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Abstract. A general adiabatic expansion is written down. The basic result is that,
under appropriate smoothness conditions, the adiabatic estimations can be pushed up
to exponential order. The results imply exponential estimates not only for hamiltonians
analytic in a neighbourhood of the real axis but also for hamiltonians which (in an
appropriate sense) beong to Gevrey classes.

1. The Problem, Heuristics, Results

For definiteness in this section we shall consider unitary evolutions in Hubert spaces.
However, the main results in Sect. 2 hold true in a more general context.

Consider the evolution, J7ε(s, s0), given by

iε -^ Uε(s, s0) = H(s)Uε(s, β0); Uε(s0, s0) =1 (1.1)

in the limit ε —> 0. Since, as it is well known, (1.1) is hard to integrate, one can pose
the problem to obtain information about Uε(s,s0) without actually integrating (1.1).
Our strategy is to proceed in two steps:
I) Find out (almost) invariant subspaces, 3&(s\ ε), under the evolution Uε(s, s0), i.e.

Ue(s, 5 0 ) ^ ( 5 0 ; ε) * 3G{β\ ε) . (1.2)

II) Integrate the evolution equation restricted to the subspaces 3&(s\ ε). Let us
mention that this step is trivial if (as it is the case in many physical applications)

In the rest of this section we shall describe, at the heuristic level, our procedure
to solve I) and II) and outline the relation of our results with some of the previously
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known results. The precise formulations and the proofs are contained in Sect. 2
and 3.

If the subspaces %\s\έ) are described by the projection operators, Pε(s), i.e.,
3&(s;ε) = Pε(s)J&, the condition (1.2) becomes the (approximate) intertwining
property

Pε(s)Uε(s,s0)^Uε(s,s0)Pε(s0)

or equivalently
Pε(s) ^ Uε(s,s0)Pε(s0)Uε(s,s0Γ

ι . (1.3)

Differentiating (1.3) one obtains the well known Heisenberg equation of motion

j t ε ( 8 ) ] . (1.4)

Notice that the evolution operator does not appear in (1.4). To solve step I. means to
find solutions of (1.4) satisfying also the projection property

Pε(s) = Pε(s)2. (1.5)

The simplest thing is to try the "ansatz" (for the moment at the level of formal series)

( L 6 )

3=0

Inserting (1.6) into (1.4) and (1.5) one obtains

[H(s),E0(s)] = 0, i-^-E3(s) = [H(s),Ej+ι(s)], (1.7)

3

EJ{s)=YjEm{s)Ej_m(s). (1.8)
ra=0

Suppose that for all s, H(s) has an isolated bounded part, σo(s), of the spectrum
and let P0(s) be the spectral projection of H(s) corresponding to σo(s). Our first
result is (under appropriate smoothness conditions on H(s)) an explicit recurrence
formula for E (s) which solves (1.7), (1.8) (see Lemma 1 for precise formulation).
For the needs of the discussion below let us mention the following property of E3(s):
if outside (-1,1), H(s) does not depend on s then E0(s) = 0 for all s φ (-1,1)
and j> 1. Alternatively if H(s) approaches limits as s —• ±oo sufficiently fast then
again E-{s) —» 0 for j > 1 as s —> ±cx).

As it stands, the series in the r.h.s. of (1.6) is usually not convergent; one needs
to truncate the series at some order and construct out of the partial sum (a finite
polynomial cannot satisfy (1.5)!) a "bona fide" projection satisfying (1.4). For that,
a control on the norms of Ej(s) is needed. This control (see Lemma 3) is our main
technical result. The choice of the truncation order is by a "optimal remainder"
estimate. The outcome is a Pε(s) satisfying (1.5) and

iε^Pε(s)-[H(s),P£(s)] <δ(s;ε), (1.9)

where δ(s; ε) depends upon the smoothness of H(s): if (in an appropriate sense, see
Sect. 2) H(s) G Wk then δ(s ε) ~ εk\ if H(s) is holomorphic in a strip around real
axis then δ(s; ε) ~ exp(-const/ε) and if H(s) belongs to the Gevrey class of order
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a then δ(s;ε) ~ expC-const/ε1/1"1""). The inequality (1.9) is our basic result. Few
remarks are in order. First, the construction of Pε(s) is local in s in the sense that no
integrations over s are involved and only H(s) and its derivatives up to some finite
order enter the formulae for Pε(s). In some loose sense the construction of Pε(s) is
the analog of the Riesz formula which gives the spectral projection corresponding
to an isolated part of the spectrum as a contour integral of the resolvent. Secondly,
while as it is well known an expansion of the form

Uε(s, s0) = U0(s, s0) + εUx(s, s0) + . . .

does not exist, the evolution of subspaces (for appropriately chosen initial conditions)
has a nice behaviour as ε —>• 0. One can see the reason looking at the one-
dimensional subspace case. Let ψε(s) = Uε(s,s0)ψ(s0). Even if an expansion
ψε(s) = φo(s) + εψi(s) -\- . . . does not exist, a nice expansion for the corresponding
projection \ψε(s))(ψε(s)\ might still exist if all the singular behaviour of ψε(s)
is concentrated in a phase factor which cancels out in \ψε(s))(ψε(s)\. Notice the
similarity with the behaviour of the wave function in the semiclassical limit as given
by the WKB ansatz.

Using the fact that Uε(s, s0) is unitary one can obtain at once from (1.9)

s

\\Pε(s)-Uε(s,so)Pε(so)Uε(s,so)*\\ <ε-χ ί δ(u;ε)du (1.10)

so

and

s

\\(l-Pε(s))Uε(s,s0)Pε(s0)\\ <ε~ι [ δ{u ε)du (1.11)
so

which e.g. in the analytic case is an adiabatic theorem to exponential order for
all s, s0 e R. Notice that while the usual adiabatic theory estimates the transition
probabilities after infinite time the above result estimates the transition for all times.
The connection with the adiabatic theorem in its standard form [ASY, BF, Kl, Nl]
is made observing that (1.11) implies

\\(\-P0(s))Uε(s,s0)P0(s0)\\

S

< \\Pε(s) - P0(s)\\ + ||Pe(s0) - P0(s0)|| + ε ~ ! ί δ(u;ε)du. (1.12)

SO

Actually (1.12) gives more than the standard adiabatic theorem since the r.h.s. of (1.12)
s

is (9(ε) for all s such that J δ(u\ ε) du < ε2 and these intervals can be exponentially
SO

long if e.g. H(s) is analytic in a strip around the real axis. Also (1.12) contains all
variants of the "adiabatic theorem of arbitrary order" starting with the result of Lenard
[Le] and ending with the result in [KS] and the recent exponential estimate in [JP1].
Indeed for 5, s0 φ supp — H(s), Pε(s) = P0(s) so that

s

\\(l - P0(s))Uε(s,s0)P0(s0)\\ < £ - ' ί δ(u;ε)du. (1.13)
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For the case when H(s) approaches limits as s —> =boo sufficiently fast (1.13) becomes
oo

^ J Ϊ J L - o o l | ( 1 -po(s))Ue(s,so)Po(so)\\ < ε"1 ί δ(u;ε)du. (1.14)
— oo

Let us notice that while all the above results are upper bounds of the adiabatic
transitions, in some simple cases it has been possible to compute the asymptotics
as ε —> 0 of the adiabatic transitions ([Bl, JKP, JMP, HI] and references therein;
for the related problem of adiabatic invariants for the harmonic oscillator see [HK]).
Also, our results apply only to isolated parts of the spectrum; for results concerning
crossing eigenvalues and dense point spectra see [H2, AHS].

The existence of subspaces invariant up to the order εk, k = 1,2, . . . has been
pointed out for the first time (according to our best knowledge) by Garrido [G]. A
rigorous procedure for constructing Pk(s\ε) such that Pk(s\έ)3@ are invariant up to
errors of order ε/c+1 has been given by Nenciu [N2] (see also [N3, NR1] and for
a slightly different procedure [JP2]); the procedure in this paper and the procedures
in the papers quoted above are related: the expansions in powers of ε of Pε(s) and
Pk(s;ε) coincide up to the power εk. The iteration procedure in [G, N2] has been
rediscovered in [B2].

A more refined consequence of (1.9) is the following "factorisation theorem."
Consider

•BJs), (1.15)

where

Bε(s) = - (1 - 2Pε(s)) (iε -^ Pε(s) - [#(*), Pε(s)]\ (1.16)

and

iε -^ U^(s,s0) = HΛ(s;ε)U^(s,s0); t/e

Λ(so>
so) = l ( L 1 7 )

Notice that

HA(s; ε) = Pε(s) H(s) Pε(a) + Qε(s) H(s) Qε(s)

t 3 ) P e ( s ) + Qe(8)Qe

where Qε(s) = 1 - Pε(s). The point is that (without any error!)

Pε(s) = C7e

Λ(5,s0)Pε(s0)E/e

Λ(s,s0)-1 (1.18)

i.e. U^(s, s0) is an intertwining operator for Pε(s). On the other hand if Ωε(s, s0) is
defined by

Uε(s,s0) = uΛ(s,so)Ωε(s,so) (1.19)

then

iε -^ Ωε(s, s0) = Uε

A(s, s0Γ
ι Bε{s)U*(s, so)Ωε(s, s0) (1.20)

which leads (use the fact that Bε(s) is self-adjoint and then ί/^(s, s0) is unitary) to
s s

| | β e (5,s 0 )- l | | <ε~λ ί \\B£(u)\\du < ε~ι f δ(u;ε)du, (1.21)

so s0

i.e. Ωε(s,s0) is close to the identity.
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The evolution U^(s,s0) can be further factorised. Let Aε(s,s0) be the parallel
transport of Pε(s),

i j - Aε(s, s0) = I i(l - 2Pε(s)) ^ P e (s) | Aε(s, s0) Aε(s0, s0) = 1. (1.22)

As well known [M, K, Kr] Aε(s, s0) has also the intertwining property

Pε(s) = Aε(s, so)Pε(so)Aε(s, soy
ι . (1.23)

From (1.18) and (1.23) it follows that if Φε(s, s0) is defined by

Uε

A(s,s0) = Aε(s,s0)Φε(sis0) (1.24)

then
[Φ e(s,s 0),P e(s 0)] = 0.

Moreover one can compute the equation of motion for Φε(s, s0):

= {Pε(s0)Aε

ι(s, so)HA(s; ε)Aε(s, so)Pε(so)

+ (1 - Pε(80))Aε\s,s0)HA(s'9ε)Ae(s,s0)(l - P£(s0))}Φε(s,s0). (1.25)

Summarising:
Uε(s, s0) = Aε(s, so)Φε(s, s0) Ωε(s, s0), (1.26)

where
Aε(s, s0) is the parallel transport of Pε(s),
Φε(s, s0) is an evolution which is block diagonal with respect to the decomposition

M = Pε(s0)3% Θ (1 - Pε(s0))3&9 and

( s \

ί \
ε~ι / δ(u;ε)du\ .

Alternatively one can write (1.26) as

l 1 ί δ(u;ε)du\ . (1.27)ί

The factorisation given by (1.26) (see also [N3, NR1]) is the generalisation of the
factorisation theorem of Avron, Seiler and Yaffe [ASY] where Pε(s) is taken to be

P0(s).
Consider now the particular case when dim P0(s) = 1 and suppose for definiteness

that H(s) is at least W°°. Due to the fact that lim | |P e (s)-P 0 (s) | | = 0, dim Pε(s) = 1.

Let no(s) be a normalised vector in P0(s)β& which is differentiable with respect to
5, and

nε(s) = P£(s)n0(s)/\\Pε(s)n0(s)\\ .

Then using the fact that by the definition of the parallel transport

—Aε(s, so)nε(sQ), — Aε(s, so)nε(so) \ = 0 ,
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and the fact that HA(s; ε) = H(s) + &(ε°°) one obtains

( S \

ί \
-iε~ι / (nε(u),H(u)nε(ύ))du\

J

( s \

ί (nε{u), ^- nε(v)\ du ) nε{s) (1 + #(ε°°))

( s

))• (1.28)

In particular if H(s) is periodic, i.e. H(s) and all its derivatives at s — 0 and s = 1
are equal then

( s \

-iε~{ (n£(u),H(u)nε(u))du\

if/ d \ \
x exp — / ( nJu), ~— nΛu) ) du nJO) (1 + #(ε°°)). (1.29)

\ J \ du I )
which gives the Berry phase to arbitrary order. Notice the separation of the phase
in (1.29) into its dynamic and geometric parts, respectively. Using the expansion of
Pε(s) one can obtain explicitly the low orders in the expansion of φ(s,so;ε) (see
[NR2] for details):

s s

/

Γ I y-7 \

\§(u)du — i / / n o ( t i ) , — no(u) jdu
so so

j I d
J \du ° ' °

so
d \ Ί

x (H(u) - X0(u))~lQ0(u) — no(u) )du + &(ε2), (1.30)

where λo(5) is the eigenvalue of H(s) corresponding to P0(s).
For related (heuristic) results in the case when the underlying Hubert space is two

dimensional see [B3].

2. The Local Theory

This section contains the construction of Pε(s) and the proof of the basic estimate
(1.9). This part of the theory does not involve differential equations and can be carried
in a very general context; however, all the applications are either in the unitary case
(i.e. M is a Hubert space and H(s) is self-adjoint) or in the finite dimensional case
which covers in particular the theory of adiabatic invariants for linear Hamiltonian
systems ([BN] and references therein).

Let s 6 (α, &) C R, J ^ be a Banach space, H(s) a family of densely defined
closed operators with nonvoid resolvent set. The first main assumption is so called
"gap condition":
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G. For all s G (α, 6), H(s) has an isolated bounded part of the spectrum, i.e.

dist(σo(s), σλ(s)) = d(s) > d > 0,

diamσ0O) = sup
z,w£σo(s)

z — w = D(s) <D<oo.

The second main assumption concerns the smoothness of H(s):
S. Let s G (α, b) and let Γ(s) be the contour enclosing σo(s), whose points are at

the distance d(s)/2 from σo(s). Suppose there exists a neighbourhood 96 of s such
that Γ(s) C ρ(H(u)) for w e ^ and

Sn; n = 1,2, . . .

sup fc = 0 , 1 , . . . , π ;

or
S α ; α G [ 0 , o o )

sup < r ( s ) ;

sup
dk

l+α .

0 < 6(5) < 1, 0 < r(s), c(s) < oo ,

where
R(s; z) = (H(s) - z)- 1

Remarks. 1. Obviously Sα, α G [0, oo) implies Sn for all n. The case a = 0
corresponds to the case when i?(s; z) is holomorphic in a neighbourhood of the real
axis, and a > 0 correspond to Gevrey clases which "interpolate" between the W°°
case and the holomorphic case.
2. The assumptions in [JP1] imply G, So and moreover

b(u) du < oo .

In what follows we shall use the standard notation for the derivatives, e.g.

Lemma 1. Suppose G and S°° hold true,

R(s; z)dz (2.1)

Γ(s)

and Ej(s) be given by the following recurrent relations:

E0(s) = P0(s), (2.2)

Ej(s) = (2πΓι I R(s;z){Qo(s)Eflι(s)Po(s)-Po(s)E(

J

ιl1(s)Qo(s)}

Γ(s)

x R(s; z)dz + SJ(s) - 2P0(s) S3(s)P0(s), (2.3)
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where

Q0(s) = 1 - P0(s) (2.4)

3-1

Sj{s) = YjEΎn(s)EJ_m{s). (2.5)

m=l

Then E3(s), j = 0,1, ..., are the unique solution of Q.T),

jm(s), (2.6)

m=0

and
f\ s)]. (2.7)

Warning: As in (2.7) we shall encounter many times expressions like

[H, L] = HL-LH,

where H is a densely defined unbounded operator and L is bounded. In all the cases
below the situation is as follows: L&) C & (= the domain of H) so that HL - LH
is well defined on &)\ moreover

\\(HL-LH)f\\ <M||/ | | , M<oo, fe®.

We shall always understand [H1 L] as the extension by continuity of HL—LH defined
on &.

Proof. Since during the proof below s is kept fixed we shall usually omit it. The
proof is by induction. Notice that E^WJ C ^{H) for m = 0,1, . . . , j - 1 imply
E3M C &{H). Compute (use (2.5), [A, BC] = B[A, C] + [A, B] C, (2.6) and (2.7))

[H, S3] =
772=1 m = l

= 1(^2, - E0Ef_x - E^E0) = - i(P 04Vo " QoψtQo)

whereof

[if, PO^-PQ] = - i P o 4 - i P o ' <2 8 )

[ ί ί , Q 0 5 i Q 0 ] = i Q 0 4 1 2 1 Q 0 . (2-9)
[ff, PQ-SJ-QQ] = [H, QoSjPo] = 0. (2.10)

Compute (use (2.3) and (2.8)).

PolH,Ej]Po = iPoEflιPo, (2.11)

Analogously

Q0[H,Ej]Q0 = iQ0E?l1Q0. (2.12)

From (2.3), (2.10), (2.1) and the identity HR(z) = 1 + zR{z),

P0[H,Ej]Q0 = - R(z)PϋEf_λQ0R(z)dz

Γ

1lιQ0 (2.13)



Linear Adiabatic Theory. Exponential Estimates 487

and

Q0[H,EβP0 = iPoE^Qo. (2.14)

Now (2.11-14) imply (2.7) for j . Further, consider (2.6) written in the form

Ej^P0EJ+EjP0 + Sj. (2.15)

To verify (2.15) amounts to see that

P0E3.P0 = -P0S3P0, (2.16)

QϋE1Q0 = QϋSjQϋ, (2.17)
Q05 J.P0 = P 0 S' j Q 0 = 0. (2.18)

Now (2.16), (2.17) follow from (2.3) while (2.18) follows from (2.10) and the
following simple fact:

Proposition 1. Let T be a bounded operator. If

[H,P0TQ0]=0

then
P0TQ0 = 0.

Proof. Let φ £ @>(H), z G ρ(H). If

then

(H - z)P0TQ0ψ = P0TQ0(H -z)φ

whereof for ψ = (H - z)~ιg, g e β%,

(H - z)-ιPoTQog = P0TQ0(H - z)~lg •

Integrate the above relation over Γ, use (2.1) and remind that

P0

2 = P 0 , Q0P0 = 0.

Consider now the uniqueness of EJ. Suppose uniqueness proved for Eί, . . . , £?•_,

Ey Ej satisfy (2.6) and (2.7). Then from (2.7)

[H, Pϋ{Ej - ^ . )Q 0 ] = [H, Q0{E3 - £3)P0] = 0

and the use of Proposition 1 gives

P0(Ej - E3)Q0 = Q0{E} - 4 ) P 0 = 0.

On the other hand from (2.6) (see (2.15))

P0(Ej - 4 ) P 0 = Q0(EJ -E0)Q0 = 0,

and the proof of Lemma 1 is finished.

Consider now the problem of estimating | |E .(s)||, HE^^s)!!. The following lemma
is obvious

Lemma 2. Suppose G, S°° hold true. Then there exist e-(s), fj(s) < oo (computable
from rk(s) and the length of Γ(s)) such that for j = 0,1, . . . ,

ej(s), \\εf\s)\\ < fjis).
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The main technical point is to control | | i ^ (s)||, \\E^ (s)\\ as j —» oo when G, Sα

hold true.

Lemma 3. Suppose G, Sa hold true. Then there exist A(s), a(s) < oc A(s) > 1 such
that for j > I,

(2.19)

Proof. We shall prove by induction that (2.19) "propagates" through the recurrence.
We shall use repeatedly the following simple fact:

Proposition 2. Let M(s), N(s) £ W°° be operator valued functions, p,q — 0 ,1, ....
Suppose

\\M(k\s)\\ < m(s)a(sr+k ^ ^ ^ >

(2.20)

Then

ί(ϊ> +\\(M(s)N(s))M\\ <

where f is the (absolute) constant appearing in the inequality

k 1 1

2 2~f 2 ' ^2 2 1 ^
1=0

Proof of Proposition 2. By (2.20) and the Leibnitz formula (omit s and use the

standard notation Ck = '
ί I v̂ rC ί ) !

k\

Now

tlΫ X\k > C[ , (2.23)

k χ /[fc/2]

Σ (z
1 °° 1 1

- 2 α*/2] +1)2 Σ (ΓΓT)̂  - / ( ^ T T ^ ( 2 2 4 )
1) (ΓΓT) (^TT

Insert (2.23) and (2.24) into (2.22) to finish the proof of Proposition 2.
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We shall use the following obvious consequence of Sα : for arbitrary K(s) < oo
there exists a(s) < oo such that (see Sn for the definition of rk(s))

rk(s)<a(s)k(k\) l+α 1

* v ' ~ K(s)

Notice that from (2.1) and (2.4),

(fc+1) 2 '

1

(k + I)2 '

,k).. ^ L(s)

where L(s) is the length of Γ{s).
Consider first j = 1 (again s is omitted). Since by definition Sλ — 0,

R( ^
0 - P0P^Q0)R(z)dz.

Since (P^)(k) = P^+) from (2.25) and (2.26):

Using Proposition 2, (2.25), (2.27), and (2.29) one obtains from (2.28),

<A-[ba"+i[(k+l)\γ
1

4(fc + I) 2

with
A~ι = (1/2) $L/πf/K,

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

i.e. (2.19) for j = 1. Notice that we can choose A as large as we want.
Suppose now (2.19) holds true for m = 1,2, . . . , j — 1 and take E- as given by

(2.3). Consider first 5^. Using Proposition 2 and (2.21),

(2.32)

Using again twice Proposition 2, (2.32), (2.27)

1
Try (2.33)

- (,«; -I- i)-(j -+- l ) z

Consider now the integral term in (2.3). From the induction hypothesis one has for

1
(2.34)

Applying again four times Proposition 2, (2.25) and (2.27) one obtains

f
(fc)

- P0E)^1Q0]R(z)dz

(k+l)2(j+l) ,2 •
(2.35)
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Combining (2.32), (2.33), and (2.35) one obtains from (2.3):

\\Ef || < {6(L/2π)3/4^"1 + fbA~2 + fΛ(L/2π)2bA~2}

^!]1+α

(fe + i ) 4 + i r (Z36)

Since A can be made arbitrarily large (see the remark following (2.31)) the expression
in the curly bracket can be made smaller than one and the proof of Lemma 1 is
finished.

In what follows we shall use Lemma 3 in the following form:

Lemma 4. Suppose G, Sa hold true. Then there exists g(s) < oo (depending upon
L(s), r(s), c(s)) such that

\\EJ(s)\\<b(s)g(sy(j\)ι+a, (2.37)

< b(s)g(sy+ι[(j + 1)!]1 +* . (2.38)

Proof. Take g(s) = A(s)a(s) and recall that A(s) > 1.

We need a few elementary facts about projections. Let P be a bounded idempotent.
Then (see e.g. [K, Chap. III.4]) M = ,/M + ^ such that if/ = m + n , m G ^ ,
n G ̂  then P / = m, i.e. P is a projection. Recall that if P is a bounded projection
then σ(P) = {0,1}. Let now T be bounded and "almost" idempotent. The problem
is whether T is close to an idempotent.

Proposition 3. Let Tδ, δ -* 0 be a family of bounded operators such that:
i) There exists a bounded projection P such that

lim | | T c - P | | = 0 . (2.39)
δ-^o

ϋ)

\\Ί%-T6\\<δ. (2.40)

Then for sufficiently small δ, {\z — 1| = 1/2} C ρ(Tδ) and there exists k < oo such
that

1

2πi
\z-l\ =

( τ δ - <kδ. (2.41)

Proof By perturbation theory from (2.39) it follows that for sufficiently small δ the
spectrum of Tδ is concentrated near 0 and 1 so that

\z-\\ = \/2

is well defined, and moreover

-pδ = ^~ j> (Tδ-zΓιdz. (2.42)

1*1 = 1



Linear Adiabatic Theory. Exponential Estimates 491

By direct computation

Tδ ~ Pδ = i / [T^(1 " Z)~l ~ {Tδ ~ z)~l]dz

\z-l\ = \/2
fT n p I (rpl T \ A

— U<5 — ίj-t^δ "+" ^δ ~ 1δ)Λδ ?

where
1

\z-\\ = l/2

so that

= -^ φ (Tδ-zΓι(l-zΓιdz,

2Tδ)Aδ. (2.43)

Repeating the computation for f'δ = 1 — Tδ and noticing that

one obtains
2

δ-Tδ)Aδ. (2.44)

-Pδ = {T2

δ-Tδ)(Aδ-Aδ)

Subtracting (2.44) from (2.43) one obtains

Γδ ~ J-δJ^δ ~ ^δ

and the proof is finished.

Remark. In the self-adjoint case i) is not needed and the proof is an easy consequence
of the functional calculus. In fact we suspect that i) can be replaced by the condition
that \\Tδ\\ is uniformly bounded as δ —> 0.

Consider now
N

TN(s; ε) = Σ Ej^£J ' ( 2 4 5 )

From (2.7)

iεT$\s\ ε) - [H(s), TN(s; ε)] = iεN+ιE^\s). (2.46)

Let
l/l+αΊ

(2.47)

where [...] means the integer part. Define

Tn_λ(s\ε) if Sn holds true

i f s ^ h o l d s t m e ( 2 4 8 )

We shall consider explicitly only the Sa case; the Sn case is simpler and we shall
only state the result (see Theorem 1 below).

Lemma 5. i)
lim| |T e(s)-P 0(s) | |=0. (2.49)

ii) There exist (absolute) constants cv c2 such that

\\T2(s) - Tε(s)\\ < Clb(s)Qχp[-c2/(εg(s)γ^+a]. (2.50)
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Proof. Denote η = εg (variable s omitted). From Lemma 4:

Nε

From the Stirling formula

j \ = exp[j(ln j - 1)]

and the fact that (see (2.47)) for all j < Nε + 1, In 77 + (1 + α)ln j < 0 one obtains

r?~l(j\)l+a < constexp[-(l + α ) j ] j 3 ( 1 + α ) / 2

so that
00

\\Tε - P o | | < c o n s t ^ ^ e x p [ - ( l 3(l+^2

i=i

which proves (2.49).
From (2.6)

2Nε

j+m=l;0<j,m<Nε

From Lemma 4 (recall that b < 1)

Σ ^j^m

j+m=l;0<j,m<Nε

(2.51)

(2.52)

Inserting (2.52) into (2.51), using again Stirling formula, the fact that for I < 2Nε,
In 77+Q + α ) In / < (1 + α ) In 2 and the fact that for all q,β > 0, sup j 9 exp(-βj) < oo

one obtains (2.50).
We shall define now Pε(s) by

Pε(s) = (2.53)

The definition makes sense for sufficiently small ε, due to Lemma 5 and Proposition
3. Using the identity

(T - zΓι = z~\T(T - z)~ι - 1)

and the fact that Tε(s)J% C &{H(s)) (see the proof of Lemma 1) one concludes that
Pε(s)J(f C mH(s)).

In the theorem below "for sufficiently small ε" is a shorthand for "there exists
ε0 > 0 such that for 0 < ε < ε0."

Theorem 1. a) Suppose G, Sn hold true. Then:
ai)

n-l

) (2.54)

zY/z \\R(s; ε)|| uniformly bounded for sufficiently small ε.
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aii) There exists q(s) (depending upon L(s), rk(s)) such that for sufficiently small ε:

iε^Pε(s)-[H(3),Pε(s)]

b) Suppose G, Sa hold true. Then:
bi) In the sense of asymptotic series

<εnq(s) = δn(s;ε). (2.55)

(2.56)

bii) There exists constants kx < oo and 0 < k2 (depending upon L(s), r(s), c(s)) such
that for sufficiently small ε:

iε^Pε(s)-[H(s),Pε(s)] < kι(s)b(s)Qxp —
k2(s)

ds Λ ε

Remark. Notice that in particular

lim | | P e ( s ) - P 0 ( s ) | | = 0 .

= δ(s;ε). (2.57)

(2.58)

Proof of Theorem lb. The asymptotic expansion (2.56) is a direct consequence of
(2.45), (2.48), (2.50), (2.53), and Proposition 3.

Let us compute now (use (2.46))

iεP(

ε

l) = (Tε- - z)'ldz

— ε

\z-\\ = \/2

1

2πi
\z-\\ = \/2

2 ^

(T£-zΓι[H,T£](T£-zΓιdz

(Tε-zΓιE$(Tε-zΓιdz.

= [H,(Tε - I)"1]

Now using the identity

one obtains

\\ίεP^-[H,Pε]\\<

from which (2.57) follows (use Lemma 4 and again the Stirling formula).

3. Intertwining Evolutions and Factorisation Theorems

We shall start with some variations on the well known Krein-Kato lemma [K2, Kr].
Let Q(s) be a norm differentiable family of bounded projections, s e (α, b) C R.
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The problem is to find families, V(s, s0), of bounded with bounded inverse operators
intertwining Q(s), i.e.

Q(s) = V(s,so)Q(so)V-{(s,so). (3.1)

We shall call V(s, s0) an intertwining evolution for Q(s). In what follows we shall
describe a large class of intertwining evolutions for Q(s) given as solutions of
Schrδdinger type equations,

i -^ V(s, s0) = K(s)V(s, s0) V(s0, s0) = 1 (3.2)

with suitably chosen K(s). If we like to allow unbounded K(s), some conditions are
to be met in order (3.2) to have a solution. For simplicity we shall reproduce below
some results only for families of orthogonal projections in Hubert spaces (see e.g.
[T] also for the conditions in the general case).

Proposition 4. Suppose N(s) to be a family of self-adjoint operators in a Hubert
space J$f, satisfying
i) @(N(s)) = & independent of s,

ii) N(s) (N(sQ) — i)~ι, s0 £ (α, b) is strongly differentiable on (α, b).
Then the equation

^W(s,so) = N(S)W(slSo); W(so,so)=l

has a unique unitary strongly continuous solution.

The following is a generalisation of the Krein-Kato lemma:

Lemma 6. Suppose:
i) Q{s) is a norm differentiable family of orthogonal projections in a Hubert space

ii) N(s) satisfy the conditions of Proposition 4.

) Q(s) 4
Then

iii) Q(s)@ C@,4- Q(s)@ C ̂ , \\[N(s),Q(s)]\\ < M < oo.
as

KN(s) = N(s) + (1 - 2Q(s)) (i ^ Q(s) - [N(s),Q(s)]\ (3.3)

is self-adjoint on &), satisfies the conditions of Proposition 4 and AN(s, s0) given by

i -^ AN(s, s0) = KN(s)AN(s, s0) AN(s0, s0) = 1 (3.4)

is an intertwining evolution for Q(s).

Proof Using Q{l)Q + QQ(ι) = Q ( 1 ) it follows at once that the second term in the
r.h.s. of (3.3) is self-adjoint and since it is bounded, by perturbation theory KN is
self-adjoint. Moreover due to iii) it satisfies the conditions in Proposition 4. Consider:

f(s) = Aχ\s, so)Q(s)AN(s, s0).

By direct computation, for ψ e ϋ?,
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and using that QQ^Q — 0 one can verify that the expression in the curly bracket
vanishes.

We shall use the following direct consequence of the above lemma.

Lemma 7. Let ΦN(s, s0) be defined by

AN(s, sQ) = AQ(S, SO)ΦN(S, S0) . (3.5)

Then
[ΦN(s,s0),Q(s0)] = 0, (3.6)

and for ψ G &,

i j - ΦN(s, so)ψ = {Q(so)A~\s, s0)N(s) A0(s, so)Q(so) + (1 - Q(s0)) A~ι(s, s0)

xN(s)A0(s,s0)(l -Q(so))}ΦN(s,so)ψ. (3.7)

Applying the above scheme, with ε~ιH(s) as N(s), to the family, Pε(s),
constructed in the previous section one obtains:

Theorem 2. Suppose H(s) satisfies G, S, and either d imJ^ < oo or H(s) satisfies
also the conditions in Proposition 4. Let Pε(s) as given by the construction in Sect. 2,
and Uε(s, s0), Bε(s), {7ε

A(s, s0), Aε(s, s0), Φε(s, s0), ί?ε(s, sQ) be given by (1.1), (1.16),
(1.17), (1.22), (1.24), and (1.19) respectively. Then (1.18), (1.20), (1.23), and (1.25)
are valid. If in addition H(s) is self-adjoint then (1.21), where δ(s; e) is given by (2.55)
or (2.57), holds true.

4. Extensions

Some applications [N4] require some straigthforward extensions of the above theory
and we shall mention a few.
a) The generator, H — H(s; λ) depends on an additional parameter A G Λ where λ
is a topological space. Suppose that H(s; λ) satisfies G, S uniformly on A. Moreover
suppose (H(s λ) — z)~ι is norm differentiable with respect to λ and its derivative
satisfies S uniformly in λ. Then Pε(s; λ) is norm differentiable with respect to λ and
its derivative has an asymptotic expansion in ε which can be obtained by term by
term differentiation of the asymptotic expansion of Pε(s; λ).
b) The generator H = H(s; ε) depends itself on ε. The theory applies without any
changes as far as H = H(s ε) satisfies G, S uniformly for ε E [0, ε 0], ε0 > 0. Of
course in this case Ej will depend also on ε; if P0(s; ε) has a series expansion in ε
then the same is true for Ej(s; ε).

Finally, let us stress that Theorem 1 implies the bound (1.21) for Ω only in the
self-adjoint case. In the general case in order to obtain bounds on Ω — 1 it is necessary
to control WU^is, so)\\ (see [BN, NR] for specific problems in which this has been
done). As far as the needed bounds are obtained all the theory can be applied; in
particular (1.28-30) remain valid, but in this case φ(s,so;ε) becomes complex.
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