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Abstract. A perturbative expansion of the Wightman functions, and more generally
of vacuum expectation values of products of time-ordered and anti-time-ordered
products, is derived for Φ\ field theory. The result is expressed as a sum over
generalized Feynman graphs. The derivation is based exclusively on the equation
of motion and the Wightman axioms. Neither canonical commutation relations nor
asymptotic conditions are needed at any point. In the zero-mass case the individual
graphs are infrared divergent, but the sum over all graphs of a given order is
convergent.

1. Introduction

Both the time-ordered functions (r-functions) and the Wightman functions (W-
functions) of a relativistic quantum field theory contain in principle the full information
on the theory. This is fortunate because functions, even generalized ones, are in many
respects easier to work with than unbounded operators.

In many approximation schemes, especially in perturbation theory (PT), the r-
functions are the objects which are simplest to calculate. They are also of high practical
value because of their close connection with the ^-matrix. The ^-functions, on the
other hand, are more useful for examining the basic physical structure of a theory,
because their properties are very directly related to the fundamental assumptions like
relativistic invariance, spectral properties, and locality. In particular, the reconstruction
of the operator formulation of the theory from the VF-functions is very transparent.
This may be helpful for such problems as the exact characterization of the physical
state space of a gauge theory, which problem is closely related to the confinement
question. Also, the VF-functions are not subject to the notorious ambiguities of the
definition of the time-ordered products. It is therefore desirable to have systematic, if
only approximate, methods of calculating VF-functions.

PT is still one of the most powerful and best understood approximation schemes
in quantum field theory. It can give significant insights into the structure of a theory
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even when it is useless from a numerical point of view, on account of the interaction
strength. A systematic development of the PT of PF-functions is therefore clearly of
interest. Such a development is the subject of the present paper.

More generally, we will derive perturbative expansions for the vacuum ex-
pectation values of arbitrary products of time-ordered and anti-time-ordered prod-
ucts of fields. We denote the time-ordered product of the fields Φ(xγ), . . . , Φ(xn),
by T+(x{, . . . , xn) or T + (X), where X stands for the set of variables X =
{#!, . . . , xn}. The anti-time-ordered product of these fields is called T~(X). The
expressions to be discussed are

W(Xι,sι\X2,s2\ . . . \XN,sN):=(0\Ts^Xl)TsHX2)...Ts"(XN)\0), (1.1)

where | 0) is the vacuum, the ŝ  are signs, and the Xi are non-overlapping finite sets
of 4-vectors. T + and T~ factors may occur in an arbitrary order. The T~ product of a
number of fields is the adjoint of the T+ product of the adjoints of the original fields.
Hence the definiton (1.1) includes the important case (0\T*(Xl)T(X2)\0) which
occurs in unitarity relations, and whose Fourier transform gives a direct expression
for inclusive cross sections, even in theories in which the 5-matrix does not exist.
This has been shown for QED in [1]. The r- and VF-functions are included in (1.1)
as special cases. The perturbative representation of r as sum over Feynman graphs
is ancient lore. A graph representation of the Si^-functions with T+ -factors only has
been given by Ostendorf [2].

Our derivation is based on a) the equations of motion of the theory, b) the axiomatic
properties of the VF-functions [3], and c) the usual renormalization conditions. Neither
equal-time commutation relations nor asymptotic conditions are used at any point.

For simplicity we consider only the example of the Φ\ theory. But our methods
generalize immediately to more complicated renormalizable models, e.g. QED or
Yang-Mills theories in covariant, local gauges.x

The Φ\ model is the theory of a hermitian, scalar field Φ(x) in four dimensional
Minkowski space, which satisfies the Wightman axioms [3] and the equation of motion

KΦ{x) = -9- N([Φ(x)]3). (1.2)
6

Here K is the Klein-Gordon operator K = -dμd
μ - m2, g is the coupling

constant. The symbol TV stands for "normal product" and denotes the renormalization
prescription which is needed to make sense of the a priori undefined power Φ3 of the
distribution-valued field Φ. The ultraviolet difficulties are not avoided by our method,
but they can be handled by standard procedures.

The W-function

W(xι,...,xn)=(0\Φ(xι)...Φ(xn)\0)

must, then, solve the differential equations

K.Wix,, ...,xi,...,xn) = -£ (0\Φ(Xι)..-N(Φ3(xt))... |0) (1.3)
o

for i = 1, . . . , n. Moreover, it must satisfy the following Wightman conditions.

1 An application of the method to physical gauges has already been discussed in [4], but the simpler
case of local theories has never been considered in print
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a) Invariance:

W(Λxx + α, . . . , Axn + a) = W(xv ..., xn) (1.4)

for all orthochronous Lorentz transformations A and translations α.

b) Reality:
W(xn,...,xι) = W(xι,...,xrf. (1.5)

c) Locality:

W{...,xi,x%+ι,...) = W(...,x%+ι,xi,...) if ( ^ - x ι + 1 ) 2 < 0 . (1.6)

d) Spectrum: The support of the Fourier transform W^pj, . . . , p n ) of W(xι, . . . ,

^ :— (Pi + + Pi) £ V+. f° r all * < n> Σ Pi = 0 r

e) Cluster property:

l i m W X z j , . . . , # α , x α + 1 + α , . . . , £ n + α)
α—>oo

+ 1 , . . . , x n ) (1.7)

if α tends to infinity in a space-like direction. From locality it follows that (1.7) holds
also if the two sets {xι, . . . , xa}, {%a+\, ? %n} are not initial and final segments
of X, but are any two complementary subsets.

Wightman positivity will not be used.
Finally, we need some normalization conditions. They are conventionally stated

for the r-functions, and this is also most convenient for us. We must therefore give a
definition of the function (1.1) in terms of W-functions. This is done by demanding
that WXXγ,sx I ...) satisfy the obvious invariance, reality, and spectral properties
corresponding to conditions a), b) and d) for W, and in addition the splitting relation

W{... I Xx U X2, + I...) = 5T(. . . I Xx, + I X2, + I...) (1.8)

if x® > x°j for all xi G Xλ, Xj G I 2 An analogous requirement holds for T~ factors.

Also, W(... \X%, si I...) must be invariant under permutations of the elements of

Let f{pλ, . . . , pn) be the Fourier transform of r (x l 5 . . . , xn) = W(X, +), f1 its
truncated (= connected) part, which is recursively defined by

with P = {p2, . . . , p n } , n > 2. The sum extends over all partitions of P into two
complementary, non-empty, subsets Pι,P2

By translation invariance these functions are of the form

f(t)(pv . . . , pn) = 6*(ΣPi)fit)<Pi> ' Pn-0 • (1-9)

In the massive case m > 0 we demand that the 2-point function is in a neighbourhood
of the mass shell p2 = m2 given by (we use units with h = c = 1)

τ{p) = - ^ γ-— + regular, (1.10)
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and that the amputated, truncated, 4-point function

satisfy
f 7 ( 0 , 0 , 0 ) - - ^ . (1.11)

Condition (1.10) can easily be reformulated in terms of the 2-point VF-function. It

means that W(p), defined in analogy to (1.9), is given by

W(p) = θ(po)δ(p2-m2) (1.12)

in a neighbourhood of the mass shell.
The conditions (1.10-11) cannot be used in the case m = 0, due to infrared (IR)

problems. In that case we generalize (1.11) to

f / (μ 1 ,μ 2 ,μ 3 ) = - ig , (1.13)

where (μ1? . . . , μ4) is a "symmetry point" characterized by (μ i 5 μ ) = - μ2(4δij — 1),

μ2 < 0. Due to Lorentz invariance, the propagator f(p) is a function of p2 only. We
demand that f(p2) still have a 1-particle singularity at the origin, which is now not a
pole but must be defined as a distribution. The same shalFhold in every finite order
of PT. Furthermore, the normalization condition

έ [ ( p W ) ] | ^ 2 = έ (L14)

shall be satisfied.
Finally we require that f(p2) tend to zero for p2 —• 00. This condition is

necessary for ensuring renormalizability and is also an, usually tacit, assumption
of the conventional formalism.

The arbitrariness of these normalization conditions gives rise to the concept of
the renormalization group, which will, however, not be discussed in this paper. An
important restriction exists in theories with more than one field. Consider e.g. the Φ\Φ\
model, where the Φα are two scalar fields with masses mα. Define Kα = -(π + m2

α).
Then the consistency condition

Kx(x) (0 I . . . Φγ{x)... N(Φ2(y)Φ2(y))... | 0)

= K2(y) (0 I . . . N(Φλ(x)Φ2{x))... Φ2(y)... | 0) (1.15)

must be satisfied.

The absence of canonical commutation relations raises the question of the status of
Planck's constant in the formalism. It can be answered by means of the fundamental
relation

(1.16)

where the Pμ are the energy-momentum operators. We can fix the energy scale by
demanding Pμ | 0) = 0 and prescribing the value of Po on a (improper) reference
eigenstate Ψ of P o, which is uniquely identifiable both in the theory and in the
laboratory. In a theory with massive particles we can choose Ψ to be a 1-particle
state in its rest frame. If only massless particles exist, we can fix Ψ to be a 1-
particle state with a prescribed wave vector k. This is measurable in interference
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experiments and is theoretically constructible by means of the Fourier transformed
field Φ{k) = J d4xetkxΦ(x). This definition can also be extended to infraparticles.
h is then determined by evaluating the matrix elements of both sides of Eq. (1.16)
between Ψ and the vacuum, assuming that Ψ is chosen such that (Φ \ Φ(x) | 0) 7̂  0.
Alternatively, if we fix the numerical value of h by decree (e.g. ft = 1), then (1.16)
determines the energy scale.

In PT the equations of motion (1.3) become

Kι{0\...Φ(xi)...\0)σ = -9-(0\...N(Φ(xiγ)...\0)σ_ι, (1.17)

where (.. .)σ is the gσ term in the perturbative expansion of (...). These equations
can be solved by induction with respect to σ, starting from the free case σ = 0, where
the right-hand side is zero. For σ > 0 the right-hand sides can be calculated from
the known solution in order σ — 1, assuming that the renormalization prescription TV
has been unambiguously fixed. Wσ is then obtained as solution of a system of linear
differential equations supplemented by the conditions indicated above. In Sect. 2 it
will be shown that this procedure leads to a unique solution. In Sect. 3 a formal,
unrenormalized solution will be written down as a sum over generalized Feynman
graphs. Its ultraviolet divergences are removed in Sect. 4 by the BPHZ method, which
we reformulate in x-space. In Sect. 5 existence of our expressions also in the IR case
m = 0 will be shown. This is important for possible applications of the formalism to
gauge theories.

2. Uniqueness

Assuming the VK-functions to be know up to order σ — 1, we find Wσ as a solution of
Eq. (1.17) satisfying the Wightman conditions a)-e) and the normalization conditions
as stated in Sect. 1. We want to show that Wσ is determined uniquely by these
conditions, if it exists at all.

Let W*, W2, be two solutions of the problem. Then their difference

h{xv . . . , x n ) = Wι

σ(xv ..., x n ) - W2(xv ...,xn) (2.1)

satisfies the homogeneous equations

i ^ / ι ( . . . , ^ , ...) = 0 (2.2)

and the conditions a)-e).

The 2-point function h(p), defined as in (1.9), has its support in {p2 > 0,p° > 0},

and is there a function of p2 only. Equation (2.2) becomes (p2 — m2)h = 0, so that

hip2) = cδ(p2 - m2), (2.3)

with c a real constant. For m > 0 we find from (1.12) that h(p2) vanishes at p2 = m 2,
hence c = 0 and thus h = 0. If m = 0 we form from h(xι,x2) the corresponding
time-ordered function hτ and its p-space form hτ(p2). From (2.3) and the vanishing

of h at infinity we find that h = — c(p2 + iε)~ι. Condition (1.14), which must

hold for both Wι and W2, again yields c = 0.
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For n > 2 we show first that h(xχi ..., xn) is invariant under permutations of its
arguments. Define

From (2.2) it follows that the Fourier transform A(..., ^ , ^ + 1 , . .) contains the

factors δ(p2—m2) δ{p2

ι+ι-m2). We replace the variables pt,pi+\, by P = \ (Pi+Pi+\),

Q — \ (Pi —Pι+\), which are conjugate to X = xi-\-xι+ι, ξ = xi -xι+{. The support

of A consists then of four components defined by

Q), Po-Qo = ±ω(P - Q), (2.4)

with ω(p) = (p2 + m 2 ) 1 / 2 . Adding the two conditions we find

2P0 = ± ω(P + Q) ± CJ(P - Q) (2.5)

independently of Qo. For a fixed P φ 0 neither of these four relations (corresponding
to the sign alternatives) is satisfied identically in Q: there exists an open neighbour-
hood in Q-space in which A vanishes identically.

Locality demands that Δ(..., X, ξ, ...) vanish for ξ2 < 0. Hence the support
of Δ± = θ(±ξo)Δ(..., X, ξ, ...) is contained in the half-cone V±. The Fourier
transform

Λ± = ±i [du- L_-4( . . p w Q ...)
J Q0-u±ιε

is as a function of Q a boundary value of an analytic function in the tube Jζ_ =
{Q'ΛmQ e V±} [3]. But the support condition (2.5), being independent of Qo, holds
also for A±. Hence we find by analytic continuation that A± = 0, and thus also
A = A+ + A_ = 0 for P φ 0. Assuming that the vanishing of h has already been
shown in all lower orders and in order σ for fewer than n variables, we find from the
cluster property that

lim h(xX) . . . , xz + a,x i + 1 + a, ...) = W0(x%,xi+ι)h(..., xt,xτ+ϊ, ...) = 0.
3—>OO

The same relation holds if the two variables change place, hence it holds for Δ.
This excludes the possibility of A being a sum of terms containing a factor <54(P) or
derivatives thereof. We have thus shown that Δ = 0, i.e. that h is invariant under the
exchange of any two adjacent variables. This proves the total symmetry of h.

In particular this implies

But by the spectrum condition the left-hand side has its support contained in p n e F_,
the right-hand side in pn eV+, and these two supports intersect only at pn — 0. This
point support is again excluded by the cluster property and the vanishing of the 1-point
function.

We have thus proved that h = 0 for all n and σ, i.e. that our conditions indeed fix
the theory uniquely.
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3. Unrenormalized Solution

We first write down the rules for calculating the unrenormalized (W^{Xι^sι\
• XN-> SN)I a n c*then Justify these rules by showing that they satisfy all the neces-
sary requirements, apart from the normalization conditions (1.10-14) which are inti-
mately connected with renormalization and will be dealt with in the following section.
The rules given here have already been stated without proof in an appendix of

[5].
Wσ is represented as a sum over generalized Feynman graphs which are defined as

follows. Draw first an ordinary Feynman graph of the Φ4 theory, with |XJ external
and σ internal vertices. Here \X\ is the number of elements of the set X. The graph
need not be connected, but it must not contain any components without external
points (vacuum-vacuum graphs). Also, there are no lines connecting a vertex to itself.
This graph is called the "scaffolding" of the generalized graph.2 It is partitioned into
non-overlapping subgraphs, called "sectors," such that the external points of an Xt

belong all to the same sector, but variables of different X{ to different sectors. These
X2-sectors are called "external." In general there exist also "internal" sectors not
containing external points. To each sector S we affix a number v(S) according to the
following rules:

i) v(S) = i for the external Xi sector.
ii) For an internal sector u(S) is non-integer and lies between the maximal and

the minimal number of the adjacent sectors, i.e. of the sectors which are directly
linked to S by a line of the scaffolding.

iii) The sectors are either T + or T~ sectors. The external sector with number i is
a TSi sector. An internal sector with i < ι/(S) < i + 1 is a TSί sector if si = si+ι. If
st φ si+ι there are no internal sectors with i < v(S) < i + 1.

Two partitions with the same topology are only considered different if for at least
one pair of sectors S, S\ we have v(S) > v(Sf) in one case, v(S) < v(Sf) in the
other case.

With a partitioned graph we associate a Feynman integrand as follows. To the
external points correspond the variables x^ To each internal vertex we assign an
integration variable up j = 1, . . . , σ. We use the notation z%,z , . . . for variables
which may be either external or internal. Within a T + sector we apply the usual
Feynman rules: each internal vertex carries a factor —ig, a line connecting the vertices
z% and Zj carries the propagator —iΔF(zi — Zj). Within a T~ sector the complex-
conjugates of these rules apply. A line connecting two vertices z^ z^ in different
sectors, with zi belonging to the sector with the lower number, carries the propagator
—iΛ+{zi — Zj). Each internal sector contributes a factor — 1. Finally, the graph must
be divided by the usual symmetry number, if it is invariant under certain permuatitons
of points and lines.

^ζ is the sum over all partitioned graphs of order σ integrated over the internal
variables.

The field Φ(x) can be considered to be either a time-ordered or an anti-time-ordered
product with one factor. Hence we have

Wσ(xι,...,xn) = 9Sζ(xι,±\x2,±\...\xn,±). (3.1)

2 The scaffolding was called "skeleton" in [5]. This was an unfortunate choice, since "skeleton" is
already used with a different meaning in the theory of Feynman graphs
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This means that our rules give 2 n different representations for Wσ. We must show
that the result is independent of the choice of the n signs. To this end we state a
lemma which is also useful for other purposes, e.g. for proving unitarity.

Lemma 3.1. Let Γ be a subgraph with N vertices, including E external points, of a
scaffolding, with variables Z = {zX) . . . , zN}. Let ΓL U ΓR = Γ be any partition of
Γ into a T+ sector ΓL and a T~ sector ΓR, v(ΓL) < v(ΓR), with ZL and ZR the
corresponding subsets of Z. Let ILR be the integrand of this partitioned subgraph.
Then

V (- \)ELIT R(Z) = 0 , (3.2)

with EL the number of external points in ΓL.

This is a well-known result (see e.g. [6, Sect. II.6] or [7, Chap. 6]). Nevertheless
it is useful for later reference to give a short proof. Consider a particular partition
ΓLR. Let L be the number of vertices in ΓL. Because of ΔF(ξ) = Δ+(ξ) for ξ° > 0,
ΔF(ξ) = - ^ + ( 0 for ξ° < 0 we can write the corresponding contribution to (3.2) as

f)(?P
zL-\

4} •

Here we have defined θ(ξ) := θ(ξ°). The summations extend over all permutations
(z[, . . . , zp) of ZL and (zj?+ι, . . . , zfy of ZR, and {zp . . . zjγ} is the product over
all lines in Γ of the propagators iΔ+(zτ — z-) with zi standing to the left of z^ in
{...}. Take the contribution of a particular pair (P, Q) and the second term in the
square bracket:

-N-E N-E,
λΛ
L n

(7
P

 7

p
\Q(

7
Q 7

P
\0(7

Q
 7

Q
 \ [

7

P
 7

Q
\

This is cancelled by the contribution from the first term in [...] and the same {...}
in the partition Z'L = ZL U zf+ι, Z'R = ZR\z^+v If ΓL = Γ or 0, then there is no
square bracket, but there are nevertheless TV — 1 ^-factors present, and cancellation
happens as before against a term with ΓR = xN or ΓL = xx respectively.

Note that (3.2) remains correct if we sum over the partitions with v(ΓL) > v(ΓR)
instead of the reverse ordering, as can be shown in the same way.

For the proof of equivalence of the various VF-representations we need the lemma
for the cases that Γ contains one or no external point. We use the following abbreviated
notation: Sx denotes the integrand of a T + sector containing the external variable x,
S denotes the integrand of an internal T+ sector, Sx and S correspond to T~ sectors.
A product SmSxS

n, or the like, stands for

where the sum extends over all partitions of the set U of internal vertices of Γ into
(m + n + 1) subsets. E/m+1 may be empty, but not the other Uτ. All propagators
linking points of Γ are included, also those connecting different factors. The relevant
cases of (3.2) read then

SX = SX + SXS-SSX, S=-S-SS. (3.3)
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Define
An,n = (-l)m+nSmSxS

nS, Bm = (-l)mSmSx .

Equation (3.3) yields

A Λ i / 1 \ 771+71+1 Q7Π Q QTl+l
Λm,n - Λm,n+l + V~-U ^ δχ£> ,

B B + ̂  + (l)mSmS

Starting from S^ = £?0 and iterating (3.4) as often as necessary, we obtain

Sx = Σ(-l)m+nSmSxS
n. (3.5)

m,n

This proves

i.e. sx = — can be replaced by sx = + in Wσ, if the x-sector stands between two
Γ + sectors. In the same way one shows that this replacement is possible between two
T~ sectors.

In the case | xi, + | x, — \ x3, — | we proceed similarly, defining

/-i / -ί\m+n qm Q nn /"Ί / -i \m-{-n qm a nn

We need to show that
V ^ Q _ V ^ £, ^ βX
/ J ^ ; n / J τn,0

7i m

From (3.3) we obtain

Repeated application of this relation to the left-hand side of (3.6) yields the desired
relation:

0,n — Z_^
n

/ _j rn,0 '

7n

The case | — | + | + | its treated analogously.

We will now show that our expressions for W^ and Wσ satisfy all necessary
requirements. The splitting relation (1.8) has been proved by Ostendorf [2] for the
special case that all si are positive. The generalization of this proof to our more
complicated situation is straightforward.

Next we check the equations of motion (1.17). The Klein-Gordon operator Ki

annihilates all graphs contributing to Wσ{... ,x%, ...) in which the x-point is an
endpoint of a Z\+-line, i.e. those in which xi is either a sector by itself or is not
directly connected to the rest of its sector. Ki applied to the remaining graphs gives

precisely the graphs contributing to the right-hand side — - (0 | . . . Φ(xtΫ ... 10)σ_1,
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provided that the product Φ3 occurring in here is a T+ or a T~ product, depending
on whether we choose st to be + or —. In the original Eq. (1.2), Φ3 was meant to
be an ordinary product. However, these three possibilities actually coincide. In order
to see this, we define φ3 by point splitting, i.e. we cut the iV-vertex in the right-hand
side open, and consider (0 | . . . Φ(yι)Φ(y2)Φ(y3)... | 0 ) σ _ 1 in the limit yx?2 3 -> x%.
Take the various possible orderings of the Φ(yr): ordinary product in any order, T+

product, T~ product. The difference between any two of these orderings is a sum over
terms [Φ(yr),Φ(ys)]Φ(yt) or similar, containing at least one commutator, multiplied
with a product of ^-functions. Hence, if the commutator [Φ(yr), Φ(ys)] can be shown
to vanish for yr = ys = χz, all the orderings coincide for identical arguments. Now,
according to our graph rules there exist no lines connecting yr with ys directly. This
is part of the usual TV-product definition (for free fields it amounts simply to Wick
ordering). It means that the integrand of a graph contributing to the Φ(yr)Φ(ys) part of
the commutator is after the identification yr = ys = xt still well defined as a singular
function of xi and the remaining variables, which obviously does not depend on the
ordering of the Φ(^), so that we obtain complete cancellation for the commutator.
The individual integrands are possibly not defined as distributions where x% coincides
with one of the other variables. But this is part of the UV problem which we yet
disregard. In any case, the problem disappears in the difference of graphs which we
consider.

The proof of the Wightman properties a)-e) of Sect. 1 can be taken over from
Ostendorf [2], except that the proof of the reality condition (1.5) is now much
simplified: it is trivial to see that

Wσ(xx, + I. . . I x n , + ) * = %ζ(xn, - I . . . I xx, - ) ,

which proves (1.5), since Wσ is independent of the choice of signs st.

4. Renormalization

The normalization conditions (1.10-11) and (1.13-14) are formulated in momentum
space, and the removal of UV divergences is easier to discuss in that space. The graph
rules of Sect. 3 are easily transcribed into p-space, in complete analogy to the well-
known case of the r-functions. We obtain in T^1 sectors the vertex factors =FZ(2TΓ)4#,
and the propagators ±i(2π)~4(p2 — m2 ± iε)~ι. The propagators of lines connecting
two sectors are (2π)~3 θ(p0) δ(p2 —m?) =: (2π)~3δ+(p), the momentum p flowing from
the lower-numbered sector to the higher-numbered one. For each external point there
is an additional factor (2τr)3/2. Momentum is conserved in each vertex. Otherwise,
the rules are the same as in x-space.

With respect to the UV problem we note first that loop integrals over loops
extending over more than one sector are UV convergent, because the δ+ -factors of
the integrand restrict the loop variable to a compact set [2]. Hence divergences are
restricted to the individual sectors, where they can be handled by standard procedures.
We will use the BPHZ method, as explained e.g. in Itzykson-Zuber [8, Sect. 8-2], or
in much more detail in Zimmermann [6].

We consider first the massive case m > 0. The renormalization parts of a
partitioned graph are the proper 1-particle irreducible subgraphs with two or four
external (to the subgraph) lines, which are wholly contained in a single sector. The
superficial degree of divergence is 0 in the 4-line case, 2 in the 2-line case. We
must, then, subtract from the integrand of a 4-line renormalization part its value at
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vanishing external momenta, and in the 2-line case we subtract the Taylor expansion
up to second order in the external variables of the integrand. If these subtractions
for all renormalization parts of a sector are combined according to Zimmermann's
forest formula, then the sector becomes UV finite. And if this is done for all the
sectors of a graph, the graph becomes finite. The result does not yet satify the
normalization conditions (1.10) and (1.11). But this can then be achieved by finite
renormalizations, i.e. by multiplying the 4-line vertex factor with an appropriately
chosen finite renormalization constant Z(g), with Z(0) = 1, and introducing two new
2-line vertices with vertex factors ±i(2π)4δm2(g) and ±i(2π)4ζ(g) (p2 — m2), where
again δm2 and ζ are finite functions of g, with <5m2(O) = ζ(0) = 0. Z,δm2, and ζ,
can be determined order by order from the normalization conditions.

There is a problem concerning self-energy parts, i.e. renormalization parts with
two external lines. Consider such a subgraph in a T + sector, with value Σ(p), one
of whose external lines is a <5+ line. We have then the apparently singular product
(p2 — m2 + ίε)~ι Σ(p)δ+(p). However, if Σ is properly renormalized, including the
finite δm2 and ζ renormalizations, then it contains the factor (p2 — m 2 ) 2 , and the
product in question vanishes, no matter in what order the factors are multiplied.

In the case m — 0 we cannot subtract renormalization parts at vanishing external
momenta, because this would lead to IR divergences. We therefore subtract the
integrand in the 4-line case at the symmetry point {μτ} introduced in connection with
condition (1.13). In the 2-line case we subtract at first at the space-like momentum μ.
It is convenient, however, to change this prescription to the following, by means of
finite renormalizations. Let ,MΓ(p,...) be the integrand of the renormalization part Γ,
already subtracted for its divergent subgraphs, with p its external momentum. Then
we define the subtraction TΓ by

+ ^p"dμdί/.9BΓ(p,...)\p=μ. (4.1)

This is still IR finite. It again yields UV convergence of Γ. Moreover, the prescription
(4.1) ensures the distributionality of the singularity at p2 = 0. But the last term in
(4.1) destroys Lorentz invariance. The integral AΓ over the internal variables of
,MΓ = (1 — TΓ):JβΓ is a function of p and μ which is invariant under simultaneous
Lorentz transformation of p and μ, but not under transformation of p alone: it depends
on the variables p2 and (p, μ) (μ2 is a constant). But the dependence on (p, μ) is
polynomial. To see this we treat AΓ(p) as a distribution. The subtraction term (4.1)
does not contribute to the integral over test functions φ(p) whose moments up to
second order vanish (we can integrate first over p and then only over the internal
variables). This is the case for φ which are third derivatives of test functions. Hence
a μ-dependence of a third derivative of AΓ can only come from earlier subtractions
performed in the interior of Γ. This can only be a dependence on the invariant μ2, if
we assume the earlier subtractions to have been properly invariantized. Hence we find
AΓ(P)μ) = A0(p2) + a{(p,μ) + ĉ O9? Aθ2 with constant coefficients a1 2 The α-terms
can be removed by finite renormalizations. Finally, condition (1.14) can be satisfied
by yet another finite renormalization analogous to the ζ-term in the massive case.
The problem of self-energy insertions next to a sector boundary cannot be handled
as simply as in the massive case, because near the mass shell Δ(p) behaves now like
p2 log np 2, which does not vanish strongly enough to ensure existence of the product
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(p2)~ιΣ(p)δ+(p). But the ensuing singularities cancel between several graphs, which
cancellation is part of the general IR cancellation to be discussed in Sect. 5.

In order to see that the proofs given in Sect. 3 are not invalidated by renormaliza-
tion, we must transform the renormalization procedure into x-space. This will also be
useful for the following section, and it is of considerable interest in itself. The new
vertices due to finite renormalizations are easily transcribed: a vertex factor ±i(2π) 4G
in j9-space becomes άziC in x-space, and the vertex factor ά:i(2π)4Cp p^ in a two-
prong vertex becomes ±ίCdμdv, where the arrows over the derivatives signify that
the derivatives act each on one of the propagators joining the vertex.

BPHZ renormalization follows exactly the same line as in p-space. Only the Taylor
operator TΓ must be reformulated. Let Γ be a renormalization part of the graph
G, and let ux, . . . , uN, be the variables of its exterior vertices, i.e. the vertices
directly connected to the complementary graph G\Γ =: G Γ . Let us assume for the
moment that Γ is primitively divergent. Then the integral I{ux, . . . , uN) over the
interior variables exists (see the following section for the handling of possible IR
divergences) but is non-integrable in the sense of distributions at ux = . . . = uN).
Let E(uλ, ..., uN) be the part of the G-integrand coming from G Γ , including the
propagators of the lines connecting Γ to GΓ. E depends also on the vertex variables of
G Γ , but these are not important for our prescription. Contrary to p-space, subtractions
are now aplied to E, not to /. Define

U = — y uι, δi = ui — U , (4.2)

and let {μf}, {ZA} be sets of space-like 4-vectors with Σ μf = ^ v% — 0.
i i

The index ρ refers to the order of subtraction. For massive theories we choose
μf = ZΛ = 0. In the massless case we choose z/ = μ\ = μz for TV = 4, vi = 0
and μ '̂1 = 0, μ\ = — μ\ = μ for TV = 2. μ% and μ are the vectors defined in
Sect. 3. In generalizations to theories other than Φ\ it is important that the vi should
be independent of the order of subtraction and that μf = v% except possibly for the
highest ρ occurring in a given subtraction.

We define
s N ρ ρ

T X "̂  J- / N! "̂  n \ X ^ T—T Ί Γ

r-C/i c6i, . . . , Ufa) — / —- exp / — i / μnu- \ > i ι o i ι
1 ι > i\ / j j I / j J J I / j J. JL ιr J. J.

ρ=0 \ j / i\, ...,ίρ = \ r—\ r—\

, (4.3)

where V^ is the gradient with respect to u and s is the superficial degree of divergence
of Γ. For ρ = 0 the ir-sums and -products are not present. Definition (4.3) applies to
Γ in a T + sector, while in T~ sectors the signs of the two exponents are reversed.
The Γ-subtracted integrand becomes

I(ux, . . . , uN) {E(u{, . . . , uN) - TΓE(ux, . . . , %)} . (4.4)

Note that the exponents J^ v%u% and Σ \AU% v a m s n a t u\ — = UN — U. A
simple calculation shows that the curly bracket in (4.4) vanishes at ux = . . . = uN of
order s + 1 - provided that all derivatives of E up to order s exist - which suffices
to reduce the singularity of the integrand to an integrable strength. This argument is
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only of heuristic value, because E is in fact a singular function. That our prescription
nevertheless achieves its purpose is seen by Fourier transforming it and showing that
in p-space it becomes the usual BPHZ prescription. For simplicity we carry out this
transformation formally, term by term, even though the intervening integrals exist
only for the sum (1 - TΓ)E. We write, considering the Γ + case:

= / Y[
J i

= J Π i e χ p ( ~ * Σ Piui) £(-?!>•••), ( 4 5 )

I(U{ , . . . ) = / Π dqi e X P y Σ qiUi) ^ Σ qi)ϊ(ql' * ' qn) 'Σ
The <54 factor in the last equation is present because / is translation invariant. The
function / is only defined on the plane ]Γ qi = 0.

The integrated unsubtracted term in the expression (4.4) becomes

(2π)4N

The subtraction term of order ρ becomes after integration over the u%:

s

e = IΠ dui Π K \ Π v v / Π *< eχp ( - i Σ A«.) ^(..., -P ., .. .)

with pi = pi — ZA, qi = qi — μ\. Carrying out the differentiations V v results in the

replacement V v —» —iplr- The integral

αw > ό,p exp — lU > p7 exp z > σ n,

can be carried out to yield

where V i is the gradient with respect to qv We insert this result in Sρ and

move the (/-differentiations onto δ4(ΣQi)I through integration by parts. The terms

containing derivatives of δ4 vanish, because V ^ ^ ^ Γ ^ ) is independent of i and

1 \
Pi ~ T7 Σ^ Vj I = 0* Hence all V^ act on /, and using

we obtain

5 (2γNJγidPi£(..., -pt
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which is precisely the BPHZ prescription. Notice that Σ(Pι ~ υd ~ ^' s o m a t

Σ(Pi — vi)^% i s a derivation within the plane Σqi = 0 where / is defined.
If a forest contains nested renormalization parts, e.g. Γ1 C Γ, the subtractions

are carried out starting from the outside, i.e. TΓ is carried out before TΓ,, in
contradistinction to the p-space prescription. That this is correct can be seen by an
easy extension of the calculation given above.

A nice feature of this x-space subtraction scheme is the completely symmetrical
way in which the variables u% enter: there is no equivalent of the routing problem of
momenta in p-space.

We must now show that renormalization does not destroy the properties of W^
demonstrated for the unrenormalized expressions in the preceding section. This is a
problem only for the proofs which rely in an essential way on the local structure of
the integrands, i.e. Ostendorf's proof of the splitting relation (1.8) and the proof of
Lemma 3.1.

Let Γ be a maximal renormalization part in a T ^ sector of a given G-forest,
with external variables u{, . . . , uN. Let E(u{, . . . , uN) be the integrand of GΓ, as
described above. The subtraction terms coming from Γ are of the form

DE(U, ...,U)Fp(Uι, . . . , u N ; z ι , . . . , z M ) . (4.6)

The z3 are the variables of the internal(= not directly connected to GΓ) vertices of
Γ, DE is a u -derivation of E, U is a linear combination of the u% and possibly the
z-, and FΓ is the part of the G-integrand coming from Γ, including the factors δlr of
formula (4.3). The factor DE has the form of a conventional integrand of the reduced
graph G'Γ, which results from G by collapsing Γ to a point, except that the propagators
joining this point may be differentiated and the vertex factor of the collapsed point
has the complicated form Fp. The proofs in question would be applicable to DE
if Fp = — Fp were true. This is not the case for the non-integrated form. But it
can be shown that Fp may be replaced by —Fp~ without changing the value of the
final integration over the internal variables of G. This is easier to see in p-space than
in x-space. Let the corresponding expressions be Fp(p^ . . . , pN\ qx, . . . , qR). They
are given by Feynman graphs Γ of the T^ type, with pt as the external variables
corresponding to the ui9 and g the momenta of the internal lines of Γ. Fp may
possibly be a derivative with respect to the pi of an ordinary Feynman integrand, and
it is to be evaluated at pi = μQ

%. The integrand may contain subtraction terms from
renormalization parts F' C Γ. We assume that for these lower-order subtractions our
contention has already been proved. Under this inductive assumption we can apply
Lemma 3.1 and obtain

^ ^ i ; ' ^ ' ( 4 7 )

where the sum extends over mixed graphs with a non-empty T + sector ΓL and a non-
empty T~ sector ΓR. These mixed integrands vanish by momentum conservation,
because the momenta of the lines connecting ΓL to ΓR lie on the positive mass
shell, while all partial sums of the external momenta μ^ are space-like or zero. Hence
Fp = — Fp at the relevant points, which proves our claim.
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5. Infrared Existence

In the case m = 0we expect to encounter IR singularities, under which heading we
also include the collinear singularities. Indeed, the individual graphs contributing to
a given W are in general IR divergent. This is most easily seen in p-space. A sector
represents a contribution to a τ + or τ~ function which is amputated with respect
to the variables belonging to lines leading to another sector. These τ ± are known
to possess logarithmic singularities at the mass shell, hence the product of a sector,
integrated over its internal variables, with the adjacent δ+ propagators is in general
divergent.

We shall show that these divergences cancel between the graphs with the same
scaffolding. This proof is simpler to achieve in x-space than in p-space. In x-space
IR divergence is not connected with the local singularities of the integrand but with
its behaviour at large distances. The propagator functions are for m = 0,

Along the straight line ξ = ξ' + λn, n a non-vanishing 4-vector, these functions
decrease for λ —•» oo like λ~2, except if n is light-like, in which case the
decrease is only like A"1. This exceptional case is important because it concerns
the directions along which the singularity sets of the functions approach infinity. And
the neighbourhood of such a singularity can be expected to contribute importantly to
the integral.

We shall first show that this exceptional behaviour is indeed responsible for the
IR problem, and then that the dangerous region can be avoided in the sum over the
graphs with the same scaffolding by a deformation of certain paths of integration into
complex paths.

Let xx, . . . , xn, n > 2, be the external variables of a connected graph, ux, . . . , uσ,
its internal variables. The xi are integrated over sufficiently smooth test functions,
which we assume for simplicity to have compact support. This is no serious restriction:
since the integrand is a rational function, possibly multiplied with simple oscillatory
exponentials, it is clear that the w-integral, if it exists at all, defines a tempered
distribution. For the moment we disregard the exceptional directions mentioned above,
i.e. we assume that the propagators decrease of second order in all directions, and
that their singularities cause no problems.

Let us study the decay of the integral in a given direction in the 4σ-dimensional u-
space, i.e. the behaviour along the line ui = ύi-\-λni for λ —• oo, the n and ύi being
fixed 4-vectors. We also define such nf-s for the external points x by setting nJ = 0.
A set of variables with identical nι is called a cluster. Inside a cluster the distances
between points remain constant for λ —> oo, so that propagators connecting variables
in a cluster do not decrease. All external variables belong to the same cluster. Let TV
be the number of the other, exclusively internal clusters. Assume at first that there are
no internal clusters (called 2-clusters) which are connected to the rest of the graph by
only two lines. Then we have P > ^ (2 +47V) lines connecting different clusters, and

their propagators give a decrease of order X~2P. There are JV independent inter-cluster
distances, leading to a / = 47V dimensional integration over unbounded variables.
The difference 2P — / > 2 is positive, which suffices for convergence at infinity.

If 2-clusters are present, the foregoing estimates do not hold. But a 2-cluster
consists necessarily of the vertices of a subgraph with only two external lines, called a
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2-subgraph. And the problem can be handled by enlarging our procedure to a two-stop
process: in the first step we integrate over the internal variables of all 2-subgraphs,
including all the necessary terms which make these integrations both UV and IR
finite. In the second step we apply the previous proof to the remaining variables.
More concretely, this means the following. Let u, υ, be the external variables of a
1-particle irreducible 2-subgraph, uλ, . . . , uτ, its internal variables. If u and υ belong
to the same sector this holds also for the u%, and the subgraph is a renormalization
part in the sense of Sect. 4. We must then take it together with the subtraction terms
and finite renormalizations as explained there. Since the external lines of a 2-point
renormalization part cannot be external lines of a larger renormalization part, we do
not get into conflict with the outside-first ordering rule for subtractions by integrating
first over ui, u, υ. If u and v belong to different sectors, we must sum over all sector
partitions of the subgraph which leave the u — ̂ -assignments intact. We make the
inductive assumption that this guarantees IR convergence of the subgraph. Call the
integral over the internal variables C(u, υ). From Sect. 4 we know that its Fourier
transform <5(p, q) is of the form

C(p,q) = δ4(p + q)p2F(p),

where F may be logarithmically divergent at p2 = 0, but not stronger. In x-space this
becomes

C(u, v) = πF{u — v)

with F(ξ) decreasing as \ξ\~4 for |ξ| —>• oo, possibly up to a power of log|ξ|.
We multiply C with the adjacent propagators, which decrease like \u\~2 and \v\~2

respectively. The d'Alembertian • can be moved over to these propagators through
integration by parts. Then either one of the propagators decreases of fourth order, or
both of third order, and this stronger decrease offsets the reduction of P in our earlier
estimate of the degree of convergence of the full graph. The generalization of this
argument to 1-particle reducible 2-clusters is immediate.

As a side remark we note that this proof is generalizable to other renormalizable
theories without superrenormalizable couplings. E.g. in Yang-Mills theories the
presence of 3-prong vertices invalidates our estimate for P, but this is offset by
the fact that at least one of the propagators joining such a vertex is differentiated and
therefore decreases of third order at infinity.

We have demonstrated that our graphs would be IR convergent if the propagators
decreased like λ~2 in all directions. Therefore their factual divergence must be due to
the slower decrease in light-like directions, It remains to be shown that these directions
can be avoided in the sum over all sector partitions of a given scaffolding.

Let again X = {x1? . . . , xn} be the external, U = {uχi . . . , uσ} the internal
variables of a graph. We consider the integrand at fixed values of the xi (or integrated
over test functions with compact support, in order to avoid sitting exactly on a X-
singularity), so that we can find a positive constant A with

|z?| < A (5.2)

for all x{. Since the IR problems are due to large light-like zi — Zj, it is useful to
decompose the region of integration into suitable smaller parts. For each part there
should exist a partition U = Uo U U+ U U_ such that the time components of Uo

variables are confined to a compact interval [—B,B], those of U+ or U_ variables
to {uQ

z > B} and {u® < —B} respectively. To this end we introduce C°° functions



Perturbation Theory of Wightman Functions 643

«+(£)> a-(0> βA(ξ), with supports in [A,oo], [-00, -A], [-2A,2A] respectively,
such that

Define
(5.4)

We multiply our integrand with the decomposition of the identity

?(u°) + αd(u?) + β\xξ)] (5.5)

and pick out the contribution of an arbitrary term in this decomposition. If this
term contains only βA functions, then in its support all ui are restricted to the set
u® e [-2A, 2A], i.e. the u® integrations extend over a compact set only. In this case
we define Uo = U9 U± = 0. If the chosen term contains no β factors, we define Uo = 0
and U± as the sets of the ui occurring in α ± factors. The u® integration extends then
only over u® > A or u® < — A respectively. A mixed term we decompose further
with respect to its α-variables. We define U^ as the set of the ut in βA factors, U±*
as the sets of ui in aA factors, and we multiply the term with

1 = Π [a2

+

A(u°) + ^ ( n ? ) ] [ ] [a2A(u«) + 7^(^)1 (5-6)

Again we treat each term in this expansion separately. In the term containing only
7-factors all the ui are restricted to u® G [—4A,4A]. We define Uo = U, U± = 0. In

the term only containing α's we define Uo = UQ1\ U± = U±\ and our requirement

is satisfied for B = 2A. In the mixed α-7-terms we define U^ as the sets of u^s

occurring in a2^ factors, L^2) as the complement of t/+2) U U^ in U. With respect

to U± we repeat the procedure, splitting as in (5.6) with functions α:^4, 7 ^ , and
so on. Clearly the procedure ends after a finite number of steps. For each term there
exists a partition U = Uo U U+ U U__ and a positive constant B > A such that in its
support we have

< B for uτeU0, u°τί ^ Xv* for u%eU±, Uj G Uo, (5.7)

and the α-/?-7-product is independent of u% G U+ U U_ if \u®\ > 2B.

The ui G Uo cannot go to infinity in a light-like direction; the singularities in these
variables are confined to a bounded region. Hence the IR difficulties are caused by
{/_!_, and we must show that the integration over those u® can be bent away from the
dangerous points u® ~ ± | u j at large distances. For this we need

Lemma 5.1. Let & be the set of all graphs contributing to W(Xx,sλ | . . . | XN, sN)
with the same scaffolding. Let the internal variables U be partitioned into the sets
Uo, U+, U__, introduced above for a given term in the splittings (5.5-6) applied to
all G G W. Then in the sum of the integrands over & all terms cancel except those
in which U± variables are only contained in the extremal sectors Sx, SN, such that
Sλ contains only U+(U_) variables if s1 = +(—), and SN contains only U_{U+)
variables if SN = +(—).
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Proof of Lemma 5.1. Consider any graph G £ ^. Let S be one of its sectors, Xs,
UQ+ _ its variables. Let S(XS, UQ ,...) be the contribution of S to the full integrand.
Then we have, by the splitting relation (1.8):

S+(XS,...) = S+(Uf )S+(XS, U^)S+(U^)

S~(XS, ...) = S'(U^)S-(XS, U$)S-(UΪ)

for S a T + or T~ sector respectively. The notation is similar as in Eqs. (3.3)ff: the
right-hand sides of (5.8) are understood to contain also the Λ+ propagators linking
different factors.

Consider first two adjacent external sectors of different type, e.g. S^ \ S^n+ι. There
are no internal sectors between them. For both sectors we use the decomposition (5.8).
Summing over all partitions of U'_ = Ό™ U £/™+1 among the two sectors we find the
factor Σs+(u™)s~(u-+l)> w h i c h vanishes according to Lemma 3.1 if U'_ ^ 0.
In the case of two adjacent external sectors of equal type, e.g. S^ | S^ + 1 , there may
occur intermediate internal sectors S+ with m < v < m + 1. We factorize each sector
with m < v(S) < m + 1 according to Eq. (5.8). Assume that there are sectors with
v(S) > m with a non-empty U+ part. Take the right-most factor S+(U"), U+ C U'+.
It may either be an internal sector by itself, or it may be part of a larger sector
which has been split according to Eq. (5.8). The number of internal sectors in the two
cases differs by one, hence the two terms have different sign and cancel each other.
Therefore only the terms containing U+ variables exclusively in S^ survive in the
sum. In the same way, only the terms with U_ variables exclusively in 5 m + 1 need
be taken into account. The proof of the lemma is then obvious.

Take now a graph which survives in the sum of Lemma 5.1. Define the function

of { u j

σ = Σ>t|. (5.9)
u

Assume that the left-most sector S{ is a Γ + sector, and let {uv ..., uτ} be its U+

variables. We integrate first over the time components u® of these variables, for fixed
ut. These partial integrals are still IR convergent. Partition the domain of integration
into subsets defined by a fixed time ordering of the variables. Consider one of these
sets, e.g. the simplest:

u°t >u°2 > . . . >u°r > B. (5.10)

We can replace these variables by

ωχ = u\ - u\, . . . , ωτ_x = u°τ_1 -u°τ, ωτ = u°τ

as integration variables. We have ωa > 0 for a < r - 1, ωτ > B. If C > B we shift
the integration path in ωa in the interval [IB, 2C] into the lower half plane of the
complex plane: ωa —> ωa — iυ, with

ωa - IB for IB < ωa < C + B

This shift is consistent with the analyticity properties of the propagators (5.1). If
necessary, the sharp corners of the new paths may be rounded off. The new paths
can still be parametrized by the real parts ωa, which necessitates the introduction of
the unproblematic factors (1 - iυ'a). The shift of paths does not change the value of
the integral. At the boundary u^ = u^+i of two different orderings the descriptions
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match smoothly, so that the distribution nature of the integrand does not cause any
problems.

If Sι is a T~ sector we proceed analogously with its U_ variables {ux, . . . , uτ}.
In wj < ^2 < . . . < u^. < —B we introduce ωa — u^ — t ^ + 1 , ωτ = u^ as new
variables of integration and deform the ωa path in [—2C, —IB] into a triangular path
in the lower half plane like in the previous case. In the same way we deal with the
U+ or U_ variables of the right-most sector SN. E.g. if SN is a T + sector with the
U_ variables uXl . . . , ι t r ,we use in — B > u\ > ... > u°τ the variables of integration

= u°a — u°a_ι for a = 2, . . . , r, and integrate in ωa e [—2C, —2B]ωλ = itj, ω

over a triangular path lying now in the upper half plane.
After these shifts the estimates given in the first part of this section become

applicable. As described there, let the u% tend to infinity in the direction u% — t^+n^λ,
λ —* oo. For sufficiently large λ, this direction remains within a fixed Uo — U+ — U_
partition. Let ua be a U+ or U_ variable, ui an arbitrary variable, such that ua and ui

do not belong to the same cluster. This means that \u°a - u®\ + |u α — u j diverges for
λ —> oo. If \u^ — u®\ remains bounded, then |u α — u j diverges, and the distance from
the dangerous singularity at \u°a—u^\ — l u ^ - u j increases linearly in λ. Otherwise we
find that C —> oo in the vicinity of this critical manifold and that for large λ we have
there \u°a - u°%\ ~ \ua — u j < C Ĉ 2C. From this it is easily seen that at the critical
points the imaginary part along the shifted integration contour increases linearly in
λ, so that also in this case the distance from the singularity increases linearly. This
suffices to make our earlier estimates valid in all directions, which proves the desired
IR convergence.
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