functions Ga{xi^yi) are bounded operators for Im z Φ 0
and satisfy (3.10). Therefore, all moments Fk(Xk;Yk), k > 1, exist and

\Fk(Xk;Yk)\<η-k, η=\lmz\.

Besides, according to the Schwarz inequality,

(3.43)

... Gk_xG(xk, s)W(s, t)}g(t - yk)

φ((s - t)/R)Eι/2{\G(xk, s)\2}\g(t - yk)\

s,t

where we used (2.1c), (3.10), (3.11) and the inequality

R~d Σ Φ«s ~ t)/R)a(s)b(t) < q

s,t

with

φΛ =R-dSΓ<

1/2

(3.44)

(3.45)

(3.46)

Thus, all terms of (3.41) are well denned if W(s, t), s, t € Zd have a finite second
moment and a = R is finite. The same conclusion can be made for a = n, d.
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Therefore we are to prove coincidence of the l.h.s. and r.h.s. parts of this relation for
Im z φ 0. To do so, we will show that (3.41) is the limit of a similar relation, written
for truncated W's, defined as

(M), \W(s,t)\<T

, \W(s,t)\>T ( 3 - 4 7 )

for some T < oo.
Since for bounded W's the random parts of (2.1)-(2.3) are bounded operators, the

resolvent identity (3.15) and its obvious analogs for a — n, d are also valid.
If i j j are the corresponding operators (2.1)-(2.3), then with probability 1 they

converge strongly to H as T —» oo for all vectors with finitely many nonzero
components. Since Ha are essentially selfadjoint on this linear manifold (see [25]),
the resolvent of i ί j converge strongly to the resolvents of Ha as T —» oo [13]. Thus,
with probability 1 and for fixed x, y E Z r f,

lim G%(x,y) = Ga(x,y) (3.48)
T—>oo

This relation and the uniformity in T of the bound (3.10) imply that

Urn^ Fτ(Xk; Yk) = F(Xk; Yk) (3.49)

for all k > 1 and fixed Xk Yk. Thus, we can perform the limiting transition T —* oo
in the l.h.s. of (3.41) and in the first term of the r.h.s.. Besides, we have pointwise
convergence of the expectation in the second term of the r.h.s.. Since the estimate
(3.44) implies convergence of the sum over s and t uniform in T —> oo for every
fixed R < oo, we can also perform a limiting transition in the second term of the
r.h.s. of (3.41).

The lemma is proved.

Proof of Proposition 3.2. According to Lemma 3.1, we have relation (3.41) for the
finite second moment of W's. Let us write now the resolvent identity (3.8) for

s^)=0 = HRj

, y) = G(x, y) - R~a/z[G(x, s)G(t, y) + G(x, t)G(s, y)]

xW(s,t)φ(s-t), ( 3 5 0 )

f 1 /?. .ς = f
M) = ( 1 / 2 '

where (5 = G\W{st^=0. Replacing by the r.h.s. of (3.50) with x = xk, y = s the
factor G(xk, s) in the second term of the r.h.s. of (3.41), we obtain for this term

. .Gk_xG{xk,s)W{s,t)}g(t - yk)

Bk(Xk;Yk)-Ck(Xk;Yk). (3.51)
s,t
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Here

s,t

x E{G,... Gk_xG{xk, t)G(s, s)W2(s, t)}g(t - yk), (3.52)

Bk = R~d'2 ΣΦ2((s ~ t)/R)E{Gx... Gk_xG{xk,s)W(s, t)}g(t - yk), (3.53)
S,t

S,t

x Έ{G{... Gk_γG(xk, s)G(t, s)W\s, t)}g(t - yk) (3.54)

and G = Gix^y^, i = 1,.. ., k — 1.
We are to show now that Bk and Ck are of the order O(R~d/2) and Ak with the

same accuracy can be written in the form of the second term in the r.h.s. of (3.5b).
Since E{W(s,t)} = 0 and W(s^t) are independent except the symmetry condition
(2.1d), the expectation in (3.53) with all G's replaced by G's is zero. Thus, by using
the elementary inequality

k-\ k-\ k-\

Π α ; - Π δ i = Σ α i α-i<α*-6A+i A-i' (3-55)

i=\ ΐ = l 2=1

we rewrite (3.53) in the form

k-\

x E{G,... G^Δόiόi+i.. GkW(s, t)}g(t - yk), (3.56)

where

ΔG% = G, - Gt. (3.57)

According to (3.50) and (3.10),

\ΔGi\ < 2R-d/2η-2\W(s, t)\φ((s - t)/R). (3.58)

This inequality, (3.10) and (2.1e,f) yield for (3.56):

\Bk\ < 2(k - l)R-dη-k Σ Φ2((s - t)/R) x E{\G{xk, s)\W2(s, t)}g(t - yk)
S,t

= 2w2(k-l)R-dη-kΣφ2((s-t)/R)E{\G(xk,s)\}\g(t-yk)\. (3.59)
S,t

Since G(x,y) depends on s and t, we cannot use directly inequality (3.11). Thus, we
apply once more (3.58) and obtain:

Έ{\0(xk, s)\} < Έ}/2{\G(xk, s)\2} + 2R-d/2η-2Έ{\W(s, t)\}φ((s - t)/R).
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By using this inequality in (3.59) we obtain for η > η0:

\Bk\ < 2w2(k - l)R-dη~k Σ \9tt - Vk)\

\((s - t)/R) <C(k- l)R-d/2η-k~2 , (3.60)

where we have used (3.12) and (2.1c).
To find a bound for (3.54), we use (3.10) for all G's and the independence of G

of W(s,t):

\Ck\ < w2R~dη-k Σ Φ1^ ~ t)/R)E{\G(xk, s)\}\g(t - yk)\.
s,t

The sum in this inequality coincides with that in (3.59). Thus, in view of (3.60) we
have for η > ry0,

\Ck\ < CR~d/2η-k~2. (3.61)

Combining (3.60) and (3.61), we obtain that

d/2η-k'2, (3.62)

where C is independent of k, η and R.
Consider now (3.52). To prove that this expression coincides with the second term

of (3.5b) up to small terms, we use (3.50) to replace all G's by G's, single out
E{W2(s,t)} = w2 and return back to G's using the same formula (3.50). To do so,
we represent (3.52) as

fc-l

Ak = A'k + A'ί + Σ\k, (3-63)

where

Ar = w2R-d ] Γ φ2((s - t)/R)E{Gι... όk_xO(xk, t)0(s, s)}g(t - yk), (3.64)
s,t

s,t

x E{G!... Gk_xG(xk, s)ΔG(s, s)W2(s, t)}g(t - yk), (3.65)

S,t

.. G ^ j z l ^ G ^ ! . . . όk_xO(xk, s)G(s, s)W2(s, t)}g(t-yk), (3.66)

and ΔG(x,y) is given by (3.57) and (3.50).
By using (3.5), (3.10), (3.12), (3.58) and (2.1c) we obtain

\A'ί\ < 2w^R-id'ιη-k~ι Σ φ\(s - t)/R)\g(t - yk)\
s,t

< 4w3φ0φ
2R~~d/2η~k~3, (3.67)
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where, according to (2.1c),

The same bound is valid for (3.66). Thus, for ?7Re?70, where 77O is specified in (3.12b),
we have

A J - 1 (R)

< 4w3φ0φ
2kη~k~3 < Ckη~kR~d/2, (3.69)

k

where, as in (3.62 ), C is independent on k, η, and R. The "inverse" procedure of
replacing G's by G's in (3.64) is quite similar to the "direct" procedure of replacing
G's by G's that we carried out above. The only difference is that the latter requires
finiteness of the first moment of W's but not the third one as above. Indeed, the
replacement of G l 5 . . . , όk_x and G(s, s) in (3.64) by the respective G's is literally

the same. Consider therefore the replacement of O(xk,t) by G(xk,t) in (3.64). By
using (3.10), (3.58) and (2.1e), we find for the respective remainder term,

\(s - t)/R)Έ{\W(s,t)\}\g(t - yk)\

< 4wόφ0φ
zR~a/zη~k~~3, (3.70)

that is again the bound of the form of (3.61).
Combining all these bounds, we obtain (3.7). Thus, we have proved relations

(3.5)-(3.7) for a = R.
Note, that at the same time we have obtained the proof for the case of a = d,

because, according to our hypothesis, in this case h(x) = 0, g(x — y) = — z~ιδ(x — y),
and this function obviously satisfies (3.12) for any η0 > 0. That is why we have
assumed that h(x) = 0 in this case. The proof of Proposition 3.2 for a = d and
h(x) φ 0 is rather cumbersome and will be published elsewhere.

Derivation of relations (3.5)-(3.7) for a = n is quite similar.

4. Asymptotic Solution of the Moment Equations

In the previous section we proved that the moments (3.4) of the Green functions of
the operators (2.1)-(2.3) satisfy the infinite system of relations (3.5). In this section
we treat this system as a linear equation in some Banach space and prove that for
a —• oo this equation admits a rather simple solution. As a result, we obtain (2.15).

Theorem 4.1. Let G^a\x, y\ z) be defined in (3.2), the respective operators iJ ( α ) satisfy
the conditions of Proposition 3.1 in the case of Gaussian W's and the conditions of
Proposition 3.2 in the general case and

ηx = max{4w,2/ι}, ξ = \ 2 (4.1)

// a is large enough, then

sup
\lmz\>ηι

Γ k Ί (a)

<CfV 1 / 2 . (4.2)
k
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Here k > 1, C is independent of k and α,

5?a(x; z) = ί[h(k) - z - w2χara(z)]~ι exp(2πfc) dk , (4.3)

Ίd

where h{k) is given by (2.13),

Λ A ( 4 4 )

1, α = rc, d,
φ2 is given by (3.46) and ra(z) is a unique solution of the equation

ra(z) = J[μ-z- w2χara{z)}-ιNϋ(dμ), (4.5)

in the class of functions analytic in z for nonreal z and such that

Imr(z)Imz>0, Imz^O, (4.6)

supr/|r (i?7)| = 1 (4.7)
77>O

and N0(dμ) is specified by (2.12) for a = R, n and (2.17) for a — d.

Proof. Let us consider the Banach space J$a, a — R, n, d whose elements are
sequences

Xk = (x{,..., xk), Yk = (yx,..., yk), x%, y% G Z d , and each component fk for fixed
&, Xk, Yk is an analytic function of z for nonreal z. The norm in JSa is defined as
follows:

| | j f α > = sup su P ai/ f e | | (

f c

α ) . (4-9)
\\XΆZ\>Ύ)X fc>l

According to (3.10) and (3.11), the moments (3.4) satisfy the inequalities

\\Fk\\k<η-k, k > \ . (4.10)

Since ξ < ηl9 the sequence F = {Fk}k>ι of the moments (3.4) belongs to JJBa. Now,
according to (3.19) and (3.24), the sequence S = {Sk}k>ι of the remainders in (3.5b)
for η > η0 satisfies the inequality

||5|| (α) < Ca-ι/2svφkξ-%k. (4.11)
k>l

Since our bounds in Proposition 3.1 are monotone in η0 (under the condition (3.12a)),

we can assume without loss of generality that η0 = m a x ^ , 2h), where h is given by

(3.12). Then, ξ η^1 < 1, and (4.11) implies that

| | 5 | | ( α ) < Cxa~ι/1 (4.12)

where Cx is independent of a.
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Consider now the linear operator ^ , defined by the first and second terms in the
r.h.s. of (3.5a) and (3.5b):

5 1 - yk)>
s,t

M k - y k ) , k>2.

s,t

(4.13)
We prove in Lemma 4.1 below that

Mil < 3/4 (4.14)

if α is large enough.
Therefore we can regard relations (3.7) as a linear relation in JBa\

F = ^F + U + S, (4.15)

where U = {gOE!,^), 0,...} belongs obviously to J$a. Since, according to (4.11),
S is small for a —• 00, it is natural to consider the following linear equation in Jθa\

U. (4.16)

The bound (4.14) implies that this equation has a unique solution in J?α. The ansatz

k

S?(xi-yi) (4.17)

reduces the infinite system (4.16) to the single equation

χa(s - tW(0)S?(x - t)g(t - y). (4.18)

s,t

The formal solution of this equation is

&(x -y) = g(x-y;z + w\a¥{<d\ z)), (4.19)

where χa is specified by (4.4) and the dependence on the complex energy z is indicated
explicitly. Equation (4.19) is valid under the compatibility condition

; z) = 0(0; * + ^ 2 χ α ^ ( 0 ; z)) (4.20)

which, in view of (2.12) and (3.3), can be rewritten in the form (4.5).
In Lemma 4.3 below we prove that Eq.(4.5) has a unique solution in the class of

functions that are analytic for Im z Φ 0 and satisfy (4.6) and (4.7). Therefore formulas
(4.17)-(4.20) give the unique solution of the infinite system (4.16) in our spaces JBa.
Subtracting (4.16) from (4.15) and iterating the resulting relation, we find:

F- J = (I-^4)-ιS.

Thus, in view of (4.12) and (4.14),

\\F- J | | ( α ) < 4 C 1 α - 1 / 2 . (4.21)

According to (4.9) and (4.17), the, kth component of (4.21) is (4.2). The theorem is
proved.
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Corollary 4.1. For every fixed k > 1, Xk = (x{..., xk), Yk = (y 1 ? . . . , t/fc)
uniformly in z belonging to a fixed compact set such that Im z φ 0,

lim (Fk(Xk; Yk) - Π ¥(x% - % ) ) - 0. (4.22)
1=1

/ Theorem 4.1 and Definition (4.9) of the norm || | | ( α ) yield the assertion of the
Corollary for | \XΆZ\ > η{. Since, according to Definition (3.40) of the moments Fk,
(4.17), (4.19) and Lemma 4.3 below, the difference Fk — Jk is a bounded analytic
function for Imz Φ 0, then standard arguments of complex analysis complete the
proof of the corollary. .

Lemma 4.1. If .A is the linear operator in J$a defined by (4.13), then for sufficiently
large a,

Mll(α) <3/4.

Proof. We start from the case of a = R. Here, according to (4.9), if | |/ | | = 1, then
\fk(Xk\Yk)\ < ξ~k for η > ηχ, where ηλ is given by (4.1). Thus, we have from
(4.13), (3.68) and (3.12)

Xh\ Yk)\ < η~ιξ-k+l + Γk~lw2R-d Σ Φ2«s ~ t)/R)\g{t - yk)\
s,t

This implies that \\~4\\{R) < η^\ξ + 2φ2w2ξ-1). Selecting ξ = (2φ2w2ξ~1)1/2, we

minimize this bound for the norm: | | ^ | | ( β ) < ηl[(23φ2w2)1/2. Since φ2 -» 1 as

R^oc, then \\.^\\(R) < 3η^ιw < 3/4, if R is large enough.
The case a = n is quite similar.
Consider a = d. By using again inequality (3.33) to calculate the ̂ 2-norm with

respect to yk of the integral term in (3.1), we obtain

\ i/2

M/)fc|2) <η~ι\fk-\(Xk-i>Yk-ΰ\
Vk '

_ i v - — 2 χ 1 / 2

+ w2(2dη) 1 ί 2 ^

But since

1/2

2/fe+l

and this bound is independent of s, then we obtain

Vk
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This inequality implies that

If ||/||(<*) = l, then, according to (4.9), \\fk\\f < ξ~k and as a result, \\^\\(d) <

τj^ι(ξ + w2ξ~ι). This bound is minimal for ξ = w, when | | . ^ | | ^ < 2wηγι. Now,

since ηλ = 4u>, we obtain the inequality | | ^ | | ^ < 3/4. The lemma is proved.

Lemma 4.2. The Equation

f(z) = jit-z- w2f(z))~ιμ0(dt) (4.23)

with a nonnegative measure μo(dt), such that

μo(W) = 1 (4.24)

and w2 > 0, is uniquely solvable in the class of functions that can be represented in
the form (2.9) with a nonnegative measure μ(dt) such that

μ(R) = 1. (4.25)

This solution for Im z Φ 0 is continuous in w2 and in μo(dt) (in the latter case we
mean weak convergence of measures).

Proof. Consider the set of functions, having the form (2.9) with

μ(R) = 1 (4.26)

as a metric space ^M with the distance

Q(fv Λ) = S UP V\

where
ηλ>2w. (4.27)

Since convergence in this metric implies convergence on any compact of the halfplane
Im z > ηx, then by using the Helly theorems and the uniqueness theorem for analytic
functions it is easy to prove that ^M is complete. Define the operation

(Kf)(z) = ί(t-z- w2f(z)Γlμ0(dt).

According to [2], the class of functions specified by (2.9) and (4.26) coincides with
the class of functions analytic for Imz φ 0 and satisfying (2.10). This allows us to
check that K maps Λ6 into itself. Besides,

ρ(KfvKf2)<w2 sup 7? ί 77—• 27T^
J (t-iη-w2^

μo(dt)

(iη))(t-iη-w2f2(ίη))

<w2η~2ρ(fvf2). (4.28)

Thus, under the condition (4.27), K is a contraction. This proves existence and
uniqueness of the solution of (4.23) of the form (2.9).

Now, it is easy to check that

ρ(0J) = supη\f(ίη)\=μ(R).
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By using this relation in (4.23) we obtain that

μ(R) = μo(R) = 1.

At last, since under the condition (4.27) Eq. (4.23) is uniquely solvable uniformly
with respect to small variations of w and μo(dt), then we arrive at the last assertion
of the lemma.

Remarks.

(1) It is easy to see that in fact we have proved the assertion similar to Theorem 4.1
and Corollary 4.1 for the sequence of moments more general than (3.4),

( k Λ

Fk(Xk; Yk; Zk) = E j [ J G&i> Vϊ* z*> \ > < 4 2 9 >

i.e. assuming that the complex spectral parameter in the Green functions are different.
Indeed, to prove this assertion we only need to know that | Im zi \ > η{ for all
i = l,...,fc and to apply the analytic continuation arguments in the analog of
Corollary 4.1 to each variable zi separately.

n

(2) We used n~ι ^ G(a, x\ α, y) as the basic quantity in the case of a — n mainly

because it is the Stieltjes transform of the respective IDS. We can however consider
the Green function G(a,x\β,y) itself. Then, adding in Definition (3.1) of the norm
for a = n the supremum with respect to all indices α 1 ? . . . , ak, βx,...,βk, we can
prove that in this norm the product

^ft^} (4.30)

converges as n —>• oo to

(3) One may inquire to what extent our norms (3.1) are optimal. It is easy to see that
they cannot be much stronger. Indeed, if the corresponding norm were strong enough
to allow say the limiting transition R —> oo under the sum over t in

E j ] Γ G(x, t; zx)G(t, x; z2)\ , (4.32)

then, according to (4.2) and (4.3), the limiting form of (4.32) would be

F(zvz2) = ί(h(k) - CiΓkΛW - C 2 Γ 1 * = Γ ( C 1 } " r(ζl) , (4.33)
J Sl ~ S2

where ζl2 = ζ(zl2)> C(z) = z + w2r{z). On the other hand, according to the Hubert
identity and (4.3), the limiting form of (4.32) is (r(zλ) — r(z2))/(zx — z2). Comparing
this form with (4.33) we would conclude that ζ{ — ζ2 — zx — z2 for all l lmzj,
I Im z2\ 7̂  0, and we would obtain a contradiction to our main Eq. (4.5).

(4) However, in some cases we can improve the rate of convergence in Theorem 4.1.
Consider, for instance the case of a = n and assume that the function h(x) in (2.3a)
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has a compact support. Then, by iterating the resolvent identity (3.8) with H^ as
A + B and the nonrandom part of i J ( n ) as B, we find that

|G(α, x; β, y)\ < Cexp{-m|x - y\} , (4.34)

where C and m are independent of n and are strictly positive and finite for
0 < | Imz | < oo. Based on (4.34) and using an argument similar to that in the
proof of Theorem 4.1, we can prove that

lim sup sup sup exp 4 w&i / ^ |#i — 2/J
ί

ί

= 0 (4.35)

for some mx <m.

(5) According (4.2) and (43), the matrix w2χara(z)δ(x — y) plays the role of the
selfenergy operator Δ(z) = {Δ(x, y\ z)}x^yeZd. The general definition of this operator
is [21] Έ{G(x,y;z)} = (h — z - Δ(z))~ι(x,y). Thus, in our case this operator is
diagonal and its site-independent diagonal entries are w2 lim Έ{Ga(x, x; z)}.

5. The Deformed Semicircle Law

Theorem 5.1. Let Ha,a = R,n,dbe the nonrandom operators defined in (2.1)-(23),
N0(dλ) be defined by (2.12) for a = R,n and by (2.16) for a = d, Na(d\) be the IDS
ofHa given by (2.4) and (2.5) and Na(λ) = ΛΓα((-oo, λ]). Then for each λ G R,

lim iVα(λ) = JV(λ), (5.1)
α-^oo

where the Stieltjes transform (2.14) of N(dλ) can be found as a unique solution of
(2.15) in the class (2.10).

Proof According to the spectral theorem, (2.4), (2.5) and (3.2), the Stieltjes transform
of Na(dλ) is E{Gα(0,0; z)} and, according to Corollary 4.1, for k = 1,

where Imz φ- 0 and ra(z) is a unique solution of (4.5). By Lemma 4.2, we can
perform the limiting transition a —• oo, which replaces χR of (4.4) by unity (see
(2.1c)) and N0(dμ) of the form (2.12), (2.13) by (2.16) in the case of a = d. Thus,
we have proved that the Stieltjes transform of Na(dλ) converges for Imz φ 0 to the
solution of (2.15). Since this convergence implies weak convergence of the respective
measures, we have thus proved weak convergence of Na(dλ) to N(dλ). According
to the property (5.6) below, N(dλ) possesses a bounded density for any N0(dλ). This
proves pointwise convergence in (5.1). The theorem is proved.

The limiting eigenvalue distribution defined by Eq. (2.15) is known as the deformed
semicircle law. This distribution was found in [24] as the solution of a somewhat
different problem than we are studying in this paper. Namely, let us consider a I x I,
I = 2m + 1 random symmetric matrix

\i\,\k\<m, (5.2)
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where a sequence h^\ \i\ < m possesses the limiting distribution

JV0(dλ) = lim Γι#{hf e dλ}

and Wfk are independent identically (for i < k) distributed random variables such
that [cf. (2.1e,f)]

&>} = 0, (5.3a)

) = w2[δi3δkl + δτl δjk]. (5.3b)

Denote by λ_ m < . . . < λ^ the eigenvalues of the random matrix (5.2) and define
the normalized counting function of this random matrix ensemble as [cf. (2.27)]

Then, according to [24], there exists a nonrandom nondecreasing function iV(λ) called
the integrated density of states of (5.2) and such that for each λ G l ,

p - lim JVz(λ) = N(X)

and the Stieltjes transform of JV(λ) satisfies (2.10) and (2.15).
In fact, the deformed semicircle law is the limiting eigenvalue distribution for

(5.2) even for a more general case [24,10], when instead of identically distributed
W s we consider independent random variables that satisfy some natural analog of
the Lindeberg condition well known in probability theory. According to [10], this
condition is also necessary if hf* = 0. This case is known as the Wigner ensemble
and the respective eigenvalue distribution is called the semicircle of Wigner law [see
formula (5.5) below]. Recently, by using the method rather similar to that developed
above we proved [16] that the deformed semicircle law is the limiting eigenvalue
distribution in the general case.

h% + Γι'2W?>, \i\,\k\<m (5.4)

of the nondiagonal "nonperturbed" part having the limiting eigenvalue distribution
N0(dλ) and of the Lindeberg's W^'s . We also considered some other forms of random
part in (5.2), in particular the so-called band random matrices [17] and diluted random
matrices [18].

The simplest case of Eq. (2.15) corresponds to N(dλ) = <5(λ), when the
unperturbed (nonrandom) part of (2.1)-(2.3) of (5.2) is zero. Then, r = — (z + w2r)~ι

and
r = (2w2)~\(z2 - 4w2Γι/2 - z), (5.5)

where we use the branch of the radical that has a positive imaginary part on the
upper edge of the cut Im2: = 0, |Rez| < 2w. Equations (5.5) and (2.11) yield
N(dλ) = ρ(λ)dλ, where

This is the well known Wigner or semicircle law (see [22,23,32] for the references,
the history and numerous related results).

Now we will prove some useful properties of the deformed semicircle law, defined
by Eq. (2.15).
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(i) For any nonperturbed N0(dλ),

N(dλ) = ρ(λ)dλ , 0 < ρ(λ) < (πw)~ι . (5.7)

Proof. For r2(λ -f iη) = Imr(λ + iη) (2.15) yields r2 < (η + w2r2)~ι. Thus,
r2(λ -f iη) < w~ι. This inequality and the inversion formula (2.11) imply (5.7).

(ii) Let us call supp N and supp No the spectrum σ and the unperturbed spectrum σ0.
Then, σ is contained in the 2w-neighbourhood of σ0.

Proof If

J(λ,η)= [\μ-z-w2r(zT2N0(dλ), z = λ + iη, (5.8)

and r2 > 0 is as above, then

/ = r2(η + w 2 ^)" 1 < w~2 . (5.9)

According to (2.15) and the Schwarz inequality, \r(z)\ < /1//2 < w~ι. If λ is outside
of the 2w-neighbourhood of σ0, then \μ — λ — w2r(λ + i0)\ > w, and since N0(R) = 1,
then we find from (5.7) that /(λ,0) < w~2. On the other hand any open interval
intersecting with σ contains points at which r2(λ+i0) > 0. For these points, according
to (5.8), /(λ,0) = w2. This contradiction proves our assertion.

(iii) If a and b are the left and right endpoints of the interval containing σ and α0 and
b0 are the same points for σ0, then a < a0 and b > b0.

Proof If λ > b, then r2(λ + iθ) = 0, r(Λ) = r(Λ + zO) is a nonpositive strictly
increasing function, and if λ varies from 6+0 to oo, then r(λ) varies from r(6+0) < 0
to 0. This and (2.15) imply that the interval (r(b + 0), oo) does not intersect with σ0,
i.e. b0 < b + r(b + 0) and b — bQ > —r(b + 0) > 0. The inequality a < a0 is proved
similarly.

Till now we have not used the fact that, according to (2.12) and (2.13), σ0 is an
interval, i.e. σ0 = (αo,6o).

(iv) Ifσo = (α0,60), then σ — (α, 6) (and according to (ii) and (iii), (α0,60) C (α, 6) C
(α0 - 2w,bo

Proof Assume that some interval (α,/3) C (α, 6) does not belong to σ. Then it does
not belong to σ0. Indeed, in the opposite case, some interval (al1βι) = (a,β)Πσois
not empty and its image under the continuous map λ + r(λ) does not intersect with
(αo,6o). Thus, either βλ + r(/?j) < α0 or α1 + r(a{) > b0. But, according to (2.15),
in the former case, r{βγ) > 0 and βx < α0, and in the latter case, r{ax) < 0 and
ax > bQ. This means that (aι,βι) does not belong to (o0, δ0).

Let us show that (α, b) \ (α0,60) belongs to σ. Assume first that λ > b > b0. Then
r(λ) = r(λ + iO) and ro(λ) = ro(λ + iO) are nonpositive strictly decreasing functions
and both have strictly increasing inverse functions λ(r) and λo(r), that, according to
(2.15), satisfy the relation

X(r) = λo(r) - w2r . (5.10)

If r* is specified as ΛQ(Γ*) = w2 then 6* = λo(r*) - ^ 2 r * > 6. Let us assume now
that b0 < α, /3 < 6* and (α, /?) does not belong to σ. Then again λ(r) and λo(r) are
well defined, strictly decreasing, satisfy (5.10) and its l.h.s. assumes values strictly
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less than 6*. But we have just showed that the r.h.s. of (5.10) does not assume values
less than 6*. Thus 6* = b.

The same arguments show that (α, α0) belongs to σ and that a can be defined as
λo(α) = w2, a < α0.

In fact, we have proved a rule to determine σ.

(v) Consider the intervals that comprise the complement of σ0, find the inverse λo(r)
to ro(λ) for these intervals, locate the intervals on which the function λo(r) — w2r is
monotonically increased and then determine the set of values of this function on these
intervals. The spectrum σ, is the complement of this set.

If a0 is an endpoint of one of the intervals, then a = λo(α) - w2a is the endpoint
of one of the components of σ. Suppose that in the neighbourhood of α, λ o ( r)~ w2r is
analytic. Then simple arguments show that the density of states in the neighbourhood
of a behaves as follows:

ρ(X) = const |λ - α| 1 / 2 / e(l + o(l)), |λ - a\ -> 0

for some k — 1,2,.... Generically, k — 1, and this corresponds to the nondegenerated
extremum of λo(r) — w2r (a maximum if a is the right endpoint, or a minimum if a
is the left endpoint of such an interval).

6. The Conductivity

As was explained in Sect. 2, we are going to prove weak convergence of the measures
(2.24)-(2.26) for a —> oo and calculate the respective limits. Therefore it suffices to
consider their Stieltjes transforms

(6.1)

and find their limits for a —> oo for Im zl2 Φ 0. After that we can apply the inversion
formula (2.11) to each of the two variables and find the limiting measure. Calculation
of (6.1) for a —* oo includes a considerable amount of technical material. For this
reason we will consider here the simplest case of the Gaussian-distributed randomness
in (2.1)-(2.3), postponing the proof for an arbitrarily distributed randomness for a
subsequent publication.

Now it is clear that our results (2.29) are equivalent to

Theorem 6.1. Let H{a), a — R, d, n be given by (2.1)-(2.3) in in which

h(x) = h(-x), (6.2)

Σ \x\\h(x)\ < oo (6.3)
χ£Zd

and W's be the Gaussian-distributed random variables. Then, for lmz{ 2 φ 0,

r(zι)r(z2) / x2φ2(x)dx, a=R

lim ( r{z{)r{z2),

\\7h(k)\2dk

(h(k) — zx — w2r(zι))(h(k) — z2 — w2r(z2))
(6.4)
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where r(z) is given by (2.15) and (2.12) for a = R, n and by (2.15) and (2.17) for
a — n.

Proof. Since the proof of (6.4) is somewhat tedious even for the Gaussian F s in
(2.1)-(2.3), we describe in detail the case of a — n that turns out to be simplest and
after that explain additional steps needed in the other cases (a = R, d). Note also that
the case a = n was considered for the first time in [31] where the results (2.29) and
(6.4) were obtained by the perturbation theory arguments.

According to (2.3) and (2.20), the velocity operator in this case is identity with
respect to the orbital indices a, β and its coordinate-dependent part is defined by the
matrix

v^n\x — y) = i(x — y)h(x — y) (6.5)

and is bounded in view of (6.3). Therefore, according to (6.1) and (6.5),

d

C{n\zx ,z2) = ] Γ Σ ^(y)^(t)T0(0, y, t\ zx, z2), (6.6)

where

(6.7)

and

Γ n Ί
T0(x,y, t;zι,z2) = Έ<n-1ΣQ(x,y, t, z{Jz2, α,α) \

Q(x, y, t, zx, z2, a, 7) = ^2 ^ ( α ' x ' β>u + ^ zi)G(βi u'> 7J 2/ί ZΊ) ( 6 8)

Consider now the infinite sequence of moments containing (6.7)

n N

α=l ^

, k

^ j=

where G(x, y; ζ) is specified by (3.2) for a = n and z = ζ, \ Im CJ > η, \ Im zl2\ > V-
Now, by using the resolvent identity for G(β, u; a, y; z2) and the arguments similar

to those in the derivation of (3.7), we obtain the system of relations

Tk(Xk; Yk; Zk; x, y, t,zx, z2) = ^ Fk+x(Xk, x; Yk, (u +1); Zk, zx)g2{u - y)
u

+ w2 ^2ίTk+ι(Xkyx; Yk, s; Zk, zx\ s, s, t, zx, z2)
s

+ Tk+1(Xk, s; Yk, s; Zk, z2; x, s, t, zι,z2)]g2(s -y) + Rk, (6.10)

where g2(x -y) = (h- z2)~\x - y) and

ξ) ξ) (6.11)
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with

x [G(α, ̂  7, s)G(a, s; α, ̂ ) + G(7, ̂  α, s)G(7,5; α, ^ ) ]

x G J + 1 . . .GkQ(x,s,t,a,^)}g2(s - y), (6.12)

ή U 2 ( s - y ) , (6.13)

ί k \
s,α,7 ^ j = l J

where G^ = G{x3,y3\ζ3).
Arguments based on (2.3c), (3.28) and (3.29) and similar to those used in obtaining

the bound (3.24) for (3.20) yield for η > 2h (see (3.12))

VG ax- u + t 2T w I 2Γ / 2

β,u β,u -"

l^j^l < 4n~ιw2kη~h~4 , (6.15)

|β^ 2 ) | < 2n~ιw2kη"k~4 , (6.16)

and the same bound for R^K As a result,

\Rk\ ̂  4n~ιw2(k + l)7/"fc~4 . (6.17)

Consider now the Banach space of the sequences

T = {Tk(Xk; Yk; Zk; x, y, t, zγ, z2)}™=o (6.18)

with the norm
supξ^ sup sup \Tk\. (6.19)
k>0

If ,ySι is the linear operator defined by the sum over s in (6.10), then it is easy to
show that

M i l l <4^ 2ξ- 177~ 1 (6.20)

and if R is the sequence specified by (6.11)—(6.14), then in view of (6.17),

| | # | | < 4rT V τ Γ 4 sup k(ξη-ι)h . (6.21)
k>0

Thus, to guarantee a finite norm of T in (6.18), the contractivity property of <AX and
the finiteness of IliZIL it suffices to take

ξ = η/2, η = max{3w, 2h} . (6.22)

Then,

§ CrrΛ (6.23)
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where C is independent of n. If, in addition, F = {Fk}k>0 is the sequence defined
by the first sum in the r.h.s. of (6.10), then

| |F | | < η~2 sup(ξη-ι)k < O C .
k>l

Theorem 4.1 and summability of g2(x) [see (3.12)] imply that

where lira | | ε j | = 0 and Ψ = {S?k}ΐL0 with

n*oo

j

(6.24)
where &(x\ z) is specified by (4.3)-(4.5).

Now, if T = {T^I^Q is a unique solution of the equation

T = Ψ + ^λT, (6.25)

then _
lim | | Γ - Γ | | = 0 ,

n—>oo

_ k _

and Tk(Xk;Yk;Zk;x,y,t,zuz2) = J\ S?(Xj - Vj'XjWix ~ y,t;zuz2), here

S?(x, t; z1,z2) is a solution of the equation

W(x -y1t) = Σ^(x-t~u'> zιMu - V> zi)
u

+ w253[S?(O;z2)Ψ(x -s,t) + S?(x - s;z2)W'(0,t)], (6.26)
S

provided that this equation is uniquely solvable. The latter fact can readily be proved
in the space with the norm

| | = sup

with η specified by (6.22). Besides, it is easy to check by direct calculation that

Ψ(x, t; zuz2) = S?n(x + t) + w25?ι2(x)S?l2(t)(l - S?u(0)Γι, (6.27)

where ^n(x — t) is the product of the Toeplitz operators ^f\z whose kernel is

specified by (4.3), i.e.

yn(x) = ί -„ e X p ( 2 π f a ) d f c . (6.28)
1 2 J (h(k) -zx- w2r(zx))(Kk) -z2- w2r(z2))

According to (6.2), h(k) is even. Thus, ^i2(x) has the same property and since v(x)
specified by (6.5) is odd, the second term of (6.27) gives no contribution to (6.6).
Besides, since the Fourier transform of ϋ(x) is Vft(fc), the substitution of (6.26) into
(6.6) yields (6.4) for a = n and l l m ^ 2 | > η. By using the analytic continuation
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arguments it is easy to show that the same limiting relation is true for all Im zl2 φ 0.
Thus, we have proved the proposition for a = n.

According to (2.24) and (6.1), in the case of a = R,

G(zι)ϋiG(z2)}, (6.29)
i=l

and without loss of generality we can set h(x) = 0 in (2.1). However, in this case the
velocity operator (2.20) is random:

v(R\x, y) = R~dl2{x - y)φ((x - y)/R)W(x, y),

and, as a result, the expression under the expectation sign in (6.29) is bilinear in W s .
Calculating this expectation with the help of (3.13) and (3.14), we find the term

R~d~2 J2 \X\2Φ2(X/RM{G1(0, 0)G2(z, x) + Gj(0, aOG2(0, x)}], (6.30)
X

which results from differentiating one W with respect to another W and twelve terms
due to differentiating the Green functions with respect to W s .

According to Theorem 4.1, the first term in (6.30) converges to

xϊr(zι)r(z2), xϊ= f x2φ(x)dx , (6.31)

while the second term in (6.28) vanishes, because it is bounded by

Similar but more cumbersome calculations allow us to show that among the twelve
terms only the following four do not vanish in the limit R = oo:

w2R~2E{[ΔιGιΔιG2 + GιΔ2G2Δ2 + AxGγA2G2 + G ^ G ^ K O , 0)} , (6.32)

where G l j 2 = G(z)\z^Zχ 2 and Ax^2 are the diagonal operators with the entries

Δ{(x) = RΓd γ^(χ - y)φ\{x - y)/R)Gi(y, y). (6.33)

To calculate the R = oo limit of each term in (6.32), we again derive the infinite
system of relations for the infinite family of the Green function moments that includes
this term. This system, just as system (3.5) and (6.10), is asymptotically close to the
system of equations that is similar to (4.16) and (6.25) and is explicitly soluble. The
role of the free term in the latter is played by the expression

d

R-2d-2 J2 J2 xiyiφ
2(x/R)φ2(y/R)E{Gι(x, x)G2(y, y)}

which, according to Theorem 4.1 has the limit

d Γ Γ I 2

^ \lx^2(x)dx\ . (6.34)



638 A. M. Khorunzhy and L. A. Pastur

To guarantee symmetry of the matrix (2.1), φ(x) has to be even. Thus, the integrals
in (6.34) vanish. This means that the R = oo limits of all terms in (6.32) are equal
to zero and we arrived at expression (6.31) for lim Ci<R\zι,z2).

R—>oo

The case of a = d is similar, the role of φ(x/R) is played by δ(x — 1) (see (3.6)).

This results in replacement of x2 by 1 in (6.31) for a — d. The proposition is proved.
We have seen that in the case of a = R, d, the proof is rather lengthy and the

final fairly simple result emerges only at the last stage, due to the zero value of
(6.34). Thus, it would be of some interest to discuss another strategy of proof which
is simpler at least conceptually. This strategy is based on another formula for the
conductivity. To explain this formula, it is convenient to begin with the prelimit form
of the measure (2.24) in the finite volume [8, 21]. For a — R this measure is [cf.
(2.28)]

d

M(R\dXvdX2) = r V Γ ^ ^ ^ ^ i ^ ^ W J (6-35)

By using the spectral expansion for H^\ we obtain

M{R\dXvdX2) = (2R)-\XX - X2)
2\Λ\~l

x Σ (x - y)2Έ{&Λ(x, y; dXx)WA{y, x; dX2)} . (6.36)

Thus, after performing the thermodynamic limit A —> oo, we have

M(R\dX1, dX2) = -2~\Xι - X2)
2LiR\dX1, dX2), (6.37)

where

L{R\dXγ,dX2) = R^ΣfEi^iO.t dX^it.O dX^}. (6.38)

t

The Stieltjes transform of this measure is

D(z{, z2) = R-2 ] Γ £2E{G(O, t\ zy)G(t, 0; z2)} . (6.39)
t

It seems that (6.39) makes our problem quite simple. Indeed, in view of Theorem 4.1
the expectation in (6.39) is factorized at the limit R — oo into the product 5?(x; zx)
S?(—x; z2). However, it is easy to see that replacement of the expectation in (6.38)
by this product results in an incorrect answer. The formal reason is that the norm
(3.1) that we used in Proposition 3.1, does not allow us to interchange the sum over
t and the limiting transition R —> oo. We have demonstrated in Remark 3 of Sect. 4
that this interchange is impossible even in the simpler expression (4.32). Therefore,
we cannot use Theorem 4.1 in the asymptotic calculation of (6.38).

In fact, the question of interchangeability of summing over the whole space and
the respective limiting transition should have been posed earlier, in the case of the
expectations in (6.7) and (6.29). The answer should be the same as above, although in
the case of a = n, due to the diagonality of the random part of (2.3a) with respect to
the coordinates, the rate of convergence with respect to the coordinate (but not with
respect to orbital indices α, β, etc.) may be high enough (see e.g. (4.35)) to guarantee
interchangeability of the sum over the coordinates (but not over the orbital indices)
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and the limiting transition n —» oo. In particular, this was the case with the calculation
of the n = oo limit of the static conductivity that was carried out by Wegner [31]
and was based on n-component analogs of formulas (6.36) and (6.38), in which the
n-component analog

n~ι

of the expectation in (6.38) was asymptotically calculated for a fixed t, i.e. inside the
sum over t in (6.39).

Thus, as we have seen above, we cannot reduce the asymptotic calculation of
(6.38) for R —> oo to Theorem 4.1. We can however apply the method that was
used to prove this theorem. Namely, we should find some infinite family of moments
of G"s which includes (6.38) and satisfies up to small terms an infinite system of
explicitly soluble equations.

We consider the following family [cf. (6.9)]:

Dk(Xk;Yk;Zk;x,y,zι,z2)

k - 1
TT G(Xj, y3 ζ) R 2/_\(u~ x)(u — y)G{x^u\zλ)G{u^y\z2)\. (6.40)
i=l u *

It is clear that D0(0,0, zx, z2) coincides with (6.39). By using the arguments similar
to those in the derivation of (3.5) and (6.10), we find that

Dk(Xk; Yk; Zk; x, y) = E< ] J G3R~2 }Z^U ~ x^u ~ V)G(χ> u> z0d(u ~ ^ zi) \

+ w2R~d Y] φ2((s - t)/R)g(t - y\ z2)

,u\zx)G{u,y,z2)\\ +?7fe,

where Uk vanishes as R -> oo [cf. Sk in (6.5) and Rk in (6.10)]. Omitting this
remainder, we can solve the resulting system of integral equations by the ansatz

Dk(Xk Yk;Zk;x,y) = J{ ¥(x3 - yf Zj)D0(x - y), (6.41)
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where D0(x) satisfies the equation

D0(x -y) = w2R~d ] Γ Φ2((* ~ t)/R)g(t - y; z2)
s,t

- ί;x ίl>0(a; - t)S?(O; z2)

+ &{x - y-Zι)(s -

By using the Hubert identity and Theorem 4.1 to calculate the last term, we find that

D0(x -y) = S?12(x- yWw2F~ι (j^LlI^Ϋ ? ( 6 4 2 )

V Z Z

where 2^ ? 2( χ)' χ 2 a n c* ^ a r e defined in (6.28), (6.31) and (4.33), respectively. It is
easy to show that (6.37)-(6.39) and (6.42) yield the same expression (6.4) for the
density of the limiting measure.

The above method of calculation of this density seems more direct than that based
on (2.19) and requiring a considerable amount of calculations. However, the rigorous
justification of all the stages starting from substantiating the limiting form (6.37)
of (6.36) is also rather cumbersome and the respective amount of calculations is
practically the same.

We note in the conclusion that based on (6.42) we can calculate zero frequency
conductivity σdc(E) — σ(0, E) in two ways. In the first one we just set v = 0 in
(2.22). In the second way we use the formula

] | | { | ( , ; λ + iε)\2} ,

xezd

which is widely accepted in solid state physics and shows that direct current
conductivity is physically related to diffusion. This formula is a version of the Kubo
formula derived for the direct current.

Interchanging the limits ε j 0 and R —> oo in this formula we obtain the possibility
to use (6.42) for x = y, zx 2 — E ± iε. Performing the limit ε j 0 in the respective
expression, we again arrive at (2.29).

7. Discussion

As we mentioned in Sect. 5, the deformed semicircle law appeared for the first time
[24] in a somewhat different problem on the limiting eigenvalue distribution of the
random matrices (5.2) (see also (5.4)), known as the deformed Wigner ensemble. This
ensemble arose in nuclear physics (see e.g. [22,32]), where it was proposed in order
to describe the statistics of low-lying levels of heavy nuclei. Later similar ensembles
appeared in quantum field theory [9], quantum chaology [11] and statistical mechanics

[5].
The main difference of the respective random matrices (5.2) and (5.4) from those

modelling elementary excitations in disordered condensed matter [in particular, the
random operators (2.1)-(2.3)] is that the former have all the entries of the same order
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of magnitude (e.g. identically distributed), while the latter have nonzero entries only
on the finite number b of diagonals adjacent to the principal diagonal (for instance in
(2.1) b = (2rR)d + 1, where r is the radius of the support of φ{t)). In other words
the former random matrices correspond to nonlocally interacting disordered systems
(the range of the interaction is of the order of the size of the system), while the
latter correspond to the locally interacting (short range) systems. Therefore it is rather
natural that we have obtained the deformed semicircle law as the result of the limiting
transition R, d, n —> oc.

Let us consider the finite volume version of (2.1), i.e. the restriction H^A ^ of (2.1)
to a finite cube A C Ίβ centred at the origin and having the side length L. Then (5.4)
corresponds to d = 1, L = ί = 2m + 1, R = 2m and φ(t) = χλ(tχ where χλ(t) is
the indicator of the interval [-1/2,1/2]. Therefore Theorem 5.1 of this paper and the
results of [24] (see also [16]) show that the deformed semicircle law is the limiting

(7-?^

eigenvalue distribution in the two extreme cases of HΛ : the first one corresponds to
the two successive limiting transitions L —> oo and then R—>oo (Theorem 5.1), while
the second one corresponds to the simultaneous limits L —» oo, R —> oo, LR~ι —» 1.
In view of these results it is natural to analyse the intermediate cases when L —» oo
and R —> oo but 0 < v = \imLR~ι < 1. It is the so-called band random matrices,
which appear for instance in the studies of quantum chaos [6]. In paper [17] it was
shown that under fairly general conditions (condition (5.3) in essence) the limiting
eigenvalue distribution of these random matrices with iJ 0 = 0 is again the semicircle
law if v — 0. The case of 0 < v < 1 is more complicated (for details see [4,17]).

We have mentioned in the Introduction that there exists an analogy between the
spectral problems which we are studying in this paper and the mean field theories
in statistical mechanics and solid state theory. Therefore it is natural to compare our
results with results of mean field type approximations developed in the theory of
disordered systems (see reviews [5,21,34]). These approximations are known also as
single-site approximations and are applied mainly to the averaged Green function of
the respective random operator.

The most widely accepted approximation of this type is the coherent potential
approximation (CPA). It was proposed and applied to random operators with a
diagonal disorder, i.e. the discrete Schrodinger operator

-hΔdisc + q(x), xeZd (7.1)

with an i.i.d. random potential first of all. Therefore one cannot expect too much
similarity between our results obtained for the "opposite" case of the "maximum"
off-diagonal disorder and results of the CPA. In particular for the Cauchy-distributed
random potential (the Lloyd model), when

P{q(x) e dq} = 7 π ~ V + τ V ^ , 7 > 0, (7.2)

the basic relations of the CPA [8,21,34]

Έ{G(x, x; z)} = G0(0, z + Δ(z)), (7.3)

\ 1 + [q(x) + Δ(z)]G0(0, z + Δ(z)) J V *

yield the following for the selfenergy Δ(z),

Δ(λ + is) = iη sign ε . (7.5)
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Since according to our notation the l.h.s. of (7.3) is r(z), we can write (7.3) and (7.5)
for Im z φ 0 as

r(z) = ro(z + 27). (7.6)

This formula is obviously different from our basic equation (2.15) which determines
the selfenergy

Δ(z) = w2r(z) (7.7)

as the solution of this equation.
Nevertheless, as was shown in [31], Eqs. (7.3) and (7.4) yield (2.15) if the

probability distribution of q(x) is the semicircle law (5.6).
According to many suggestions and numerical results, the accuracy of the

CPA increases with the increase of the coordination number of a lattice, i.e. its
dimensionality in particular (note that no general quantitative criteria for the validity
of the CPA seem to be available). Consider in this connection the Lloyd model (7.1),
(7.2) again. It is well known that for this model [21]

Έ{G(x, y\ λ + iε)} = G0(x -y λ + iε + ij- sign e). (7.8)

Comparing this relation with (7.3) and (7.5) we conclude that the CPA is exact for
the Lloyd model. Now, rescaling the translation invariant part of (7.1) in accordance
with (2.2b):

h = hdd~ι/2, (7.9)

we find from (7.8) with x — y and Im z > 0 that

r(z) = lim E{G(x,x; z)} = ί(λ - zΓιN0(dλ),
d-+oo J

where N0(dλ) is the Gaussian distribution given by (2.17). This formula as well as
(7.6) is different from Eq. (2.15) (with the same N0(dλ)) according to which the
selfenergy is given by (7.7).

Thus, at least in the case of the Lloyd model, the d = oo limits of the
exact averaged diagonal element of the Green function and of its CPA form are
different from the same limit of Έ{G(x,x;z)} for the random operator (2.2) with
an off-diagonal disorder satisfying (2.1e,f). This conclusion is supported by recent
diagrammatic analysis [30], according to which the d = oo limit of E{G(x, x\ z)}
and of its CPA form coincide for an arbitrary random i.i.d. potential in (7.1).

It is worth noticing, perhaps as a kind of curiosity, that in the case of the Bethe
lattice the infinite coordination number limit yields the deformed semicircle law, i.e.
Eq. (2.15), even for the diagonal disorder model. Indeed, let us consider the discrete
Schrodinger operator with an i.i.d. random potential on the Bethe lattice with the
connectivity K (K — 1 is the number of neighbours to a given site and plays the role
of the coordination number of the dimensionality for the Bethe lattice). If G^(z) is
the respective Green function and Δj(z) is defined as

[GJj(z)Γι=qi-z-Δt(z), (7.10)

then according to [1]

(7.11)
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where sum in the r.h.s. is over K nearest neighbours of a site i. Due to the special
structure of the Bethe lattice (any branch of a given generation can be decomposed
into K identical and nonintersecting branches of the next generation), the K random
variables in the r.h.s. of (7.11) are all identically distributed and independent of one
another and of the K random i.i.d. variables q^ These 2K random variables generate
the probability distribution of Δi in the l.h.s. which coincide with the distribution
of each A- in the r.h.s. of (7.11). Our intention is to consider the limit K —» oo
for this recurrent relation. To this end we rescale the hopping integral h as follows:
h — wK~χl1. Since K plays the role of the dimensionality here, this scaling is
analogous to the scaling cΓ1 / / 2 in (2.2b) and (7.9) in the translationally invariant part
of (2.2) and (7.1). Using this rescaling it is easy to prove that the variance of the
r.h.s. of (7.11) is O(K~ι). Thus, each Δi converges in probability to a nonrandom
limit as K —» oo. Denoting this limit as Δ(z) and using (7.10) and (7.11), we obtain
the relations

r(z) = Έ{Gt%(z)} = J(q-z- Δ(z))~ιF(dq),

Δ(z) = w2 ί[q-z- Δ(z)ΓιF(dq),

where F(dq) is the probability distribution of the potential q{. Thus, Δ(z) satisfies
(7.7), and as a result we obtain Eq. (2.15) determining the deformed semicircle law in
which the role of an unperturbed IDS N0(dλ) is played by the probability distribution
of the diagonal part of our random operator and the role of the variance w2 of
off-diagonal entries [see (2. If)] is played by the squared rescaled hopping integral.
Comparing this result with the respective results for the ensembles (2.2) and (5.4), we
conclude that for the Bethe lattice the infinite coordination number limit yields the
deformed semicircle law for the IDS even in the case of pure diagonal disorder and a
properly scaled nonrandom off-diagonal part while, for a real lattice this eigenvalue
distribution seems to be the case only for a considerable amount of off-diagonal
disorder with the same scaling.

The above situation should also be contrasted with statistical mechanics where
the Curie-Weiss formulae can be obtained as the infinite dimensionality limit of the
respective formulae for the real lattice Έd and as the infinite K limit for the Bethe
lattice (see e.g. [14]), while for the Schrodinger equation with a random potential
these two limits are different: the former one results in the CPA and the latter one
results in the deformed semicircle law.

To this point we have discussed the first moment of the Green function which
determines equilibrium characteristics of disordered systems. However, to calculate
kinetic characteristics, the conductivity first of all, we need to know the second
moment of the Green function. It was recognized long ago [8,34] that the simple
decoupling Έ{GG} = Έ{G}Έ{G}, which is in the spirit of any single-site (mean
field type) approximation including the CPA is inconsistent with certain physical and
mathematical conditions. The most important is the Hubert identity which plays the
role of the Ward identity here (see Remark 3 in Sect. 3). It was also found that a
modification of this decoupling which is free of the above mentioned inconsistencies
should only take into account the multiple scattering of two particles by the same site
[29].

As we have mentioned above the infinite R, d and n limits do not coincide with
the CPA. However these limits have similar properties. In particular, according to
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Theorem 4.1, all the Green function moments decouple into the products of the first
moments in these limits and, according to Sect. 6, this fact does not contradict the
Hubert identity. The reason is not too fast decay of the respective remainders. As a
result we cannot perform these limits inside the sums over the whole lattice entering
into the Hubert identity or in expressions (6.6), (6.29) and (6.39) for the Stieltjes
transform of the conductivity. According to Sect. 6 [see the last part of this section
starting from (6.34)], to calculate an expectation containing the sums mentioned we
are to consider a larger family of quantities including both the products of the Green
functions and certain infinite sums of some of these products and to derive a new
infinite system of equations for the expectations of this family. However the common
feature of this new system and the systems for the expectation of the products of the
Green functions is that in both cases the solutions of the respective limiting systems
have a factorized form [see (4.2), (6.24) and (6.41)] in accordance with the spirit of
the single-site approximations.

This should be regarded as the proper mathematical mechanism of these approxi-
mations.

It is worth noting that, though the respective corrections (see e.g. (6.27)) are
necessary to guarantee the Hubert identity, they do not contribute to the conduc-
tivity (6.6) due to the antisymmetry of the velocity operator z> in (6.5). Thus, we
can use the simple decoupling Έ{GG} = Έ{G}Έ{G} in calculation of the con-
ductivity. This fact is also well known in the theory of disordered systems (see
[8,21,34]).

Vanishing of the simplest two-body corrections to the conductivity seems physi-
cally related to vanishing of the backscattering term in a transport equation [29]. As
is generally accepted (see e.g. review [19]), the absence of the backscattering contri-
bution is in turn closely related to the absence of localization. This is in agreement
with the absence in our formulae of such well known manifestations of localization
as exponential tails of the IDS, vanishing of the zero frequency conductivity for the
Fermi energies for which the density of states is nonzero, etc.

Since for finite R, d9 and n the localized states should always be present at least at
the edges of the spectrum of the operators (2.1)-(2.3), we have to conclude that the
limiting transitions R, d, n —> oo "remove" completely the pure point spectrum of
these operators. In particular, since according to (2.18) and (2.29) in all three limits
(as well as in the CPA) the support of the zero-frequency conductivity as a function
of the Fermi energy coincides with the IDS support, then one may speculate that the
edges of this support coincide with the R, d, n —> oo limits of the mobility edges of
respective operators.

Appendix

Let us show that the R — oo limit of the IDS (2.4) is independent of the diagonal
random entries W(x, x), x € Zd.

It suffices to prove that this property holds for lim E{Gβ(0,0)}, \mz φ 0.
R—>oo

Assume now that in (2.1) W(x,x) are arbitrary i.i.d. random variables such that

E{ W(x, x)} = 0, E{ W2(x, x)} = wl>0.



Limits of Infinite R, d, and n for Random Operators 645

In other words, we replace (2.1e) by the most general form

E{W(xι,yι)W(x2,y2)} = w2[δ(xx - x2)δ(yx - y2)

+ δ(xx - y2)δ(yι - χ2)][l - δ(xx ~ y{)]

+ w\δ{xx - x2)δ(y1 - y2)δ(X\ ~ V\)

Denote by HR the operator (2.1) in which all W(x, x), x e ΊLd, are set to be zero

and by GR the Green function of HR.

Then the resolvent identity (3.8) with A + B = HR, A = HR yields

E{\GR(0,0) - GR(0,0)\} <

< Φ(P)R-d/2
Λ(0, S ) | 2 | | Σ 5 2 2 |J

According to (3.11) the first expectation here is bounded from above by η 2 ,
η = I Imz|. The second expectation is

RΦ, s)\2}E{W\s, s)} = w2

because GR is independent of W(x>x). By using once again (3.11), we arrive at the
bound

E{|GR(0,0) - 0R(0,0)\} < ΦΦ)w2R'1/2η-2.

Similar bounds are also valid for a — d, n.
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