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Abstract. We derive an asymptotic formula for the number of free homotopy classes
on a closed surface which have (approximately) the same length with respect to
two different hyperbolic structures on the surface. The growth rate in the asymptotic
formula is described in terms of the thermodynamic formalism for the geodesic flow.

1. Introduction

Let S be a smooth closed surface of genus > 2. A hyperbolic structure on S is
an equivalence class of pairs (X, φ) such that X is a surface of constant negative
curvature -1 and φ:S —> X is a diffeomorphism. Two such pairs (X, φ) and (Xl,φl)
are equivalent if there is an isometry τ:X —> X{ such that r o φ is isotopic to φ{.

The map φ induces a one to one correspondence between free homotopy classes
on S and closed (but not necessarily simple) geodesies on X. The closed geodesic
g G X corresponds to the free homotopy class [7] represented by the closed curve
φ~l(g) G S. The structure (X, φ) induces a length function I on free homotopy classes
of S. We define £[7] to be the length of g on X. This length function is independent
of the choice of pair (X, φ) representing the hyperbolic structure.

The image of I is called the length spectrum, and it is natural to ask how it
is distributed in R+. One answer is the following asymptotic result [H]: For fixed
"tolerance" ε > 0,

#{[7]: HΊl Ξ (x, x + ε)} ~ (eε - 1) — .
x

Here the notation f ( x ) ~ g(x) means that f ( x ) / g ( x ) —> 1 as x —» oo.
In this paper, we will consider the correlation between the spectra of two length

functions ^ and 12 induced by the two hyperbolic structures (Xl^φl) and (X2,φ2)>
Fixing a tolerance ε > 0, we ask if it is possible to find a free homotopy class [7]
of S such that ^[7] — ̂ Wl < ε Moreover, we ask for the asymptotic number of
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such free homotopy classes as a function of the (common) length. These questions
are partially answered by the following.

Theorem 1. Let l\ and 12 be two length functions associated to two distinct hyperbolic
structures on S, and let ε > 0 be fixed. Then there are constants C = C(ε, / 1 5 /2) > 0
and M = M(llJ2) e (0,1) such that

eMx

The proof of Theorem 1 contains a precise description of the exponential growth
rate M(ll,l2) in terms of familiar dynamical quantities associated to the geodesic
flows on hyperbolic surfaces. However it seems very difficult to write down an explicit
formula for the function M(*, *) in terms of the two hyperbolic structures on which
it depends. The only information we have about M is that it is continuous in its
arguments, and M(/1 ?/2) —> 1 as the two structures (Xl^φl) and (X2,φ2) converge
to a single structure. Similarly, for fixed ε, Cίε,^,^) -̂  oo as the two structures
converge to a single structure. A question which we would like to have answered, but
couldn't, was whether or not M is a bounded away from 0 as its arguments range
over all hyperbolic structures on S.

The proof of Theorem 1 falls naturally into two parts. In the first part, Sect. 2, we
describe the geodesic flow, and prove a technical "independence lemma" concerning
length functions. In Sect. 3, we use this independence result to show how our Theorem
1 may be deduced from a theorem of S. Lalley concerning the distribution of orbits
of the geodesic flow on a hyperbolic surface.

We would like to thank Mark Pollicott, who suggested to us that Lalley's theorem
might be useful in studying the length spectra of two surfaces simultaneously. We
would also like to thank the I.H.E.S. for providing support during the preparation of
this paper.

2. The Geodesic Flow

2.1. The Geodesic Flow. Let X be a fixed closed surface of constant curvature —1.
The unit tangent bundle of X is the manifold of pairs (x,t>), where x 6 X and v
is a unit tangent vector to X at x. We will denote the unit tangent bundle either by
UT(X), or by UT, when the dependence on X is clear. Locally, UT is the product
of a disk with a circle. UT has a natural Riemannian metric g, which, at each point
(x, v), is the product of the hyperbolic metric at x G X and arc length along the fibre
over x evaluated at v. The metric g induces a measure μ on UT which is pointwise
the product of hyperbolic area on X with arc length along the fibre.

The geodesic flow ρt:UT -» UT is defined as follows. For (x,v) e UT, let
#(*) denote the unique geodesic on X (parametrized by arc length) having #(0) = x
and g(Q) = v. Now set ρt(x,v) = (g(t),g(t)\ This flow is measure preserving and
ergodic with respect to μ. Indeed, μ is the unique measure of maximal entropy for
the geodesic flow.

There is a one to one correspondence between the periodic orbits of ρ and the
closed geodesies on X. If X is part of a hyperbolic structure (X, φ) on S, then via φ
there is a one to one correspondence between closed orbits of φ and free homotopy
classes on 5. We will use [r] to denote the free homotopy class on S corresponding



The Correlation of Length Spectra of Two Hyberbolic Surfaces 425

to the closed orbit r. If X(τ) is the least period of T, then λ(τ) = l [ r ] . Here / is the
length function corresponding to (X, φ).

2.2. The Boundary Correspondence. For a continuous function /: UT —> R, we define
λ(/, r) to be the integral of / (with respect to arc length) around the closed orbit r.
In particular, if / = 1, then Λ(/, r) = Λ(r).

Suppose that (X2,φ2) is a second hyperbolic structure on S, and that 12 is the
corresponding length function. We will use the well known canonical homeomorphism
B: UT(X) -» UT(X2) to produce a Holder continuous function φ: UT -* R+ such
that X(ψ, r) = I2[τ] for each closed orbit r.

Fig. 2.2

Here is a description of B. For more details, see [BC]. Let H denote the hyperbolic
plane. Let / = φ2 o ί/)"1:X —» X2. Then / lifts to a map /:H —> H, which covers

/. The map / has a Holder continuous extension b:8l —> S1, which is called the
boundary correspondence. A unit tangent vector of H can be given by an ordered triple
of distinct points on S1, as shown in Fig. 2.2. The map (x,y,z) —>• (6(x), 6(y), b(z))
induces a map B:UT(H) —> t/T(H). Since 6 is equivariant with respect to the
two groups of deck transformations, B descends to give a Holder continuous map
B:UT(X)-+UT(X2).

The map B has the property that it takes orbits of the geodesic flow on UT(X)
to orbits of the geodesic flow on UT(X2). Let 6 be a number which is smaller
than the length of the shortest closed geodesic on either X or X2. Given a point
(x,v) G UT(X), let oδ(x,v) be the segment in UT(X) consisting of the orbit of
(x,v) up to time δ under the geodesic flow. Define ψ(x,v) to be l/δ times the
length of B(oδ(x, v)). (Note that we are not taking the limit δ —> 0, which does not
necessarily exist.)

The Holder continuity of ψ follows from the Holder continuity of B. To prove that
λ(^, r) = /2[τ], we will consider a completely analogous situation, which is simpler to
treat. Suppose T = R/λZ and T2 = R/λ2Z are two different circles with the obvious
induced metrics, and /: T —> T2 is an orientation preserving homeomorphism. Define
p:T -> R+ by the formula

f(χ + δ) - f(x)
p(x} = .

0

This difference is taken modλ2, so that it is always positive. We will show that

/ p(x)dx = \2 .
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To prove this, we may assume by approximation that / is in fact differentiable, with
derivative g = /'. Then

δ

P(x) = -jj I 9(x + y)dy .

o

So

δ δ δ

I p(x)dx = - I g(x + y)dy dx = - I g(x + y)dx dy = - I \2dy = λ2 .

T T O 0 T 0

The function ψ is related to the Weil-Petersson metric on the Teichmuller space
of hyperbolic structures on the surface S. In particular, the integral

/ ψdμ

UT

is the same as the quantity called the "5 length of an R geodesic" in [W]. (For us,
R = X and S = X2.) Two salient features of this quantity are:
1. The integral doesn't depend on the choice δ > 0.
2. As noted in [W], the integral is strictly greater than 1.

2.3. Independence ofψ. A unit complex valued function u:UT — » S1 is said to be
continuously differentiable with respect to the geodesic flow ρ if the limit

exists everywhere and is continuous.
Two functions f,g:UT — > R are said to be independent if the following

implication

(*) af + bg = — u'/u , α, b eR=ϊ a = b = Q
2m

holds (possibly vacuously) for each continuously differentiable function u: UT — > S'1.
In particular, / is said to be independent if / and the constant function g = 1
are independent. The remainder of this section is devoted to showing that φ is
independent.

Let /! denote the length function corresponding to the structure (X, φ) and let 12

denote the length function corresponding to the structure (X2,φ2). Suppose u is a
continuously differentiable function which satisfies the left half of (*). The integral
of u'/u over a closed orbit is an integer multiple of 2πi, so the left-hand side of (*)
translates into:

Vi [71 + ̂ 2 W £ Z, α l 5 6 2 G R

for every free homotopy class [7].

Independence Lemma. Let lλ and 12 be two distinct length functions. 7/α l 5 α 2 G R
satisfy 04 ̂ [7] + o,2l2[^] G Z/6>r every free homotopy class [7], then aλ = a2 = 0.

Proof. Below we will use a version of Dehn Twisting to prove:
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Lemma 2.3. For each free homotopy class [7^ there is an infinite sequence of free
homotopy classes [72], [73], . . . and a constant C = C^, /2, [7ιD such that

l^k] + 2/,.[7l] - ί,[7fc+1] G exp^M^JMCr' C']; j = 1,2.

Let [a{] = [a] be a free homotopy class such that l λ [ a ] < I2[a], and let
[α2], [0^3], . . . be the corresponding classes given by Lemma 2.3. Consider the vectors

v = 2vι - vk+ι

We have a wk G Z. For large fc, this dot product is small, implying that α wk = 0.
If α ̂  (0, 0) then these wk lies in the linear subspace A — cr1.

Let β and e be the coordinate vectors of R2. The unit vectors all lie
in A, and by Lemma 2.3, wk/\\wk\\ — > e2. Therefore A = Re2, which in turn implies
that the first coordinate of wk is zero for sufficiently large fc, a contradiction to Lemma
2.3. D

Proof of Lemma 2.3. It suffices to prove Lemma 2.3 for the single length function /,
induced by the hyperbolic structure (X,φ). Let [7^ be an arbitrary free homotopy
class and let |/γ2] be any free homotopy class which intersects [7^ and which is not a
multiple of [7 .̂ Let 7j and 72 be two closed curves on 5, representing these classes,
which have the minimum number of intersections. Let ξ e 7j Π 72. Let 7^ (k > 2) be
the curve on S given by the following procedure: start at ξ; wind k times clockwise
around 7^ wind once clockwise around 72; then wind k times clockwise around 7^

The minimal intersection property guarantees that there is an isotopy of X which
carries </>(7ι) aπd 0(72) to the two closed geodesies g^ and g2 representing the classes
[7j and |/γ2]. (See [BC].) Thus there is a point x e gl Πg2 corresponding to ξ, and a
piece wise geodesic curve hk on X corresponding to jk. In particular, hk represents
the free homotopy class [7 .̂]. Finally, let gk be the closed geodesic on X representing

Fig. 2.3

72

The hyperbolic plane H universally covers X. We will denote the lift of w E X to
H by w. Figure 2.3 shows the lifts to H of the various curves on X. Here r is the deck
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transformation whose axis is §2 and whose translation length is /[72] The segment
of gk lying between g{ and r(§j) covers gk exactly once under the quotient map
H —> X. Indeed, by symmetry, the deck transformation identifying the endpoints of
this segment correctly matches up the tangent vectors to produce the closed geodesic
gk on the quotient. Thus l[^k] is exactly the length of the portion of gk lying between
& and τ(g{). Set lk = l[Ίk\.

Below we will use the notation A « B iff A G (B - C, B + C) and A x B iff
A G (C~1B,CB). Here C is a fixed but unspecified constant. We will also use the
following hyperbolic trigonometry formulae [B] for a right-angled hyperbolic triangle
having hypotenuse C and angle β opposite the side B.
1. sinhC = sinhB/ sin/? (Law of Sines);
2. cosh C = cosh B cosh A (Law of Cosines).

From Figure 2.3 it is clear that lk w 2kll. Using the Law of Sines, with C = lk/2,
5 x 1 , and /3 = θk, we obtain 0^ x sinθk x exp(—fc/1). Using the Law of Sines
again with C — gk+l x 1, B = dk, and β — θk, we obtain dk x sinhdfc x exp(—kl l).
Since dk is small, we have gk+l x //c/2. To summarize, we have

We also have the equation:

I1 _|_ I/ f c _ -ik+l — (I1 — i(g' )) _{- (ik /2 — l(g" )).

We may write the Law of Cosines as cosh C — cosh A = cosh A (cosh B — 1). If A and
C are pinched away from 0, A « C, and 5 < 1 then C — A x cosh 5 — 1 x B2. The
first of these estimates follows from the expansion properties of cosh on [A, C], and
the second follows from Taylor's series. Taking A = l(gk+l), B = dk, and C — I1

gives I1 - l(g'k+l) x exp(-2A:/1). Taking A = l(gk+l), B = dk, and C = lk/2 gives
l k / 2 — l(gk+ι) x exp(—2kl l). Adding these estimates proves the lemma. D

We conclude from the Independence Lemma that ψ is independent with respect to
the geodesic flow on UT(X).

3. Proof of Theorem 1

We will deduce Theorem 1 from a result of Lalley [L] concerning the distribution of
periodic orbits of a hyperbolic flow. We begin by introducing some ideas from the
thermodynamic formalism. A good reference for these ideas is [PP].

Recall that UT = UT(X) is the tangent bundle to the hyperbolic surface X, and
ρt is the geodesic flow on UT. Given any invariant ergodic measure v on UT, let
h(v) denote the measure-theoretic entropy of g with respect to v.

Given a Holder continuous function /: UT —> R, we define the pressure of / to
be

P(/) = sup|ft(ϊ/) + f fdv\.

( UT )

Here the supremum is taken over all invariant probability measures. There is a unique
such measure μ^ , for which this supremum is attained, μ^ is called the equilibrium
state for /. In particular, the equilibrium state for / = 0 is the measure μ, described
in Sect. 2.1. This is just a restatement of the fact that μ is the unique probability
measure of maximal entropy.
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Similar to Sect. 2.3, we say that a function v:UT —> R is continuously
differentiable with respect to ρ if the limit

υ/(y} = log v(
t-»0

exists everywhere, and is continuous. Two Holder continuous functions / and g are
said to be cohomologous if / — g = vf for some continuously differentiable v. Two
Holder continuous functions / and g have the same equilibrium state if and only if
/—g is cohomologous to a constant (function), say c. In this situation P(f) = P(g)+c.

Let / be a Holder continuous function, we shall be interested in the real variable
function t —> P ( t f ) . If / is not cohomologous to a constant function, then this function
is analytic and strictly convex. Furthermore,

P'(tf)=jtP(tf)= j fdμ.tf
UT

holds for each value of t G R. Let J(/) denote the open interval of values P'(tf). If
α G «/(/), let ta G R be the unique real number for which P'(taf) = a.

Lalley's result concerns Holder continuous functions on UT which are independent
in the sense of Sect. 2.3. It is easy to see that an independent function cannot be
cohomologous to a constant.

Proposition [L], Let f :UT — > R be an independent Holder continuous function and
let a G J(f). Then, for fixed ε > 0, there is a constant C = C(/, ε) such that

#{τ : λ(r) G (x, a: + ε), λ(/, r) G (ax, ax + ε)} - C t

Here we have set μα = μ tαj.

Remarks, (i) Our statement of Lalley's result differs slightly from the original in [L].
First, our independence condition is a minor rephrasing of the one appearing in [L].
Second, the original is stated for C°° functions instead of Holder functions, and only
for values of α in a small neighborhood of J fdμ. However, these more stringent
conditions are not necessary. (See [S].)
(ii) The constant C = C(/,ε) is related to the second derivative P"(taf), and has
the same order of magnitude as ε2.
(iii) The geodesic flow has positive entropy with respect to any equilibrium state, so
0 < h(μa) < h(μ) — 1. Equality occurs if and only if μa is the measure of maximal
entropy, which is to say that ta = 0 and (hence) α = f fdμ.

We shall apply Lalley's result to the function ψ, constructed in Sect. 2.2, and
seen to be independent in Sect. 2.3. To prove Theorem 1, we just need to show that
1 G J(ψ), and that h(μλ) < 1.

As in Sect. 2.3, let lγ and 12 be the two lenght functions associated to the hyperbolic
structures (X, φ) and (X2, φ2).

Let I(ψ) denote the set of values J Ψ dv, where z/ ranges over invariant probability
measures. Clearly I(ψ) is a closed interval. For any closed orbit r, \(ψ, τ)/λ(τ) G
I(ψ). It is standard that there exist two homotopy classes [7^ and [72] such that
Ίt7ι] > ^[^J and Ίh^] < ^["/i-l These correspond to periodic orbits τl and τ2 for
which \(ψ, Tj/XfrJ < 1 and X(ψ, r^/λ^) > 1. Therefore (1 - 2ε, 1 + 2ε) G I(φ)
for small ε > 0.
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The following line of reasoning is adapted from [MT]. From the above, we have
1 ± ε E /O/O, and hence

t + |t|ε E ί/WO Vί .

It is clear from the definition of pressure that y E I(φ) implies P(tψ) > ty. Hence

P(tψ)> supt/WO Vί.

Combining the last two inequalities gives

P(tψ) - t > \t\ε Vt .

Consider the function Q(t) = P(tψ) - t. Since P(0) = 1, we have Q(0) = 1. Also,
if \t\ > l/ε then Q(t) > 1. Therefore Q(*) must have a minimum for some value
in x E [—l/ε, l/ε]. At this point Q'(x) = 0, which is to say that P'(xψ) — 1, as
desired.

From Remark (iii) above, h(μ{) = 1 if and only if f ψdμ = 1. However, this
integral is strictly greater than 1, by Remark (ii) of Sect. 2.2.

This completes the proof of Theorem 1.
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