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Abstract. We study the spatial asymptotics of generalized eigenfunctions of three
body Schrodinger operators and derive all the S-matrices with initial state of
2 clusters.

1. Introduction

This paper is a continuation of our previous work [2] and deals with properties of
S-matrices for three body Schrodinger operators. We first recall the basic notation
and results of [2]. In R3 we consider three particles with mass mf and position x\
Let α be a pair (ίj) and

mi + nij

1 1 1 1 1 1

m α rrii nij na mk m{ + nij

Then the Schrodinger operator is defined by

H = H0 + ΣK(x*)> H0=-Δx«-ΔXa (1.1)
α

on L2(X\ where X = {(x1, x2, x3); ^ 3 = i m^x' = 0}. We consider wave operators,
known to exist when Fα(xα)'s decay faster than |xα |~1,

W% = s - l i m e i t H e - i ί H o , (1.2)
± 00

= s - lim e^e'^Jz , (1.3)
r-> ± oo

Va , (Jβ/)(x",x«) = uβ(x«)/(xβ), (1.4)
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where ua is a normalized eigenfunction of \f = — Ax* + Fα(xα) with eigenvalue
Ea < 0. We define the scattering operator <SOα by

So« = {wt)*w;. (1.5)

Let J y L 2 (R 6 )^Z 2 ( (0 , oo); L2(S5)) and # , : L 2(R 3) ^L2((E«, oo); L2(S2)) be
the unitary operators defined by

, 0) = C0(λ) J e-i^λθ'xf(x)dx ,
R6

) = (2πΓ 3 2- 1 / 2 λ, (1.6)

= Cβ(λ) f e- i>^Z Ϊ 5« V(x)dx ,
R3

Cβ(λ) = (2π)" 3 / 22" 1 / 2(λ - £ α ) 1 / 4 . (1.7)

Let

So. = ̂ o S o / ί (1.8)

Then the S-matrix £0«WeB(L2(S2); L2(S5)) is defined by the relation

for all λ>0, θeS5 and feL2((Ea

9 oo); L 2(S 2)). We assume that Fα is a real
C00-function such that for a constant p > 0

| ^ F α ( j / ) | ^ C w ( l + | j ; | Γ ' - " \ w = 0 , l , 2 , . . . , (1.9)

δj? denoting an arbitrary derivative of mth order with respect to y. Let

X̂  = {xeX;xβ = 0} ,

Then in [2] we showed the following results.

(1) If p > 4 + 1/2, SOα(Λ) has a continuous kernel outside N:

SOθL(λ; 0, ω) e C((0, oo) x M x S2) .

(2) If p > 5 + 1/2, we have the following asymptotic expansion around JV:

as |0^| ->0, where we decompose ΘeS5 as θ = (0^, 0 )̂ in accordance with the
choice of the Jacobi coordinates. The coefficient Aβt _ i can be written explicitly in
terms of 2-cluster scattering amplitudes associated with eigenfunctions with zero
eigenvalues and the zero-resonance of hβ.

In this paper, we relate this S-matrix to the asymptotic behavior of the
generalized eigenfunction for H.
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We first recall the 2-body problem. The generalized eigenfunction φ(x,ξ) of
— A + V in R" is written as

φ(x9 ξ) = eixξ - v ,

v = v(x, ξ) = (-A + V- \ξ\2 - iθy1(V(x)eixξ) .

The first term, eixξ, represents the incident wave, and the second term, v, the
scattered wave. The scattering amplitude A(λ; θ, ω) = S(λ; θ, ω) — δ(θ — ω) is
derived from v in the following way:

v{x, *Jλω) ~ C(λ)r-(n-1)/2e^λrA(λ; θ, ω) ,

θ = x/\x\, r = |x| -+ oo .

In the case of the three body problem, our generalized eigenfunction is given by

φ(x, A, ω) - ei^TΓFaω'Xau(,{xa) - υ , (1.10)

R(z) = (H-zy1 , (1.11)

= f(x, λ, ω) = Σ Vy(x*)ua(x*)eiJr:Έ~mω χ . (1.12)
y φ α

The scattering matrix SOa(λ) is related to the spatial asymptotics of v in the same
way as in the 2-body problem.

Theorem 1.1. If p > 4 + 1/2, for any λ>0,

s - \imr5/2e-^~λrυ(r ) = C^So^λ; , ω),
r-> oo

Cx(λ) = e-πi/*2πλ-1/4{λ - Ea)'1/A ,

in LL(M).

However, it is not easy to replace M by S 5 in the above theorem, since the
behavior of v in a neighborhood of N is rather complicated. What we can expect is
the limit in an averaged sense.

We take χβ(x)eC™(X) such that χβ(x) = 1 if | x ' | / | x | < e , χp(x) = 0 if
\xβ\/\x\ > 2ε, and p + iήeC^iR1) such that p + (t) = 1 if t > 1 - ε, p + (t) = 0 if
ί < 1 — 2ε, where ε is a small positive constant. We also take p(t)sCo((0, oo))
such that J*ρ(t)dt = 1. In order to facilitate the proof, we assume that the pair
potentials are rapidly decreasing, but the following two theorems can of course be
proved for more slowly decreasing potentials.

Theorem 1.2. Suppose that Fα's are rapidly decreasing functions. Then

Q lim Γ a-isfiθ'xfi v n ( β - Xβ 1 v (\Λnί Xβ' I
s - i i m — j e v ^ x ^ p + i — • — - iχ^ixjpl — - I

R->oo KR* \\Vβ\ \Xβ\J \ K J

= C2(λ)SOa(λ;θ9ω)9

C2(λ)= - ( 2 π ) 7 / 2 / ί - 3 / 2 μ - £ : α ) - 1 / 4 ,

in L2(Nβ\ where Nβ is a small neighborhood of N r\Xβ and xβ = xβ/\xβ\.
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In the neighborhood of the Xβ-plane, there are two sorts of scattering, the
3-cluster scattering and the 2-cluster scattering. We can distinguish between them
by changing the way of taking the limit at infinity of v.

Let uβι(xβ) be a normalized eigenfunction of hβ with eigenvalue Ef < 0. Let
Λβι(λ; θβ, ω) be the 2-cluster scattering amplitude associated with the process in
which, after the collision, the pair β takes the bound state uβi.

Theorem 1.3. Suppose that V^s are rapidly decreasing functions. For a small
ε > 0 , let φβiήeC^iR1) be such that φβ(t)=l if t > λ - ε, φβ(t) = O if
t < λ — 2ε. Let ψβ(DXβ) be the pseudo differential operator with symbol ψβ(\ζβ\2)-
Fix a > 0 arbitrarily. Then as r = \xβ\^> oo, we have the following asymptotic
expansion:

^ : : T t ; θβ, ω), θβ = xβ/r ,

uniformly for \xβ\ < α, θβeS2.

One of the basic tools to prove the above theorems is the spectral repres-
entation theory developed for 2-body Schrodinger operators, the key idea of
which is to relate the generalized eigenfunction to the spatial asymptotics of the
resolvent of Schrodinger operators (see e.g. [3, 10]). Another important tool is
the estimate of the N-body resolvent ([2], Theorem 2.2) proved essentially by
Skibsted [12], whose method is based on the study of propagation properties of the
unitary group due to Sigal-Soffer [11]. This estimate has been further refined by
Gerard [1].

Asymptotic properties of generalized eigenfunctions of three-body Schrodinger
operators have been so far studied mainly by physicists. In the work of Newton [6],
Theorems 1.1 and 1.3 were derived by intuitive arguments. If we consider the
collision process of initial state of 3-clusters, we are led to consider the generalized
eigenfunction formally defined by

φ(x9 λ, θ) = e^e'x - R(λ + iO) X V^λθ'x .
a

The rigorous study of this generalized eigenfunction seems to be much harder.
Nuttal [8] and Newton [6] gave precise explanations. For the structure of the
related S-matrix, see e.g. [7]. One should also note the work of Mercuriev [5] of the
three-body scattering theory for the Coulomb potential based on the stationary
theory.

We shall quote freely our previous work [2], so the same notation is used in this
paper. In particular, L2s denotes the usual weighted ZΛspace:

feL2>so\\f\\2

s = $ <x)2s\f(x)\2dx< oo ,
R"

<x> = (1 + |x | 2 ) 1 / 2 . For two Banach spaces Xx and X2, B(X1;X2) denotes the
totality of bounded operators from X1 and X2.
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2. Proof of Theorem 1.1

We recall the localization given in [2], 4-1. For a sufficiently small ε > 0, we put

Xe

β = {xeX;\xβ\/\x\<ε},

M° = S5\{JXβ,

We take ψM(θ), φ^eC^iS5) such that

ΦM(Θ) + ψN(θ) = 1 ,

θeM2ε,

0eΛΓ β,

θeNε,

We also take χM(x), χ J V(x)eC c 0(X) homogeneous of degree 0 for |x | > 1 and

1 if x e M ε / 2 , | x | > 1 ,

l if xeN2*,\x\>l,

where x = x/|x | . Next we fix A > 0 arbitrarily and for a small εi > 0 take
such that

1 if \t — λ\ < ε1 ,

0 if | ί - λ | >2ε1 .

Let P be a Ps.D.Op. with symbol p(x, ξ) = χM^)^M(ξ/lίl)ίAi( |ξ | 2). Then, as has
been proved in [2], (4.8), the kernel of φM(θ)SOθί(λ) is given by

- 2πίCa(λ)^0(λ)(H0 - λ)P*R(λ + iθ)f,

y φ α

We take X(X)GCCO(X) homogeneous of degree 0 for |x | > 1 and

1 if x e M 4 ε , | x | > l ,

To prove Theorem 1.1, we consider the limit of χ{x)v as r = \x\ -• oo. We intro-
duce the following notation:

Ul ~u2or5l2{u1{v)- u2(r-))-+0 in L2(S5) as r-> oo .
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As can be checked easily, w ~ 0 if weίf ^R 6 ) , where i ί ^ R 6 ) is the usual Sobolev
space of order 1.

Recall that υ = R(λ + iθ)f and that

\f\^ck(x«y-k(xay-o, vfc^o. (2.2)

Let xj/^t) be as above. Then v - ψ^H^eH^R6). By [2], Lemma 2.1,
1 6 ) . So we have

χ W ^ ί i ί o ί i ? . (2.3)

We set φ(ξ) = ψMξ\2)ΨM(ξ/\ξ\) Since suppχ and supp(l - φM(ξ/\ξ\))Φi(\ξ\2)
are disjoint, one can use [2], Theorem 2.2 to see

χ(x)φ1(H0)v^χ(x)ψ(Dx)υ. (2.4)

Since χ(x) = χ(x)χM(x), we have

χ(x)φ(Dx)v ~ χ(x)φ(Dx)χM(x)υ . (2.5)

In fact, on the support of the symbol of the commutator \_χM{x\ Ψ(DX)^, the
directions of x and ξ are different. So, (2.5) follows from [2], Theorem 2.2.

Noting that P is a Ps.D.Op. with symbol χM(x)ψ(ξ)9 we let g = (H0- λ)P*v.
We claim that geL2>s for some s > 3/2. In fact, g is written as

g = [H0,P*]R(λ + iθ)/+ P * / - P * F J φ , + iθ)/. (2.6)

As above, we apply [2], Theorem 2.2 to estimate the first term. By (2.2), the second
and the third terms belong to L2s for some s > 3/2.

Lemma 2.1. Let R0(z) be the resolvent of - Δ in RM and feL2>3/2. Let
C(λ) = ein-3)πi/4π-1/2λ1/*. Then the following strong limit exists in L2(Sn~1)for any
λ>0:

= s - lim C(λ)r(n-1)/2e-^λr(R0(λ + *Ό)/)(r ) ,
r-> oo

where # o W l 5 the Fourier transformation defined in the same way as in (1.6) with
C0(λ) = (2π)-"/ 22"1 / 2/l ( M-2 ) / 4. The right-hand side converges uniformly on Sn~\ if
f is rapidly decreasing.

Proof For the proof, see e.g. [10]. The last assertion following from the asymptotic
expansion of the Green's function of — A. D

We rewrite P*v as P*v = (Ho — λ — iθ)~1g and apply the above lemma. Then

P*v - C{λ)r~512e1^^0(λ){H0 - λ)P*v ,

φ ) = Γ 3 π i / 4 π 1 / 2 r 1 / 4 . (2.7)

Equation (2.1) shows that

P0(λ) {Ho - λ)P*v = i(2π)1/221/2(λ - ET1/4ΦM(Θ)S0Λ^ θ, ω).
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In view of (2.3) - (2.5) and (2.7), we have

χ(x)υ ~ χWCiWr-^e^φMWSo^λ; 0, ω) ,

d(λ) = e-πί/42πλ-1/4(λ - Eay1/4, θ = x/\x\ .

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We first recall the following well known fact.

Lemma 3.1. Let T0(λ) be defined by

(T0(λ)f)(θ) = j e-^9'xf(x)dx, θeS5 .
R6

Then for any λ > 0, we have

\\T0(λ)f\\L2(S5)^Cs
s\\f\\s,

We next recall the localization given in [2], 4-3-1. Let φN, ψ1 be as in Sect. 2 and
take ψβiήeCfiiR1) such that

l i f | ί - λ | < 6 2 ,

0 i f | ί - A | > 2 β 2 .

Then by a suitable choice of ε's, we have

β

We note that, if ε is small, χN(x) is split into three parts:

0 iϊxφXjε.

Let Aβ be the Ps.D.Op. with symbol

χβ(χ)Φβ(\ξβ\
2)ΨΛ\ξ\2)ψN(ξ/\ξ\) (3.1)

Let P = ΣβAβ τ h e n b y [2], (4.19), in a small neighborhood of N, SOa(λ; θ, ω) is
given by

where / is defined by (1.12). It is easy to see that if θ is very close to N r\Xβ,
SOa(λ; θ, ω) is represented as

- λ)A$R(λ + /0)/](Λ) . (3.2)

We take p(r)eCg>((0, oo)) such that j£>(ί)Λ = 1. Let i; be defined by (1.11).
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Lemma 3.2. Let Nβ be a small neighborhood of N n Xβ. Then the following strong

limit exists in L2(Nβ)\

s — lim— \e ι^ θβ-χβp\ —£- \ A^vdx , (3.3)
R->oo R R 6 \ R J

where xβ = xβ/\xβ\.

The proof of this lemma is long and complicated. Let pι(i) = J*p(s)ds and
w = Afv. Then by integration by parts, we have

• J e

R 6

(3.4)

We show that the right-hand side of (3.4) converges in L2(Nβ) as R -* oo. It is easy
to see that (Ap1(\xβ\/R))w(x) ->0 in L 2 ' sfor some s > 1/2 as R -* oo. By Lemma
3.1, the second term of the right-hand side of (3.4) tends to 0 in L2(S5) as R -• oo.
The first term tends, formally, to

which coincides with SOa(λ; θ, ω) up to a constant depending on λ by virtue of (3.2).
But this term must be treated carefully, since (A + λ)w{x)φL2's for s > 1/2.

Let ΨN(ξ) = φ1(\ξ\2)φN(ξ/\ξ\) and ψβ(Dx) be the Ps.D.Op. with symbol
( |^ | 2 ).Weset

gβ = (Hβ - λ)φβ(DXβ)χβ(x)R(λ + iθ)f. (3.5)

By [2], Lemma 4.2, gβ is rapidly decreasing. A straightforward calculation shows
that

{A+λ)w= -Σ ΨN(DX)(HO - λ)φβ(DXβ)χβ(x)R(λ + iθ)f
β

iθ)gβ

So, we have only to show the existence of the limit

s - lim J e-i^λθ χp1 (l-^f) VβRβ(λ + ίθ)gβdx , (3.6)
R^oo R6 \ K

in L2{Nβ). Note that ΨN(^/λθ)=l if |0^| is sufficiently small. Let
rβ(z) = (hβ — z ) " 1 . By the partial Fourier transformation with respect to xβ,
Rβ(λ + Ϊ Ό ) ^ is transformed into rβ(λ — \ξβ\

2 + Ϊ Ό ) ^ , where

, ξβ) = (2π)"3/2 f e-*> *gβ{x\ xβ)dxβ . (3.7)
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By the result of Jensen-Kato [4], the following expansion holds around 2 = 0:

rβ(z) = ̂  + ̂  + B0(z),
z
 /

in B(L 2 'S; L2' s), 5 > 5/2, where — B-2 = the projection onto the eigenspace of
hβ with zero eigenvalue, and B-x = — ίB-2VβGVβB-2 + i( ,φβ}φβ, G being
an integral operator with kernel \xβ — yβ\2/(24π), and φβ being the zero-resonance
for hβ. B0(z) is a B ( L 2 s ; L 2 ' "s)-valued continuous function of z. We have,
therefore,

' 2 I eix'S>B0(λ - \ξβ\
2 + iθ)gβdξβ . (3.8)

R3

Now we consider the limit (3.6). Let uβ

n be normalized eigenfunctions of hβ with
zero eigenvalue, and put

= ί u^
R3

Then we have

So, letting ro(z) = ( — AXβ — z)~1 and g ^ be the inverse Fourier transform of gβj9 we
have

(2π)"3 '2 f eto'-«' ^:,f^.n ^ = Σ uβ

J)(*β)ro(λ + iθ)gβj. (3.9)

Lemma 3.3. The following strong limit exists in L2(Nβ):

s - lim j e-^l9'xp1 fejf) Vβ(xβ)uψ(xβ)(r0(λ + iθ)gβj)(xβ)dx .
R^oo R3 \ K /R3

Proo/ We first rewrite the above integral as

μ + i0)gβj)(Xβ)dχp .

(3.10)

In the following arguments, we always assume that \θβ\ φ 0 and \θβ\ is sufficiently
small. Taking account of the relation
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ί e->

one can rewrite (3.10) as

a{ββ) J ((- A -
R3

= a(θβ) I - j e ro(A

(3.1D

Let be the sphere:

By [2], Lemma 2.3, |α(0^)| ^ C\θβ\~K Hence, to show the convergence of (3.11) in
L2(Nβ\ we have only to show that each term in the parenthesis { . . . } converges
in L2(K(θβ)) and the convergence is uniform for small \θβ\. This is obvious
for the third term, since gβj is rapidly decreasing. It is easy to see that
(Api(\Xβ\/R))ro(λ + ί0)gβj->0 in L2s for some 5 > 1/2. By Lemma 3.1, the first
term converges in L2(K(θβ)) uniformly for small \θβ\. A simple computation shows

that (-?— - iy/λίroiλ + iθ)gpj = 0{\xβ\~2\ hence
c\χβ\ )

in L2s for some s > 1/2. So, it remains to consider

1 J e-J i0)gpjdXβ .

By the well-known property of the Green's function of — AXβ, we have

ro(λ + iθ)gβj = C(λ) ψ(ω)
\xβ\

where <A(ω) = 9βj{\fhω\ ω = xβ/\xβ\. Then, up to a constant, (3.12) is asymp-
totically equal to

= # J e^~λRtp{t)tdt J e-^~λRtθβ'ωψ(ω)dω .
o s 2

(3.13)
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The stationary phase method on the sphere and integration by parts show that
(3.13) is asymptotically equal to, up to a constant,

J _ j eΦmi-\«\)p(t)dtxψ(θp/\θβ\) . (3.14)
Ifyl o

Now, it is easy to see that (3.14) is convergent as R -» oo . D

We next consider

J e-'^pJψ) K,(*')( J e*'* B~fβ

2 dξλdx , (3.15)
R6 \ K J \R3 ^/λ-\ξβ\

2 + l0 J

which corresponds to the second term of the right-hand side of (3.8). Note that by
virtue of [2], Lemma 2.3, B-ίgβ consists of a sum of the terms, ψ(xβ)f(ζβ), where
1^(^)1 ^ C{xβ)~1, and f(ξβ) is a smooth function supported near the shell

Lemma 3.4. Let |ι^(x^)| ^ C(xβ) \ andf(ξβ) be a smooth function supported near

the shell \ξβ\ = y/λ. Then there exists the following strong limit in L2(Nβ):

s-lim J e - ^ ^ f e Π Vp(x'Mx')( j e*'* , f(ξβ\ =dξβ)dx.
6 \ K J \R3 y/λ-\ξβ\2 + Ϊ0 JR

Proof We have only to consider the integral

dξλdx,. (3.16)
lθ J- \ξβ\

2 + lθ

We calculate the limit as R -> oo by the repeated application of the method of
stationary phase. We first integrate in ω = ξβ/\ξβ\. Then letting r = \xβ\ and
ωx — Xβ/r9 we have as r -• oo ,

f e f a ' | W

S2

We concentrate on calculating the contribution of the first term eiΛζ^r V+od^L

ωx). To perform the integration in \ξβ\9 we split the integral into two parts:

{\ζβ\^ y/λ} a n d {\ζβ\^>\/λ}9 and compute on the region {\ξβ\^.y/λ} for

example. Then letting \ξβ\ - y/λ = ί2, t> 0, and

h{t\ωx) = 2/+0(ί2 + /λ,ωx)(t2 + 2^fλ)-ίl2{t2 + ̂ λ)2 ,

we have

oo j ε | 2 _ oo

_e ' /+oUs/?U ωx) I -a\Qβ\ —e ' ) e Ji\J ^ojx)aτ .
Jλ yj I ξβ I — λ 0

By the stationary phase method, we have as r -• oo,

_ °° _

0 n>0
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So, we consider the contribution of the first term eι^λrr 3/2go(ωx). By integrating
in ωx, we have as r -> oo,

- 5/2 -»

where ω9 = Vlfyl W e l o o k a t t h e first t e r m

integrating in r, we have

n g O

, ωθ) By

(3.17)

Here we note the inequality

f eikt2f(t)dt
C

for / e C o ^ R 1 ) and any k > 0, which follows from the stationary phase method.
Therefore, we have

- \θβ\y112 ^

This shows that (3.17) is dominated by C\θβ\~1 uniformly in \θβ\ and R. One can
also see by the stationary phase method that (3.17) is convergent point wise as
R^> oo, when \θβ\ < 1. These two observations prove that (3.17) converges in
L2(Nβ) as R —• oo . In a similar and simpler way, one can treat all the terms of the
asymptotic expansion appearing above. Hence (3.16) converges in L2(Nβ) as
R-> oo. D

We finally consider the limit corresponding to the last term in (3.8).

Lemma 3.5. The following strong limit exists in L2(Nβ):

s - lim f

Proof. Let

a(ξβ) = J
3

- \ξβ\
2 + iθ)gβdξλdx .

/

- \ξβ\
2 + iθ)gβ)(x>, ξβ)dx' .

Then a(ξβ) is a continuous function of compact support. Letting βι(ξβ) be the
inverse Fourier transform of Pi(|x^|), one can rewrite the integral in question as
follows:

from which the lemma follows immediately. D
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Lemma 3.2 now follows from Lemmas 3.3, 3.4 and 3.5.
Our next aim is to rewrite (3.3). Since R'^lpdx^/R), A^~\v ->0 in L2s for

some 5 > 1/2, it follows from Lemma 3.1 that as R -> oo, the left-hand side of (3.3)
is asymptotically equal to

^ ( ^ f ) (3.18)

We take a bounded C00-function α^x^, ξβ) such that α^x^, ^ ) = xβ ζβlj~λ when
x l̂ > 1 and | ^ | is close to ^/λ Let ^ be the Ps.D.Op. with symbol aγ(xβ, ξβ).

Let T0(λ) be as in Lemma 3.1. Then (3.18) is asymptotically equal to

Let P1 be the Ps.D.Op. with symbol

ai(Xβ, ξβ)XβMΦβ(\ξβ\2)ΨΛ\ξ\2)ΦN(ξ/\ξ\) .

Then, since

)t;->0

in L2s for some s > 1/2, (3.18) is asymptotically equal to

(3.19)

We have localized v in the region {x; a <\xβ\/R < b,\xβ\ ^ 3ε|x|}. The next aim is
to localize v in the region where θβ and xβ have almost the same directions.

Theorem 3.6. Let Pβ be the Ps.D.Op. with symbol p{xβ, ξβ) having the following
properties:

\dlδn

ξβp(xβ, ξβ)\ S Cmn(xβy
m Vm, n , (3.20)

there exist constants 0 < a < b < oo such that

suppa/Kx,, ξβ)^{a<\ξβ\<b} , (3.21)

there exists a constant μ_ such that — 1 < μ_ < 1 and

P(xβ,ξβ) = θifxβ ζβ>μ-\xβ\\ξβ\. (3.22)

Lei /^(x) be as above. Suppose that Va satisfies (1.9) wz'ί/z p > 0. Then we have

<xyPβXβ(x)R(λ + ίO)<x>- s- ίGB(L 2(X);L 2(X)), (3.23)

for s> - 1/2, ί > 1, ieσe(/f)\v4.

We prove this theorem in the next section.
Let p + iήeC^iR1) be such that p + (t)=ί for t > 1 - ε3, p + (ί) = 0 for

ί < 1 — 2ε3, ε3 being a sufficiently small constant. Let p~{t) = 1 — p + (ί) We take
such that
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if \xβ\ > 1 and \ξβ\ > y/λ/2. Let Pβ be the Ps.D.Op. with symbol b(xβ, ξβ). Let Pί

be as above. Then by Theorem 3.6, we have

in L 2 ' s for some s > 1/2. Multiplying T0(λ) and looking at the symbol of Pf Pf, we
have

(^) (3.24,

as R -• oo. By (3.19) and (3.24), we have shown

Lemma 3.7. The following strong limit exists in L2(Nβ):

{ χ ) p ί ψ \ v { x ) d x . (3.25)

The proof of Theorem 1.2 is now completed if we show that (3.25) coincides
with C2{λ)S0a(λ\ θ, ω). For this purpose, it is sufficient to show that for any
ψ ( θ ) C $ ( l

Mm ^ J J

= C2(λ)$ψ(θ)S0a(λ;θ,ω)dθ. (3.26)
s5

Applying the stationary phase method on the sphere and taking into account of
the fact that on the support of the integrand θβ, xβ are sufficiently close to θ and x,
we have as r = \ x | -• oo ,

S5

where we have used the fact that χβ(x) = 1 if r > 1 and φ(x/r) φ 0.
On the support of φ(x/r), x/reM. Therefore by Theorem 1.1, we have

e-^\xβ\r-Ίf2ψ(x/r)p(\xβ\/R)Ό - C^xfr-6ψ(x/r)p(\xβ\/R)SOθί(λ; x/r, ω),

as R -> oo. Hence we have

Mm ^ Π

= lim CiWCaWi J |x^|r-6ιA(

Passing to the polar coordinates x = rθ, we have

1 °°
P ί ί |β/, |^(θ)p(|β /, |r/R)SO β(λ;θ,ωμθ ί ir= J φ(θ)SOa(λ;θ,ω)dθ ,

A S5 0 S5
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where we have used the substitution t = \θβ\r/R and J^p(t)dt = 1. This proves
(3.26).

4. Micro-Local Positivities and Resolvent Estimates

We explain the proof of Theorem 3.6. To make the arguments clear we first explain
it in the case of the 2-body Schrodinger operators. We introduce the following class
of symbols:

C \d*xd
β

ξp(x9 ξ)\ S Cα/?<x>m- |α |, there exist constants

p(x9ξ)eSΊo} 0 < a < b < oo such that suppξp(x, ξ) <= {a < \ξ\ < b} ,

[p(x9ξ) = 0 if χ ξ> 1 - ε ( 0 < ε < 1) .

p(x9 ξ)eS-No\δ«xdlp{x, ξ)\ % M

Here and in the sequel, x = x/\x\ and ξ = ξ/\ξ\.
p(x, ξ)eS2m is said to be a symbol of canonical type if

p(x, ξ) = (\x\\ξ\ - x ξ)2mp(x ξ)φ(ξ)χ(x),

where p(t) ^ 0, p(t) = 1 if t < l - 2ε99 p(t) = 0 if t > 1 - ε, p'{t) ^ 0,
φeC$(Rn - {0}), φ ^ 0, χ(x) ^ 0, χ(x) = 1 if |x| > 2, χ(x) = 0 if |x| < 1.

Lemma 4.1. Let m> - 1/2 αnd p(x, ξ)eS2-m be a symbol of canonical type. Let
α(x, ξ) = (\x\\ξ\ — χ ξ)p(x, ξ). Then there exists a constant Co > 0 such that

where {,} denotes the Poisson bracket and q is compactly supported in x.

Proof Modulo a function of compact support in x9

- {\ξ\\ a} = 2(2m + 1)|£|2(1 - Jc <f)p(x, ξ)

The second term is jionnegative since p'(t) S 0. On the support of p(x, ξ)9

2(2m + l ) | ξ | 2 ( l - x ' ξ) is estimated from below by a constant C o > 0. D

With a symbol p(x9 ξ)9 we associate the Weyl quantization P = pw(x9 Dx) (see
e.g. [9]).

Lemma 4.2. Let p(χ9 ξ)eS™ be a real symbol Let Q be the Weyl quantization of
p{x,ξ)2. Then we have - Qύ Pi + PN in the form sense, where P1eS2!n~2,
PNeS~N, N being a sufficiently large constant.

Proof Let P = pw(x,Dx). Then P 2 = β + Pί + PNi with P^S2™'2, PNeS~N.
P2 ^ 0, since P is symmetric. D

Let H = — A + Kbe the Schrodinger operator on R" where Kis a real function
satisfying

> - | α | - ' ) , 0 < p < 1 .
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Let p and a be as in Lemma 4.1 and set A = aw(x, Dx\ P = pw(x,Dx).
Let Cop + q be as in Lemma 4.1. One can construct p(x, ξ) in such a way
that the square root of — {\ξ\2, a} — (Cop + q) is C00. So, by Lemmas 4.1 and 4.2,
we have

Lemma 4.3. C 0 P S - P , ^ ] + Pi + P N in ίλe form sense, where P1eS2!n~ί),
PNeS~N, N being a sufficiently large constant.

Let u = (H — z)~1flmz > 0. Then by Lemma 4.3 we have

Co(Pu, U)^- i([H, 4]M, tt) + (Pitt, I*) + (PJVM, M) . (4.1)

The first term of the right-hand side is calculated as

u, u) = - 2Imz(Au, u) - i{(AuJ) - {f9 An)} . (4.2)

One can assume that the square root of a(x, ξ) is C00. So, by Lemma 4.2, the first
term of the right-hand side of (4.2) is dominated by

(PlU,u) + (PNu,ul PieS2-"1"1, PNeS~N . (4.3)

We also have

\(Au,f)\^{\\Au\\lm-1-p+l

+ 1 + p , PieS2™-2?. (4.4)

These estimates together with (4.1) show that

2

 1 + p , P i e S 2 J » ^ . (4.5)

Here we note that by enlarging the support suitably, we can dominate the symbol
of Pί eS2In~p from above by the symbol of canonical types S2In~p. So, one can use
(4.5) with 2m replaced by 2m — p to estimate (P1 u, u). We repeat this procedure and
finally obtain

which implies that

if P e S ~ , w > - 1/2.
Now we turn to the three body problem and prove Theorem 3.6. Let S™ be as

above with x, ξ replaced by xβ>ξβ. We introduce P and A in the same way as in
Lemma 4.1 with x, ξ replaced by xβ, ξβ. Let u = R{z)f9 z = λ + is.

We first note that

- i[H, χβAxβ} = - iχβlH, A-\lβ - i[H, ^ ] ^ - iχβAlH, ^ ] , (4.6)

and that

-i[H,Al= -i[-AXβ,Al-i Σ [ K y , Λ ] . (4.7)
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To the term — i[ — ΔXβ9 A\ we apply Lemma 4.1. On the support of χβ{x\ Vγ(xy)
(γ =t= β) behaves like (xβ}~p, p > 0. Therefore arguing as in the proof of Lemma
4.3, we have

U, u)£- i(χplH9 Alχβu, u) + f f (χf Pψχ^u, u)
j

(4.8)

where PψeS2!"'" and χψ(x) is a cut off function similar to χβ(x) and N is
a sufficiently large constant.

We claim that

\(lH,χtlAχβu,u)\ZC\\f\\l+1+l>. (4.9)

Let φ(') be a smooth cut off function near λ. Then as is well-known, for any sεR,

<x>s(l - φ(H))R(λ ± k)(x)-seB(L2(X);L2(X)),

uniformly in ε > 0. On the other hand, by [2] Lemma 2.1, we have

= φ(H0)lH, χβ-]Aχβ + Σ* (X}-"kpk(x, Dx)φk(H0)[H, lβ\Alβ + RN ,
k

where pk(x9 ξ) satisfies (2.1) and (2.2) of [2], suppφ fc c supp φ and (x}N/2 RN(x}N/2

eB(L2(X); L2(X)). Now we note that on the support of the symbol of
φ{H0)[H, lβ]Aχβ, x'ξ ^ μ\x\\ξ\9 — 1 < μ < 1, which follows from the fact that
xβ ξβ < (1 — ε) I xβ 11 ξβ |. One can then apply [2], Theorem 2.2 to estimate this term.
The terms (x)~pkpk(x, Dx)φk(H0)[H, χβ~\Aχβ are treated similarly. This proves
(4.9).

In view of (4.6) ~ (4.9) and arguing similarly to the 2-body case, we have

(XβPXβUtύ) ύ littfPψxfutU) + C\\f\\2

m + 1+P , (4.10)
j

where P[i)eS2!n~p and ̂ ( x ) is cut off function similar to χβ{x). The rest of the
proof is the same as in the 2-body case.

5. Proof of Theorem 1.3

For a small ε > 0 we take φβ(t)e C 0 0 (R 1 ) such that φβ(t) = 1 if t > λ - ε, φβ(t) = 0
if t<λ-2ε. Let φβ(DXβ) be the Ps.D.Op. with symbol φβ(\ξβ\

2) and put
w = ψβ(DXβ)χβ(x)v, where υ is defined by (1.11) and χβ(x) is given in Sect. 3. Note
that by our assumption / defined by (1.12) is rapidly decreasing. A simple calcu-
lation shows that for any N > 0,

χp(x)φfi(DXβ)υ = φβ(DXβ)χβ(x)υ + O(\xβΓ
N),

as Ix Î -• oo uniformly for \xβ\ < α. So, we have only to consider the asymptotic
behavior of w.
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Let g = (Hβ — λ)w. Then by the same arguments as in the proof of [2], Lemma
4.2, we have geL2's for all s ̂  0. Hence

w = Rβ(λ + iθ)g . (5.1)

Let Pp(hβ) denote the projection onto the point spectrum of hβ. Then

(Pp(h')® l)w = £ P ? ®{-ΔXβ - (λ - Ef + iO))- 1 ^ , (5.2)Pp

i

where Pf denotes the projection onto the eigenspace of hβ with eigenvalue Ef.

L e m m a 5.1. Let r = \xβ\, θβ = xβ/r. Then we have the following expansion:

PΪ®(-AXβ -(λ-Ef + i O ) ) " ^ ~ C J Γ Γ Έ i

as r-^ co uniformly for θβθS2.

Proof. We proceed in the same way as in [2], §5. We define ^βi(λ) in the same way
as in (1.7) with Ea replaced by Ef. Let χβ and ψβ be as above and define P and G by

P = Xβ(x)Ψβ(DXβ), G = HP-PHβ.

Then by the same argument as in the proof of [2], Lemma 5.2, we see that
Aβι(λ; θβ9 ω) is represented by

Aβι(λ; θp, ω)=- 2πiCa(λ)&pι(λ)J%(P*f- G*R(λ + iθ)f) ,

where Jβl is the injection defined in the same way as in (1.4) with ua replaced by
uβl and / is defined by (1.12). Let v = R{λ + zθ)/ Then

P*f- G*R(λ + iθ)f= (Hβ - λ)P*v .

Since w = P*v9 the right-hand side is equal to g. So, we have

A,,(λ; θfi, w) = - 2πiCx(λWβl(λ)Jfιg . (5.3)

Let w be defined by

w = {-Δx,-(λ-Et + iO)Γ1J$,g,

) = ί uβl(xβ)g(x)dxβ .
R3

Since J%g is rapidly decreasing, we have by Lemma 2.1,

C(A) = π 1 / 2 ( / l - £ f ) - 1 / 4 , (5.4)

as r = \xβ\ -*• oo uniformly for θβeS2. Equations (5.3) and (5.4) imply that

w * Cβι{λ)r-λei^I^'rAβl{λ- θβ, ω),

Cβl(λ) = 2ni(λ - E«ym(λ - Ef)-1/4 . (5.5)

Lemma 5.1 immediately follows from (5.5). D.
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Let Pac(hβ) denote the projection onto the absolutely continuous subspace for
hβ. It remains to show that the asymptotic behavior of (Pac(hβ) ® l)w is negligible
compared with that of (Pp(hβ) ® 1)w. For that purpose, we recall some results on
the 2-body Schrόdinger operators.

Let Ho = - A,H = — A + Fbe the Schrόdinger operators in R3. Suppose that
V(x) is a rapidly decreasing function. Let R(z) = (H — z ) " 1 . We define the usual
Fourier transformation To and the generalized Fourier transformation T by

(Tof)(ξ) = (2π)-V2 J e-ίχ tf(x)dx , (5.6)
R3

(Tf)(ξ) = (2πΓ3 / 2 J e-iχ-t(f(x) - V(x)R(\ξ\2 + iθ)f)dx . (5.7)
R3

Then as is well-known, Γis a partial isometry with initial set £((0, oo))L2(R3) and
final set L 2 (R 3 ), where E(λ) denotes the spectral measure for H. £((0, oo))L2(R3)
coincides with the absolutely continuous subspace for H. Let Ω = Γ* To be the
stationary wave operator, which is known to be equal to the time-dependent wave
operator.

Lemma 5.2. Let φiήεC^iR1) be such that for some a > 0, φ{t) = 0 if t < a and
\φim)(t)\ ^ CmΓι~ml2, m = 0,1, 2, . . . Jor any t. Then for any sf > s ^ 0,

Proof Let Hm denote the Sobolev space of order m. Then by [3], Theorem 0.1,
Tφ(H)(x}-N-1 is bounded from L 2 (R 3 ) to HN(Rf), which shows that
(xyTξTφiH)^}-"-1 = <x>N Ω^φ(H)(xyN-1 is bounded in L2(R3). The
lemma then follows from the interpolation. D

For A > 0 , we set (T(λ)f)(ω) = 2~lί2λί/4{Tf)(^/λω\ which is well-defined
when /eZΛ s , s > 1/2. Then for f,geL2 s (s > 1/2) and 0 < a < b < oo, we have

J (T(λ)f T(λ)g)L2(S2)dλ = (£((α, b))f g) . (5.8)
a

Lemma 53. If s> 5/2, there exists a constant C > 0 such that

|| T(λ)*T(λ)h{L2,,ίL,-η ^ C/Jλ, if 0 < λ < 1 .

Proof Equation (5.8) shows that

T(λ)* T(λ) = - ^ (R(λ + ίO) - R(λ - iθ)) .
2πι

The lemma then follows from [4]. D

We now turn to our problem. Let hβ

0 = - Δ^, hβ = hβ

0 + Vβ{xβ). Let To and Tβ

be defined by (5.6) and (5.7) with Ho and H replaced by hβ

0 and hβ

9 respectively. Let
Ωβ = (Tβ)*T0. We choose φo{t), φ^ήeC^iR1) such that φo(t) + φ^t) = 1,
φQ{t) = 1 if ί < 1/2, φ^t) = 1 if ί > 2. We define the operators ^ ( ^ ̂  ε) and
F(Λ^ ^ ε) by F(ft^ ^ ε) = φo{hβ/z\F{hβ ^ ε) = φΛhβ/ε). In the sequel we omit the
symbol ®. We split PΆC(hβ)w into two parts:

= Pac{hβ)F{hβ g ε)w + F(Λ^ ^ ε)w .
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We first note that by the intertwining property Rβ(z)Pac(hβ) = ΩβR0(z)(Ωβ)*9

where R0{z) is the resolvent of — A in R6. Then, we have

F(hβ ^ ε)w = F(hβ ^ ε)ΩβR0(λ + ίO)(Ωβ)*F(hβ ^ ε/4)g ,

where F(hβ ^ e/4) is an operator similar to F(hβ ^ ε) which cuts off the part
hβ ^ e/4. By the Sobolev inequality, we have

\\F(hβ ^ ε)Ωβ(hβ

0 + lί-^X^ΊlBίL^kL-dx'Kα))

ft'Ω'(Λδ + I ) " 2 (xβ}s h{LHv);LHM<a + υ )^ C(| |F(Λ' ^ ε)ft'Ω'(Λδ + I ) " 2

I)"2 <^>s | B m i

the last term being finite for any 5 > 0 by Lemma 5.2. Therefore,

\\(F{hβ^εMxβ

9xp)\\L.ilx,ι<a)

Let ^ = (1 + hl)2(Ωβ)*F(hβ ^ ε/4)gf. Since f̂ is rapidly decreasing, so is $ by virtue
of Lemma 5.2. We then have

\(R0(λ + iθ)g)(x)\ S C(l + 1^1 + | ^ | Γ 5 / 2 ,

by the well-known property of the Hankel function. Hence

\\(F(hβ ^ ε)w)(xβ,xβ)\\L«ilx,ι<a) ^ C(l + |x^ | )- 5 / 2 . (5.9)

We next consider Pac(hβ)F(hβ ^ ε)w. Passing to the generalized Fourier transform,
we have

P*c(hβ)F(hβ ^ ε)w = / φo(k/ε)( -AXβ-λ + k- i ^
0

By the Sobolev inequality, we have

^ C( II (PΛe(h')h>F{hi' £ e)w)(χi>, xβ) | | L l ( | x < l <

^ ε)w)(xβ,xβ)\\LHlχf]<a +

C being independent of ε and xβ. Using the decay property of the Green's function
of — Δxt, we have

\((-Ax,-λ + k- iOΓ'Tpik)* Tβ{k)g){xβ, xβ)\

ί C(l + Ix^l)-1!! <xβ>
M(Tβ(krτ

for sufficiently large s > 0. We have, therefore,

g C(l + I^IΓ1 / II <xβy<xty'Tβ{krτβ(k)g\\L^)dk
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Since g is rapidly decreasing, by Lemma 5.3, the above integral is dominated by

(1 + Ix^l)"1 / k'1/2dk = C(l + IXβlΓ1 v ^ (5.10)
o

Equations (5.9) and (5.10) show that if \xβ\ < a9 Pac(hβ)w = oir'1) as r = |x^|

—• oo, which completes the proof of Theorem 1.3.
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